請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64745完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴逸儒(I-Rue Lai) | |
| dc.contributor.author | Ching-Hsueh Cheng | en |
| dc.contributor.author | 鄭敬學 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:58:25Z | - |
| dc.date.available | 2015-09-18 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-08 | |
| dc.identifier.citation | 1. Orsenigo, M.N., et al., Effects of creatine in a rat intestinal model of ischemia/reperfusion injury. Eur J Nutr, 2012. 51(3): p. 375-84.
2. Daneman, R. and M. Rescigno, The gut immune barrier and the blood-brain barrier: are they so different? Immunity, 2009. 31(5): p. 722-35. 3. Lipkin, M., B. Bell, and P. Sherlock, Cell Proliferation Kinetics in the Gastrointestinal Tract of Man. I. Cell Renewal in Colon and Rectum. J Clin Invest, 1963. 42(6): p. 767-76. 4. Nusrat, A., C. Delp, and J.L. Madara, Intestinal epithelial restitution. Characterization of a cell culture model and mapping of cytoskeletal elements in migrating cells. J Clin Invest, 1992. 89(5): p. 1501-11. 5. Grootjans, J., et al., Rapid lamina propria retraction and zipper-like constriction of the epithelium preserves the epithelial lining in human small intestine exposed to ischaemia-reperfusion. J Pathol, 2011. 224(3): p. 411-9. 6. El-Assal, O.N. and G.E. Besner, HB-EGF enhances restitution after intestinal ischemia/reperfusion via PI3K/Akt and MEK/ERK1/2 activation. Gastroenterology, 2005. 129(2): p. 609-25. 7. Nanobashvili, J., et al., Development of 'no-reflow' phenomenon in ischemia/reperfusion injury: failure of active vasomotility and not simply passive vasoconstriction. Eur Surg Res, 2003. 35(5): p. 417-24. 8. Takano, T., et al., A somatostatin analogue, octreotide, ameliorates intestinal ischemia-reperfusion injury through the early induction of heme oxygenase-1. J Surg Res, 2012. 175(2): p. 350-8. 9. Hsieh, Y.H., et al., Intestinal ischemia-reperfusion injury leads to inflammatory changes in the brain. Shock, 2011. 36(4): p. 424-30. 10. Leng, Y.F., et al., Ischemic post-conditioning attenuates the intestinal injury induced by limb ischemia/reperfusion in rats. Braz J Med Biol Res, 2011. 44(5): p. 411-7. 11. Sato, Y., et al., Protective effect of soy isoflavone genistein on ischemia-reperfusion in the rat small intestine. Biol Pharm Bull, 2011. 34(9): p. 1448-54. 12. Yuan, Y., et al., Protective effects of L-carnitine on intestinal ischemia/reperfusion injury in a rat model. J Clin Med Res, 2011. 3(2): p. 78-84. 13. de Groot, H. and U. Rauen, Ischemia-reperfusion injury: processes in pathogenetic networks: a review. Transplant Proc, 2007. 39(2): p. 481-4. 14. Muzio, M., et al., FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell, 1996. 85(6): p. 817-27. 15. Li, P., et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997. 91(4): p. 479-89. 16. Deshmukh, D.R., et al., Intestinal ischemia and reperfusion injury in transgenic mice overexpressing copper-zinc superoxide dismutase. Am J Physiol, 1997. 273(4 Pt 1): p. C1130-5. 17. Akao, T., et al., Effect of the free radical scavenger MCI-186 on pulmonary ischemia-reperfusion injury in dogs. J Heart Lung Transplant, 2006. 25(8): p. 965-71. 18. Collard, C.D. and S. Gelman, Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology, 2001. 94(6): p. 1133-8. 19. Anaya-Prado, R., et al., Ischemia/reperfusion injury. J Surg Res, 2002. 105(2): p. 248-58. 20. Pech, T., et al., Perioperative infliximab application has marginal effects on ischemia-reperfusion injury in experimental small bowel transplantation in rats. Langenbecks Arch Surg, 2012. 