Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64744
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊雅惠
dc.contributor.authorYu-Chi Chenen
dc.contributor.author陳幼淇zh_TW
dc.date.accessioned2021-06-16T22:58:23Z-
dc.date.available2022-12-31
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-08
dc.identifier.citation1. Kaplan, M.M. and M.E. Gershwin, Primary biliary cirrhosis. N Engl J Med, 2005. 353(12): p. 1261-73.
2. Jones, D.E., Pathogenesis of primary biliary cirrhosis. Postgrad Med J, 2008. 84(987): p. 23-33.
3. Kaplan, M.M., Primary biliary cirrhosis. N Engl J Med, 1996. 335(21): p. 1570-80.
4. Ludwig, J., New concepts in biliary cirrhosis. Semin Liver Dis, 1987. 7(4): p. 293-301.
5. Lleo, A., et al., Definition of human autoimmunity - autoantibodies versus autoimmune disease. Autoimmun Rev, 2010. 9(5): p. A259-A266.
6. Liver, E.A.S., EASL Clinical Practice Guidelines: Management of cholestatic liver diseases. J Hepatol, 2009. 51(2): p. 237-267.
7. Moteki, S., et al., Use of a designer triple expression hybrid clone for three different lipoyl domain for the detection of antimitochondrial autoantibodies. Hepatology, 1996. 24(1): p. 97-103.
8. Jones, D.E.J., Primary Biliary Cirrhosis. Autoimmunity, 2004. 37(4): p. 325-328.
9. Gershwin, M.E., et al., Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol, 1987. 138(10): p. 3525-31.
10. Palmer, J.M., et al., Characterization of the autoantibody responses to recombinant E3 binding protein (protein X) of pyruvate dehydrogenase in primary biliary cirrhosis. Hepatology, 1999. 30(1): p. 21-6.
11. Joplin, R., et al., Human intrahepatic biliary epithelial cells proliferate in vitro in response to human hepatocyte growth factor. J Clin Invest, 1992. 90(4): p. 1284-9.
12. Klein, R., et al., Sera from patients with tuberculosis recognize the M2a-epitope (E2-subunit of pyruvate dehydrogenase) specific for primary biliary cirrhosis. Clin Exp Immunol, 1993. 92(2): p. 308-16.
13. Invernizzi, P., A. Lleo, and M. Podda, Interpreting serological tests in diagnosing autolmmune liver diseases. Semin Liver Dis, 2007. 27(2): p. 161-172.
14. Pasquali, J.L., et al., Auto-reactive B cells in transgenic mice. J Autoimmun, 2007. 29(4): p. 250-256.
15. Rowley, B., et al., Autoreactive B-1B cells: Constraints on natural autoantibody B cell antigen receptors. J Autoimmun, 2007. 29(4): p. 236-245.
16. Gershwin, M.E. and I.R. Mackay, The causes of primary biliary cirrhosis: Convenient and inconvenient truths. Hepatology, 2008. 47(2): p. 737-45.
17. Tanaka, A., et al., Genetic and familial considerations of primary biliary cirrhosis. Am J Gastroenterol, 2001. 96(1): p. 8-15.
18. Selmi, C., et al., Primary biliary cirrhosis in monozygotic and dizygotic twins: Genetics, epigenetics, and environment. Gastroenterology, 2004. 127(2): p. 485-492.
19. Invernizzi, P., et al., Frequency of monosomy X in women with primary biliary cirrhosis. Lancet, 2004. 363(9408): p. 533-535.
20. Gershwin, M.E., et al., Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology, 2005. 42(5): p. 1194-202.
21. Chuang, Y.H., et al., Animal models of primary biliary cirrhosis. Clin Liver Dis, 2008. 12(2): p. 333-47; ix.
22. Mattner, J., et al., Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe, 2008. 3(5): p. 304-15.
23. Wakabayashi, K., et al., Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology, 2008. 48(2): p. 531-40.
24. Wu, S.J., et al., Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology, 2011. 53(3): p. 915-25.
25. Liblau, R.S., et al., Autoreactive CD8 T cells in organ-specific autoimmunity: emerging targets for therapeutic intervention. Immunity, 2002. 17(1): p. 1-6.
26. Heath, W.R. and F.R. Carbone, Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol, 2001. 19: p. 47-64.
27. Kita, H., et al., Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med, 2002. 195(1): p. 113-23.
28. Babbe, H., et al., Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med, 2000. 192(3): p. 393-404.
29. Sun, D., et al., Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol, 2001. 166(12): p. 7579-87.
30. Raine, C.S., et al., Homing to central nervous system vasculature by antigen-specific lymphocytes. II. Lymphocyte/endothelial cell adhesion during the initial stages of autoimmune demyelination. Lab Invest, 1990. 63(4): p. 476-89.
31. Saxena, A., et al., Cutting edge: Multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes. J Immunol, 2008. 181(3): p. 1617-21.
32. Jiang, H., S.I. Zhang, and B. Pernis, Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science, 1992. 256(5060): p. 1213-5.
33. Montero, E., et al., Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+ T cells: analysis using depleting antibodies. J Autoimmun, 2004. 23(1): p. 1-7.
