請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64753
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施明哲(Ming-che Shih),常怡雍(Yee-yung Charng) | |
dc.contributor.author | Meng-yi Lin | en |
dc.contributor.author | 林孟逸 | zh_TW |
dc.date.accessioned | 2021-06-16T22:58:34Z | - |
dc.date.available | 2017-08-28 | |
dc.date.copyright | 2012-08-28 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-08 | |
dc.identifier.citation | Agarwal, M., Katiyar-Agarwal, S., and Grover, A. (2002). Plant Hsp100 proteins: structure, function and regulation. Plant Science 163: 397-405.
Agarwal, M., Sahi, C., Katiyar-Agarwal, S., Agarwal, S., Young, T., Gallie, D.R., Sharma, V.M., Ganesan, K., and Grover, A. (2003). Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol Biol 51: 543-553. Batra, G., Chauhan, V.S., Singh, A., Sarkar, N.K., and Grover, A. (2007). Complexity of rice Hsp100 gene family: lessons from rice genome sequence data. J Biosci 32: 611-619. Battisti, D.S., and Naylor, R.L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240-244. Bukau, B., and Horwich, A.L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366. Charng, Y.Y., Liu, H.C., Liu, N.Y., Hsu, F.C., and Ko, S.S. (2006). Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140: 1297-1305. Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143: 251-262. Egeh, A.O., Ingram, K.T., and Zamora, O.B. (1992). High temperature effects of leaf gas exchange of four rice cultivars. Philippine Journal of Crop Science 17: 21-26. Endo, M., Tsuchiya, T., Hamada, K., Kawamura, S., Yano, K., Ohshima, M., Higashitani, A., Watanabe, M., and Kawagishi-Kobayashi, M. (2009). High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant and Cell Physiol 50: 1911-1922. Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B.M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W.L., Chen, L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A., and Briggs, S. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100. Graham, D.E., Xu, H., and White, R.H. (2002). Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes. J. Biol. Chem. 277: 13421-13429. Hedhly, A., Hormaza, J.I., and Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science 14: 30-36. Hong, S.W., and Vierling, E. (2000). Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci U S A 97: 4392-4397. Hong, S.W., and Vierling, E. (2001). Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J 27: 25-35. Hu, C., Lin, S.Y., Chi, W.T., and Charng, Y.Y. (2012). Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis. Plant Physiol 158: 747-758. Jagadish, S.V., Craufurd, P.Q., and Wheeler, T.R. (2007). High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot 58: 1627-1635. Jagadish, S.V., Muthurajan, R., Oane, R., Wheeler, T.R., Heuer, S., Bennett, J., and Craufurd, P.Q. (2009). Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61: 143-156. Katiyar-Agarwal, S., Agarwal, M., and Grover, A. (2003). Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Molecular Biology 51: 677-686. Krishnan, A., Guiderdoni, E., An, G., Hsing, Y.I., Han, C.D., Lee, M.C., Yu, S.M., Upadhyaya, N., Ramachandran, S., Zhang, Q., Sundaresan, V., Hirochika, H., Leung, H., and Pereira, A. (2009). Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149: 165-170. Lee, G.J., Roseman, A.M., Saibil, H.R., and Vierling, E. (1997). A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16: 659-671. Lee, S., Sowa, M.E., Watanabe, Y.H., Sigler, P.B., Chiu, W., Yoshida, M., and Tsai, F.T. (2003). The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115: 229-240. Lee, U., Rioflorido, I., Hong, S.W., Larkindale, J., Waters, E.R., and Vierling, E. (2007). The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J 49: 115-127. Lee, Y.R., Nagao, R.T., and Key, J.L. (1994). A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell 6: 1889-1897. Lin, C.J., Li, C.Y., Lin, S.K., Yang, F.H., Huang, J.J., Liu, Y.H., and Lur, H.S. (2010). Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem 58: 10545-10552. Lin, S.K., Chang, M.C., Tsai, Y.G., and Lur, H.S. (2005). Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5: 2140-2156. Lindquist, S., and Craig, E.A. (1988). The Heat-Shock Proteins. Annual Review of Genetics 22: 631-677. Liu, H.C., Liao, H.T., and Charng, Y.Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34: 738-751. Liu, N.Y., Ko, S.S., Yeh, K.C., and Charng, Y.Y. (2006a). Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Science 170: 976-985. Liu, N.Y.L., Hsieh, W.J., Liu, H.C., and Charng, Y.Y. (2006b). Hsa32, a phosphosulfolactate synthase-related heat-shock protein, is not involved in sulfolipid biosynthesis in Arabidopsis. Botanical Studies 47: 389-395. Lobell, D.B., Schlenker, W., and Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science 333: 616-620. Londo, J.P., Chiang, Y.C., Hung, K.H., Chiang, T.Y., and Schaal, B.A. (2006). Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci U S A 103: 9578-9583. Ma, L., Chen, C., Liu, X., Jiao, Y., Su, N., Li, L., Wang, X., Cao, M., Sun, N., Zhang, X., Bao, J., Li, J., Pedersen, S., Bolund, L., Zhao, H., Yuan, L., Wong, G.K., Wang, J., and Deng, X.W. (2005). A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Res 15: 1274-1283. Matsui, T., and Omasa, K. (2002). Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot 89: 683-687. Matsui, T., Omasa, K., and Horie, T. (1997). High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Japanese Journal of Crop Science 66: 449-455. Meiri, D., and Breiman, A. (2009). Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Plant J 59: 387-399. Meiri, D., Tazat, K., Cohen-Peer, R., Farchi-Pisanty, O., Aviezer-Hagai, K., Avni, A., and Breiman, A. (2010). Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance. Plant Mol Biol 72: 191-203. Mohammed, A.R., and Tarpley, L. (2009). High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology 149: 999-1008. Murakami, T., Matsuba, S., Funatsuki, H., Kawaguchi, K., Saruyama, H., Tanida, M., and Sato, Y. (2004). Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Molecular Breeding 13: 165-175. Neta-Sharir, I., Isaacson, T., Lurie, S., and Weiss, D. (2005). Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17: 1829-1838. Nieto-Sotelo, J., Martinez, L.M., Ponce, G., Cassab, G.I., Alagon, A., Meeley, R.B., Ribaut, J.M., and Yang, R. (2002). Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell 14: 1621-1633. Parsell, D.A., Kowal, A.S., Singer, M.A., and Lindquist, S. (1994). Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475-478. Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S., and Cassman, K.G. (2004). Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101: 9971-9975. Queitsch, C., Hong, S.W., Vierling, E., and Lindquist, S. (2000). Heat Shock Protein 101 Plays a Crucial Role in Thermotolerance in Arabidopsis. Plant Cell 12: 479-492. Schirmer, E.C., Lindquist, S., and Vierling, E. (1994). An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6: 1899-1909. Schirmer, E.C., Glover, J.R., Singer, M.A., and Lindquist, S. (1996). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21: 289-296. Schoffl, F., Prandl, R., and Reindl, A. (1998). Regulation of the heat-shock response. Plant Physiol 117: 1135-1141. Selvaraj, M., Burow, G., Burke, J., Belamkar, V., Puppala, N., and Burow, M. (2011). Heat stress screening of peanut (Arachis hypogaea L.) seedlings for acquired thermotolerance. Plant Growth Regulation 65: 83-91. Senthil-Kumar, M., Srikanthbabu, V., Mohan Raju, B., Ganeshkumar, Shivaprakash, N., and Udayakumar, M. (2003). Screening of inbred lines to develop a thermotolerant sunflower hybrid using the temperature induction response (TIR) technique: a novel approach by exploiting residual variability. J Exp Bot 54: 2569-2578. Tonsor, S.J., Scott, C., Boumaza, I., Liss, T.R., Brodsky, J.L., and Vierling, E. (2008). Heat shock protein 101 effects in A. thaliana: genetic variation, fitness and pleiotropy in controlled temperature conditions. Mol Ecol 17: 1614-1626. Wu, S.J., Wang, L.C., Yeh, C.H., and Lu, C.A. (2010). Isolation and characterization of the Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance. New Phytol 186: 833-842. Yamakawa, H., Hirose, T., Kuroda, M., and Yamaguchi, T. (2007). Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144: 258-277. Yeh, C.H., J. K., N., Hu, C., and Charng, Y.Y. (2012). Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Science. doi:10.1016/j.plantsci.2012.06.004 Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., and Oda, K. (2008). Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227: 957-967. Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Li, J., Liu, Z., Qi, Q., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Zhao, W., Li, P., Chen, W., Zhang, Y., Hu, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Tao, M., Zhu, L., Yuan, L., and Yang, H. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79-92. Zhao, K., Tung, C.W., Eizenga, G.C., Wright, M.H., Ali, M.L., Price, A.H., Norton, G.J., Islam, M.R., Reynolds, A., Mezey, J., McClung, A.M., Bustamante, C.D., and McCouch, S.R. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2: 467. Zietkiewicz, S., Krzewska, J., and Liberek, K. (2004). Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J Biol Chem 279: 44376-44383. Zinn, K.E., Tunc-Ozdemir, M., and Harper, J.F. (2010). Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61: 1959-1968. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64753 | - |
dc.description.abstract | 研究報告指出,全球暖化趨勢將增加熱浪頻率與強度,熱浪所造成的高溫逆境對水稻品質與產量皆會造成負面影響。廣泛地探討並深入暸解水稻之耐熱機制及其限度,應有助於提出耐熱品種改良的方向與策略。前人以模式植物阿拉伯芥探討植物耐熱機制之結果顯示,熱休克蛋白HSP101大量表現不僅能幫助植物度過熱逆境,亦可維持其產量。此外,本實驗室發現HSP101的降解受到另一個熱誘導蛋白HSA32的調控,且HSA32的含量亦受到HSP101的正向調控。根據上述結果推論,HSP101與HSA32蛋白之間存在回饋交互作用以延長植物對熱逆境之記憶。基於這些研究,我們想進一步瞭解HSP101與HSA32是否在水稻中也存在類似的交互作用,以及此交互作用如何幫助不同品種的水稻對抗熱逆境。首先,我們取得由跳躍子Tos17插入破壞表現的基因默化突變株osha32,接著探討突變株於不同熱逆境條件下之耐受性。在熱馴化後經歷較長恢復期再處以熱逆境後,oshsa32的生長遲滯現象較野生型來得嚴重;然而,如熱馴化後僅經歷短期恢復的處理則與野生型無顯著差異。經由分子層次分析結果指出,oshsa32種子熱敏感的性狀與OsHSP101蛋白基礎量偏低相關;此外,相較於野生型植株而言,oshsa32 突變株經熱馴化後累積的 OsHSP101 蛋白降解較快,進而造成 oshsa32 幼苗亦較不耐熱。我們歸結出OsHSA32應經由維持熱馴化後OsHSP101的表達量,進而幫助水稻對抗熱逆境,其結果與阿拉伯芥有一致性的發現。有趣的是,熱誘導之OsHSP101含量維持時間在稉稻與秈稻中不同,推測與其需適應不同環境相關。相較秈稻品系N22,熱馴化後OsHSA32和OsHSP101的表現在稉稻品系Nipponbare中維持較長的時間,因此Nipponbare對長恢復期後再處以熱逆境的耐受性較佳;反之,N22則具有較高的基礎耐熱性。本研究提供合適的耐熱性篩選平台,未來將可用於瞭解水稻各品種之耐熱特性,以及應用於育種材料之篩選。 | zh_TW |
dc.description.abstract | A number of reports predict that the frequency and intensity of heat wave will increase in the near future due to the effect of global warming. Heat waves result in heat stress (HS) that reduces the quality and productivity of rice. Extensive investigation and in-depth understanding of the mechanism and limitation of heat stress response may help the formulation of breeding strategy for improving rice heat tolerance. According to previous studies, HSP101 was shown to protect fruit production under HS condition in Arabidopsis. The degradation rate of HSP101 following its induction is retarded by HSA32, whose post-stress accumulation is enhanced by HSP101. The interplay between HSP101 and HSA32 is considered to extend the memory of heat acclimation in Arabidopsis. With this information, I was interested to know whether there is a similar interplay between these two heat shock proteins (HSPs) in rice, and what are their roles within different rice types under various heat stress conditions. We first obtained and studied the knockout mutants of OsHSA32 in one of rice subspecies japonica cv. Nipponbare. Disruption of OsHSA32 by independent Tos17 insertions caused significant growth retardation under the assay condition for long-term acquired thermotolerance (LAT), but not for short-term acquired thermotolerance (SAT). In addition, we noticed that OsHSP101 expression was reduced in the seeds of null oshsa32 mutants, which may account for the heat-sensitive phenotype of oshsa32. Furthermore, degradation of OsHSP101 was faster in oshsa32 than that in WT during recovery after acclimation treating (42oC, 2hr). Our data showed that OsHSA32 plays an important role in rice basal thermotolerance (BT) and LAT through maintaining the level of the major chaperone protein OsHSP101, which were in