397(1): p. 131-40. 21. Ferencz, A., et al., Examination of protective effect of ischemic postconditioning after small bowel autotransplantation. Transplant Proc, 2010. 42(6): p. 2287-9. 22. Zhao, Z.Q., et al., Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol, 2003. 285(2): p. H579-88. 23. Murry, C.E., R.B. Jennings, and K.A. Reimer, Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986. 74(5): p. 1124-36. 24. Parks, D.A. and D.N. Granger, Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol, 1986. 250(6 Pt 1): p. G749-53. 25. Zhao, H., R.M. Sapolsky, and G.K. Steinberg, Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab, 2006. 26(9): p. 1114-21. 26. Iliodromitis, E.K., et al., Protection from post-conditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol, 2006. 101(6): p. 502-7. 27. Xi, L., et al., Loss of myocardial ischemic postconditioning in adenosine A1 and bradykinin B2 receptors gene knockout mice. Circulation, 2008. 118(14 Suppl): p. S32-7. 28. Sun, J., et al., Inhibition of mitochondrial permeability transition pore opening contributes to the neuroprotective effects of ischemic postconditioning in rats. Brain Res, 2012. 1436: p. 101-10. 29. Chen, S., et al., Ischemia postconditioning and mesenchymal stem cells engraftment synergistically attenuate ischemia reperfusion-induced lung injury in rats. J Surg Res, 2012. 30. Weng, X., et al., Ischemic Postconditioning Inhibits the Renal Fibrosis Induced by Ischemia-reperfusion Injury in Rats. Urology, 2012. 31. Cohen, M.V., X.M. Yang, and J.M. Downey, The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation, 2007. 115(14): p. 1895-903. 32. Mykytenko, J., et al., Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial K(ATP) channels during reperfusion. Basic Res Cardiol, 2008. 103(5): p. 472-84. 33. Cohen, M.V., X.M. Yang, and J.M. Downey, Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning's success. Basic Res Cardiol, 2008. 103(5): p. 464-71. 34. Gross, E.R. and G.J. Gross, Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res, 2006. 70(2): p. 212-21. 35. Kin, H., et al., Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res, 2005. 67(1): p. 124-33. 36. Tsang, A., et al., Postconditioning: a form of 'modified reperfusion' protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res, 2004. 95(3): p. 230-2. 37. Zatta, A.J., et al., Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovasc Res, 2006. 70(2): p. 315-24. 38. Kin, H., et al., Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-kappa B translocation and TNF alpha release. Shock, 2008. 29(6): p. 761-8. 39. Gomez, L., et al., Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation, 2008. 117(21): p. 2761-8. 40. Staat, P., et al., Postconditioning the human heart. Circulation, 2005. 112(14): p. 2143-8. 41. Loukogeorgakis, S.P., et al., Postconditioning protects against endothelial ischemia-reperfusion injury in the human forearm. Circulation, 2006. 113(7): p. 1015-9. 42. Chipuk, J.E., L. Bouchier-Hayes, and D.R. Green, Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ, 2006. 13(8): p. 1396-402. 43. Green, D.R. and J.C. Reed, Mitochondria and apoptosis. Science, 1998. 281(5381): p. 1309-12. 44. Liu, X., et al., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 1996. 86(1): p. 147-57. 45. Bredesen, D.E., Neural apoptosis. Ann Neurol, 1995. 38(6): p. 839-51. 46. Petit, P.X., et al., Mitochondria and programmed cell death: back to the future. FEBS Lett, 1996. 396(1): p. 7-13. 47. Tagliarino, C., et al., Calcium is a key signaling molecule in beta-lapachone-mediated cell death. J Biol Chem, 2001. 