34. Weiss, H.A., J.A. Millward, and T. Owens, CD8(+) T cells in inflammatory demyelinating disease. J Neuroimmunol, 2007. 191(1-2): p. 79-85.
35. Johnson, T.A., F.R. Jirik, and S. Fournier, Exploring the roles of CD8(+) T lymphocytes in the pathogenesis of autoimmune demyelination. Semin Immunopathol, 2010. 32(2): p. 197-209.
36. Anderson, M.S. and J.A. Bluestone, The NOD mouse: a model of immune dysregulation. Annu Rev Immunol, 2005. 23: p. 447-85.
37. DiLorenzo, T.P., et al., Major histocompatibility complex class I-restricted T cells are required for all but the end stages of diabetes development in nonobese diabetic mice and use a prevalent T cell receptor alpha chain gene rearrangement. Proc Natl Acad Sci U S A, 1998. 95(21): p. 12538-12543.
38. Amrani, A., et al., Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature, 2000. 406(6797): p. 739-742.
39. Graser, R.T., et al., Identification of a CD8 T cell that can independently mediate autoimmune diabetes development in the complete absence of CD4 T cell helper functions. J Immunol, 2000. 164(7): p. 3913-8.
40. Verdaguer, J., et al., Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J Exp Med, 1997. 186(10): p. 1663-76.
41. Garza, K.M., et al., Enhanced T cell responses contribute to the genetic predisposition of CD8-mediated spontaneous autoimmunity. Eur J Immunol, 2002. 32(3): p. 885-94.
42. Andersson, A.K., C. Li, and F.M. Brennan, Recent developments in the immunobiology of rheumatoid arthritis. Arthritis Research & Therapy, 2008. 10(2).
43. Firestein, G.S., Evolving concepts of rheumatoid arthritis. Nature, 2003. 423(6937): p. 356-361.
44. McInnes, I.B. and G. Schett, Cytokines in the pathogenesis of rheumatoid arthritis. Nature Reviews Immunology, 2007. 7(6): p. 429-442.
45. Winchester, R., E. Dwyer, and S. Rose, The Genetic-Basis of Rheumatoid-Arthritis - the Shared Epitope Hypothesis. Rheumatic Disease Clinics of North America, 1992. 18(4): p. 761-783.
46. Cope, A.P. and G. Sonderstrup, Evaluating candidate autoantigens in rheumatoid arthritis. Springer Seminars in Immunopathology, 1998. 20(1-2): p. 23-39.
47. de Vries, R.R.P., T.W.J. Huizinga, and R.E.M. Toes, Redefining the HLA and RA association: To be or not to be anti-CCP positive. J Autoimmun, 2005. 25: p. 21-25.
48. Gonzalez-Quintial, R., et al., Identification of clonally expanded T cells in rheumatoid arthritis using a sequence enrichment nuclease assay. J Clin Invest, 1996. 97(5): p. 1335-43.
49. Fitzgerald, J.E., et al., Analysis of clonal CD8+ T cell expansions in normal individuals and patients with rheumatoid arthritis. J Immunol, 1995. 154(7): p. 3538-47.
50. Courtenay, J.S., et al., Immunization against Heterologous Type-Ii Collagen Induces Arthritis in Mice. Nature, 1980. 283(5748): p. 666-668.
51. Michaelsson, E., et al., Identification of an Immunodominant Type-Ii Collagen Peptide Recognized by T-Cells in H-2q Mice - Self Tolerance at the Level of Determinant Selection. Eur J Immunol, 1992. 22(7): p. 1819-1825.
52. Yoshino, S. and L.G. Cleland, Depletion of Alpha-Beta T-Cells by a Monoclonal-Antibody against the Alpha-Beta T-Cell Receptor Suppresses Established Adjuvant Arthritis, but Not Established Collagen-Induced Arthritis in Rats. Journal of Experimental Medicine, 1992. 175(4): p. 907-915.
53. Chu, C.Q. and M. Londei, Induction of Th2 cytokines and control of collagen-induced arthritis by nondepleting anti-CD4 Abs. J Immunol, 1996. 157(6): p. 2685-9.
54. Huang, J.C., et al., Analysis of autoreactive T cells associated with murine collagen-induced arthritis using peptide-MHC multimers. Int Immunol, 2004. 16(2): p. 283-293.
55. Kita, H., Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. Journal of Clinical Investigation, 2002. 109(9): p. 1231-1240.
56. Sasaki, M., et al., Naturally-occurring regulatory T cells are increased in inflamed portal tracts with cholangiopathy in primary biliary cirrhosis. J Clin Pathol, 2007. 60(10): p. 1102-7.
57. Yang, G.X., et al., Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology, 2008. 47(6): p. 1974-82.
58. Brusko, T.M., A.L. Putnam, and J.A. Bluestone, Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunological Reviews, 2008. 223: p. 371-90.
59. Bernuzzi, F., et al., Phenotypical and functional alterations of CD8 regulatory T cells in primary biliary cirrhosis. J Autoimmun, 2010. 35(3): p. 176-80.