agreement with the previous studies done in Arabidopsis. Interestingly, differential degradation rates of HSP101 were observed in indica and japonica rice types. Both duration of the heat induced OsHSP101 and OsHSA32 were longer in rice subspecies japonica cv. Nipponbare than in indica cv. N22, which might account for a better tolerance for LAT assay in Nipponbare than in N22. However, Nipponbare became inviable after BT assay while N22 could continue to grow under the same condition. These data suggested that among various rice cultivars there are differential responses against different types of heat stress conditions. Thus, the assays established in this study allow a better characterization of different thermotolerance traits among rice types, which would be useful for selecting materials for breeding in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T22:58:34Z (GMT). No. of bitstreams: 1 ntu-101-R98b42009-1.pdf: 1960723 bytes, checksum: fbe5b988bc92b80e7d59decce55a5f3c (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝……………………………………………………………………………………………………………………………………………i
Abstract in Chinese…………………………………………………………………………………………………v Abstract…………………………………………………………………………………………………………………………………vii Abreviattions…………………………………………………………………………………………………………………ix Chapter 1 Introduction …………………………………………………………………………………………1 1.1 Heat shock response and the role of heat shock proteins in plants……………………………………………………………………………………………………………………1 1.2 Influences of HS in rice……………………………………………………………………………3 1.3 The role of HSP101 in thermotolerance…………………………………………5 1.4 The function of HSA32 in Arabidopsis……………………………………………7 1.5 Interplay between HSP101 and HSA32…………………………………………………8 Chapter 2 Materials and Methods……………………………………………………………………11 2.1 Plant Materials and Growth Conditions…………………………………………11 2.2 Total RNA extraction and semi-quantitative RT-PCR…………11 2.3 Genomic DNA extraction…………………………………………………………………………………13 2.4 Immunoblotting………………………………………………………………………………………………………13 2.5 Thermotolerance assays…………………………………………………………………………………15 2.6 Sequence alignment of OsHSA32………………………………………………………………16 Chapter 3 Results…………………………………………………………………………………………………………17 3.1 Expression pattern of OsHSA32 and OsHSP101………………………… 17 3.2 Tos17 insertion disrupted OsHSA32 gene expression…………………………………………………………………………………………………………………18 3.3 Low accumulation of OsHSP101 in oshsa32 seeds caused the BT defect in seed germination……………………………………………………19 3.4 OsHSP101 declines faster in oshsa32 than in WT after heat acclimation…………………………………………………………………………………………………20 3.5 oshsa32 mutants showed defect in LAT but not in SAT……21 3.6 The rapid reduction of OsHSP101 level in spikelets of oshsa32…………………………………………………………………………………………………………………………21 3.7 Differential thermotolerant performance between indica and japonica rices………………………………………………………………………………………… 22 3.8 Protein sequence alignment of OsHSA32 orthologs………………24 Chapter 4 Discussion…………………………………………………………………………………………………25 4.1 Expression pattern of OsHSA32…………………………………………………………… 25 4.2 Thermotolerance defect of oshsa32 mutants…………………………… 26 4.3 Differential response to two HS types found in indica and japonica rices……………………………………………………………………………………………28 Chapter 5 Future Work………………………………………………………………………………………………31 Tables and Figures…………………………………………………………………………………………………………32 References………………………………………………………………………………………………………………………………45 Appendix……………………………………………………………………………………………………………………………………51 | |
dc.language.iso | en | |
dc.title | 水稻HSA32之耐熱功能分析 | zh_TW |
dc.title | Functional Analysis of Rice HSA32 in Thermotolerance | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 靳宗洛(Tsung-Luo Jinn),鍾美珠(Mei-Chu Chung),葉國楨(Kuo-Chen Yeh) | |
dc.subject.keyword | 水稻,稉,稻,秈稻,熱逆境,熱休克蛋白,HSP101,HSA32,Nipponbare,N22,基礎耐熱性,後天耐熱性, | zh_TW |
dc.subject.keyword | rice,japonica,indica,heat stress,heat shock protein,OsHSP101,OsHSA32,Nipponbare,N22,basal thermotolerance,acquired thermotolerance, | en |
dc.relation.page | 53 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-08 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。