276(22): p. 19150-9. 48. Mukherjee, S.B., et al., Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes. J Biol Chem, 2002. 277(27): p. 24717-27. 49. Di Lisa, F., et al., Mitochondria and reperfusion injury. The role of permeability transition. Basic Res Cardiol, 2003. 98(4): p. 235-41. 50. Qian, T., et al., Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Physiol, 1997. 273(6 Pt 1): p. C1783-92. 51. Argaud, L., et al., Trimetazidine inhibits mitochondrial permeability transition pore opening and prevents lethal ischemia-reperfusion injury. J Mol Cell Cardiol, 2005. 39(6): p. 893-9. 52. Leung, A.W., P. Varanyuwatana, and A.P. Halestrap, The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem, 2008. 283(39): p. 26312-23. 53. Klingenberg, M., The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta, 2008. 1778(10): p. 1978-2021. 54. Hansson, M.J., et al., The nonimmunosuppressive cyclosporin analogs NIM811 and UNIL025 display nanomolar potencies on permeability transition in brain-derived mitochondria. J Bioenerg Biomembr, 2004. 36(4): p. 407-13. 55. Basso, E., et al., Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J Biol Chem, 2008. 283(39): p. 26307-11. 56. Griffiths, E.J. and A.P. Halestrap, Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J, 1995. 307 ( Pt 1): p. 93-8. 57. Halestrap, A.P. and A.M. Davidson, Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J, 1990. 268(1): p. 153-60. 58. Xu, M., et al., Calcium preconditioning inhibits mitochondrial permeability transition and apoptosis. Am J Physiol Heart Circ Physiol, 2001. 280(2): p. H899-908. 59. Krolikowski, J.G., et al., Inhibition of mitochondrial permeability transition enhances isoflurane-induced cardioprotection during early reperfusion: the role of mitochondrial KATP channels. Anesth Analg, 2005. 101(6): p. 1590-6. 60. Sharov, V.G., et al., Inhibition of mitochondrial permeability transition pores by cyclosporine A improves cytochrome C oxidase function and increases rate of ATP synthesis in failing cardiomyocytes. Heart Fail Rev, 2005. 10(4): p. 305-10. 61. Szeto, H.H., et al., Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol, 2011. 22(6): p. 1041-52. 62. Greco, T. and G. Fiskum, Brain mitochondria from rats treated with sulforaphane are resistant to redox-regulated permeability transition. J Bioenerg Biomembr, 2010. 42(6): p. 491-7. 63. Chmurzynska, A., The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet, 2006. 47(1): p. 39-48. 64. Glatz, J.F. and G.J. van der Vusse, Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res, 1996. 35(3): p. 243-82. 65. Acosta, S., Epidemiology of mesenteric vascular disease: clinical implications. Semin Vasc Surg, 2010. 23(1): p. 4-8. 66. Rifai, N., M.A. Gillette, and S.A. Carr, Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol, 2006. 24(8): p. 971-83. 67. Gumaste, U.R., et al., Alcohol dehydrogenase: a potential new marker for diagnosis of intestinal ischemia using rat as a model. World J Gastroenterol, 2005. 11(6): p. 912-6. 68. Murray, M.J., et al., Serum D(-)-lactate levels as an aid to diagnosing acute intestinal ischemia. Am J Surg, 1994. 167(6): p. 575-8. 69. Thuijls, G., et al., Early diagnosis of intestinal ischemia using urinary and plasma fatty acid binding proteins. Ann Surg, 2011. 253(2): p. 303-8. 70. Gearhart, S.L., et al., Prospective assessment of the predictive value of alpha-glutathione S-transferase for intestinal ischemia. Am Surg, 2003. 69(4): p. 324-9; discussion 329. 71. Chiu, Y.H., et al., D-dimer in patients with suspected acute mesenteric ischemia. Am J Emerg Med, 2009. 27(8): p. 975-9. 72. Block, T., et al., Diagnostic accuracy of plasma biomarkers for intestinal ischaemia. Scand J Clin Lab Invest, 2008. 68(3): p. 242-8. 73. Chiu, C.J., et al., Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg, 1970. 101(4): p. 478-83. 74. Anini, Y., et al., Role of phosphatidylinositol-3 kinase-gamma in the actions of glucagon-like peptide-2 on the murine small intestine. Am J Physiol Endocrinol Metab, 2007. 292(6): p. E1599-606. 75. McCord, J.M., Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med, 1985. 312(3): p. 159-63. 76. Guneli, E., et al., Erythropoietin protects the intestine against ischemia/ reperfusion injury in rats. Mol Med, 2007. 13(9-10): p. 509-17. 77. Carden, D.L. and D.N. Granger, Pathophysiology of ischaemia-reperfusion injury. J Pathol, 2000. 190(3): p. 255-66. 78. Grace, P.A., Ischaemia-reperfusion injury. Br J Surg, 1994. 81(5): p. 637-47. 79. Nathan, C., Nitric oxide as a secretory product of mammalian cells. FASEB J, 1992. 6(12): p. 3051-64. 80. Takeshita, M., et al., Role of transcription factors in small intestinal ischemia-reperfusion injury and tolerance induced by ischemic preconditioning. Transplant Proc, 2010. 42(9): p. 3406-13. 81. Jiang, X., et al., Postconditioning, a series of brief interruptions of early reperfusion, prevents neurologic injury after spinal cord ischemia. Ann Surg, 2006. 244(1): p. 148-53. 82. Lin, H.C., et al., Ischemic postconditioning protects liver from ischemia-reperfusion injury by modulating mitochondrial permeability transition. Transplantation, 2012. 93(3): p. 265-71. 83. Santos, C.H., et al., The ischemic preconditioning and postconditioning effect on the intestinal mucosa of rats undergoing mesenteric ischemia/reperfusion procedure. Acta Cir Bras, 2008. 23(1): p. 22-8. 84. Li, Y.S., et al., Proteomics of ischemia/reperfusion injury in rat intestine with and without ischemic postconditioning. J Surg Res, 2010. 164(1): p. e173-80. 85. Hausenloy, D.J. and D.M. Yellon, Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev, 2007. 12(3-4): p. 217-34. 86. Lacerda, L., et al., Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res, 2009. 84(2): p. 201-8. 87. Okorie, M.I., et al., Postconditioning protects against human endothelial ischaemia-reperfusion injury via subtype-specific KATP channel activation and is mimicked by inhibition of the mitochondrial permeability transition pore. Eur Heart J, 2011. 32(10): p. 1266-74. 88. Hausenloy, D.J., A. Tsang, and D.M. Yellon, The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med, 2005. 15(2): p. 69-75. 89. Lecour, S., Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J Mol Cell Cardiol, 2009. 47(1): p. 32-40. 90. Davidson, S.M., et al., Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. Int J Biochem Cell Biol, 2006. 38(3): p. 414-9. 91. Kim, M. and R. Tian, Targeting AMPK for cardiac protection: opportunities and challenges. J Mol Cell Cardiol, 2011. 51(4): p. 548-53. 92. Cohen, M.V. and J.M. Downey, Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol, 2008. 103(3): p. 203-15. 93. Kong, T., et al., HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J, 2006. 20(13): p. 2242-50. 94. Loffler, M., et al., Physiological roles of vascular nucleoside transporters. Arterioscler Thromb Vasc Biol, 2007. 27(5): p. 1004-13. 95. Storch, J. and A.E. Thumser, Tissue-specific functions in the fatty acid-binding protein family. J Biol Chem, 2010. 285(43): p. 32679-83. 96. Mallick, I.H., et al., Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci, 2004. 49(9): p. 1359-77. 97. Del Rio, D., A.J. Stewart, and N. Pellegrini, A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis, 2005. 15(4): p. 316-28. 98. Ozacmak, V.H., et al., Attenuation of contractile dysfunction by atorvastatin after intestinal ischemia reperfusion injury in rats. Eur J Pharmacol, 2007. 562(1-2): p. 138-47. 99. Aldemir, M., et al., Effects of in vivo freezing and mannitol in intestinal ischaemia-reperfusion injury. Injury, 2003. 34(3): p. 173-9. 100. Ikeda, H., et al., Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut, 1998. 42(4): p. 530-7. 101. Pinkoski, M.J., et al., Fas and Fas ligand in gut and liver. Am J Physiol Gastrointest Liver Physiol, 2000. 278(3): p. G354-66. 102. Luo, X., et al., Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 1998. 94(4): p. 481-90. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64745 | - |
| dc.description.abstract | 前言:
小腸缺血再灌流傷害 (intestinal ischemia-reperfusion injury,簡稱IIR injury)為臨床上常見病理現象,造成傷害的原因包括急性的上腸系膜動脈阻塞以及小腸的移植手術等情況。IIR injury會導致全身性的發炎反應 (systemic inflammatory response,簡稱SIRS)及多重器官的衰竭 (multiorgan dysfunction response,簡稱MODS),病情嚴重時,甚至造成患者的死亡。本研究使用大鼠模式,探討缺血後制約訓練 (ischemic postconditioning,簡稱IPoC),一種改變缺血後再灌流(reperfusion)的程序,以間歇、短暫回復上腸系膜動脈血流的方法,降低組織缺血再灌流後的傷害。並且探究IPoC保護機制是否透過調節粒線體通透過渡性孔洞(mitochondrial permeability transition,簡稱mPTP)的開闔達成。 材料與方法: 將雄性Wistar大鼠 (重量約200~300 g)的上腸系膜動脈 (superior mensenteric artery,簡稱SMA)以血管夾阻斷血流30分鐘 (缺血期),之後移除血管夾以恢復小腸血流60分鐘 (再灌流期),此為IR組。後制約訓練係在小腸恢復血流前,給予連續3次短暫30秒的恢復灌流及接著30秒的缺血循環。為探究後制約訓練的保護效果是否與mPTP的開闔有關,某些組於缺血前5分鐘及缺血後15分鐘分別給予carboxy-atractyloside (CATR,造成mPTP的開啟)以及NIM811 (抑制mPTP的行成)。實驗分為五個組別,依序是Sham組,I/R組,IPoC組,I/R+NIM811組以及IPoC+CATR組。個組別於術前術後採集血液樣本以及空腸做分析,包括評估血清中乳酸脫氫酶 (lactate dehydrogenase,簡稱LDH)及小腸脂肪酸鍵結蛋白 (intestinal fatty acid binding protein,簡稱I-FABP)的含量、蘇木紫-伊紅染色 (Hematoxylin-Eosin staining)、細胞凋亡的評估 (TUNEL assay)、小腸黏膜中cytochrome c、cleaved-caspase 3及丙二醛 (malonialdehyde,簡稱MDA)的表現量。 實驗結果: I/R組不論在術後血清LDH數值,血清I-FABP的表現量,Chiu’s傷害指數,crypt/villus ratio (C/V ratio),細胞凋亡指數 (apoptotic index)以及黏膜細胞中cytochrome c、cleaved-caspase 3及MDA的表現量都明顯的高於Sham組,達到顯著差異 (p<0.05) (LDH:1273.67±277.43 U/L v.s 3427±236.81 U/L,Chiu’s score:0 v.s 4,C/V ratio:0.38±0.02 v.s 0.72±0.12,apoptotic index:0 v.s 59.5±4.56 %,MDA:5.43±0.27 v.s 8.68±0.36)。在IPoC組,上述所有傷害評估指標都有減少的現象 (LDH:1190.5±36.67 U/L,Chiu’s score:0.2±0.2,C/V ratio:0.39±0.03,apoptotic index:15.7±15.7 % ,MDA:5.58±0.27)。在給予NIM811的組別中,各項傷害評估指標也與IPoC組一樣有減少的現象。反觀於給予CATR,各項傷害指標皆與IR組相同,高於Sham組、IPoC組以及I/R+NIM811組。以上結果顯示缺血後制約訓練可以減少再灌流後血清LDH與I-FABP的增加,減少小腸黏膜傷害程度以及細胞凋亡的程度,這些保護效應與施予NIM811一致,並因施予CATR而減少。顯示缺血後制約訓練的保護機制可藉由抑制mPTP的開啟以減少小腸缺血再灌流傷害。 結論: 本實驗顯示缺血後制約訓練可以減少小腸缺血再灌流所造成的細胞傷害,其機制可能是透過調節降低粒線體膜通透性來達到保護效果。 | zh_TW |
| dc.description.abstract | Introduction:Intestinal ischemia-reperfusion (IIR)injury is an important clinical problem occurring in, for example, mesenteric arterial obstruction and intestinal transplantation. IIR injury leads to systemic inflammatory response (SIRS), multiorgan dysfunction response and even mortality. In this study, we explored the protective effect and mechanism of ischemic postconditioning (IPoC), a modulation of reperfusion maneuver, on IIR injury in a rat models.
Materials and methods:Male Wistar rats weighing 200 ~300 g were used. IIR injury was induced by clamping superior mesenteric artery (SMA) for 30 minutes and de-clamping for 60 minutes (I/R group). Three cycles of 30 seconds of reperfusion followed by 30 seconds of ischemia was performed just before reperfusion began in IPoC group. Carboxy- atractyloside (CATR, a mitochondria permeability transition pore activator)was injected at 5 minutes before intestinal ischemia in IPoC+CATR group. NIM811 (a mitochondria permeability transition pore inhibitor)was injected 15 minutes after ischemia began in I/R+ NIM811 group. The blood samples and jejunum were collected at indicated time for analysis including serum levels of lactate dehydrogenase (LDH), the expression of small intestinal fatty acid binding protein (I-FABP)in portal blood , hematoxylin-Eosin staining and TUNEL assay of intestinal sections, the expressions of cytochrome c cleaved-of caspase 3 and malonialdehyde (MDA)in the small intestine mucosa. Results: Compared to the sham group, serum LDH values, I-FABP expression, Chiu's injury score, crypt/villus ratio (C/V ratio), the apoptotic index , expressions of cytochrome c, cleaved-caspase 3 and MDA are significantly higher than in the IR group (p<0.05) (LDH: 1273.67 277.43 U/L v.s. 3427±236.81 U/L , Chiu's score: 0 v.s. 4, C/V ratio: 0.38±0.02 v.s. 0.72±0.12, apoptotic index: 0 v.s. 59.5±4.56 %, MDA: 5.43±0.27 v.s. 8.68±0.36). The IIR injury was lessened in the IPoC group and I/R+ NIM811 group , when compared with those of the I/R group(LDH: 1190.5±36.67 U/L & 1399.33±295.64 U/L, Chiu's score: 0.2±0.2 & 0.4±0.24, C/V ratio: 0.39±0.03 & 0.37±0.02, apoptotic index: 15.7±15.7 % & 3.51±3.51 %, MDA: 5.58±0.27 & 6.45±0.13). On the other hand, the administration of CATR mitigated the protection offered by IPoC. (LDH: 2002±370.89 U/L, I-FABP: 182.09±70.43, Chiu's score: 4.2±0.2, C/V ratio: 0.80±0.08, apoptotic index: 67.07±9.33 %, MDA: 10.03±0.23) Conclusion:This study demonstrated ischemic postconditioning can reduce cell damage caused by intestinal ischemia and reperfusion injury, and the protective mechanism of IPoC was related with the modulation of mitochondrial permeability transition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:58:25Z (GMT). No. of bitstreams: 1 ntu-101-R99446010-1.pdf: 2501837 bytes, checksum: 699b6a0bea60a6e2841598d1c48e7ce3 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 ii
英文縮寫與全名對照表 1 中文摘要 4 英文摘要 6 壹、緒論 8 一、小腸缺血再灌流傷害 (intestinal ischemia-reperfusion injury,簡稱IIR injury) 8 二、小腸缺血再灌流傷害的機制 10 三、缺血後制約訓練 (ischemic postconditioning,簡稱IPoC) 12 四、粒線體通透性 (mitochondrial permeability)與細胞凋亡 (apoptosis) 關係 13 五、粒線體通透過渡性孔洞 (mitochondrial permeability transition pore,簡稱mPTP) 15 六、小腸脂肪酸鍵結蛋白質 (intestinal fatty acid binding protein,簡稱I-FABP) 17 七、研究目的 19 貳、實驗材料 20 叁、實驗方法 27 肆、實驗結果 40 伍、討論 46 陸、結論 53 柒、表格 54 表格一 腺窩、絨毛高度及其比值 54 捌、附圖 55 附圖一 大鼠缺血再灌流時間模式示意圖 55 附圖二 小腸缺血再灌流的刺激對小腸黏膜組織型態的影響 56 附圖三 小腸缺血再灌流造成對Chiu’s injury score 的影響 57 附圖四 小腸缺血再灌流的刺激造成對C/V ratio值影響 58 附圖五 小腸缺血再灌流的刺激對血清LDH含量的影響 59 附圖六 小腸缺血再灌流的刺激對血清I-FABP含量的影響 60 附圖七 小腸缺血再灌流的刺激造成對黏膜組織MDA表現量的影響 61 附圖八 小腸缺血再灌流的刺激造成對黏膜表皮細胞凋亡的影響 63 附圖九 小腸缺血再灌流的刺激對細胞質cytochrome c表現的影響 64 附圖十 小腸缺血再灌流傷害的刺激對組織cleaved-caspase-3表現的影響 65 玖、參考資料 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 小腸缺血再灌流傷害 | zh_TW |
| dc.subject | 粒線體通透過渡性孔洞 | zh_TW |
| dc.subject | 小腸脂肪酸鍵結蛋白質 | zh_TW |
| dc.subject | mitochondrial permeability transition pore | en |
| dc.subject | intestinal fatty acid binding protein | en |
| dc.subject | intestinal ischemia-reperfusion injury | en |
| dc.title | 後制約訓練對大鼠小腸缺血再灌流傷害的保護效應與機制 | zh_TW |
| dc.title | The Protective Effects of Ischemic Postconditioning on Intestinal Ischemia-Reperfusion Injury among Rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭劍廷(Chien-Ting Cheng),余佳慧(Chia-Hui Yu) | |
| dc.subject.keyword | 小腸缺血再灌流傷害,粒線體通透過渡性孔洞,小腸脂肪酸鍵結蛋白質, | zh_TW |
| dc.subject.keyword | intestinal ischemia-reperfusion injury,mitochondrial permeability transition pore,intestinal fatty acid binding protein, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-09 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