60. Lleo, A., et al., Etiopathogenesis of primary biliary cirrhosis. World Journal of Gastroenterology, 2008. 14(21): p. 3328-3337.
61. Ness-Schwickerath, K.J. and C.T. Morita, Regulation and function of IL-17A-and IL-22-producing gamma delta T cells. Cellular and Molecular Life Sciences, 2011. 68(14): p. 2371-2390.
62. Born, W.K., et al., Analysis of gamma delta T Cell Functions in the Mouse. Journal of Immunology, 2010. 184(8): p. 4055-4061.
63. Bonneville, M., R.L. O'Brien, and W.K. Born, gamma delta T cell effector functions: a blend of innate programming and acquired plasticity. Nature Reviews Immunology, 2010. 10(7): p. 467-478.
64. Oertelt, S., et al., Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. Journal of Immunology, 2006. 177(3): p. 1655-1660.
65. Yang, G.X., et al., CD8 T cells mediate direct biliary ductule damage in nonobese diabetic autoimmune biliary disease. J Immunol, 2011. 186(2): p. 1259-67.
66. Irie, J., et al., NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med, 2006. 203(5): p. 1209-19.
67. Weaver, C.T., et al., IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol, 2007. 25: p. 821-852.
68. Emamaullee, J.A., et al., Inhibition of Th17 Cells Regulates Autoimmune Diabetes in NOD Mice. Diabetes, 2009. 58(6): p. 1302-1311.
69. Komiyama, Y., et al., IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol, 2006. 177(1): p. 566-73.
70. Nakae, S., et al., Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol, 2003. 171(11): p. 6173-7.
71. Lan, R.Y., et al., Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun, 2009. 32(1): p. 43-51.
72. Chang, Y., et al., CD8 positive T cells express IL-17 in patients with chronic obstructive pulmonary disease. Respir Res, 2011. 12: p. 43.
73. Gao, Y., et al., Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med, 2003. 198(3): p. 433-42.
74. Bernardo, I., et al., Phenotypic and functional evaluation of CD3+CD4-CD8- T cells in human CD8 immunodeficiency. Haematologica, 2011. 96(8): p. 1195-203.
75. Hornquist, E., et al., CD8-deficient mice exhibit augmented mucosal immune responses and intact adjuvant effects to cholera toxin. Immunology, 1996. 87(2): p. 220-229.
76. Paget, C., et al., Role of gamma delta T Cells in alpha-Galactosylceramide-Mediated Immunity. Journal of Immunology, 2012. 188(8): p. 3928-3939.
77. Filaci, G., et al., Non-antigen-specific CD8(+) T suppressor lymphocytes in diseases characterized by chronic immune responses and inflammation. Ann N Y Acad Sci, 2005. 1050: p. 115-23.
78. Balashov, K.E., et al., Inhibition of T-Cell Responses by Activated Human Cd8+ T-Cells Is Mediated by Interferon-Gamma and Is Defective in Chronic Progressive Multiple-Sclerosis. Journal of Clinical Investigation, 1995. 95(6): p. 2711-2719.
79. Filaci, G., et al., Impairment of CD8(+) T suppressor cell function in patients with active systemic lupus erythematosus. Journal of Immunology, 2001. 166(10): p. 6452-6457.
80. Filaci, G., et al., Non-antigen specific CD8+T suppressor lymphocytes. Clinical and Experimental Medicine, 2004. 4(2): p. 86-92.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64744-
dc.description.abstract原發性膽道硬化症(Primary biliary cirrhosis ; PBC)為一種具肝臟特異性的自體免疫疾病,患者肝臟內細小膽管慢性破壞,導致膽汁鬱積、膽管及門脈周圍發炎,連帶肝細胞也遭到破壞,產生肝纖維化,最後肝硬化。臨床研究發現,PBC病人肝臟內的自體抗原特異性T細胞(autoantigen specific T cell)比週邊血多且肝臟組織有CD8 T細胞浸潤。本實驗室先前發表以外源生質物(Xenobiotics:2-OA-BSA)及α-GalCer誘發正常基因小鼠產生PBC的小鼠模式,此PBC小鼠肝臟CD8 T細胞數量高於正常小鼠,並有肝臟發炎、肝纖維化等疾病特徵,與臨床病人情形相符。在此研究中我們探討 CD8 T細胞在PBC的病理變化的角色。
首先,我們確認2-OA-BSA/α-GalCer誘發PBC的小鼠模式中肝臟的conventional T細胞及其中的CD8 T細胞數量增加,並且發現肝臟單核細胞分泌IFN-γ及IL-17增加、T細胞浸潤於肝臟門脈區。將PBC小鼠的T細胞後天轉移至正常小鼠中,部分接受轉移的小鼠可見血清中抗粒線體抗體(AMA)上升、肝臟單核細胞分泌IFN-γ增加,相似於在2-OA-BSA/α-GalCer誘發的PBC小鼠中看到的現象。接著我們分析PBC小鼠的T細胞子分群分泌IFN-γ能力,發現CD8 T細胞分泌IFN-γ的比例高於CD4 T細胞,進一步分析肝臟單核細胞中CD8 T細胞活化情形,可見CD69+比例和FasL及granzyme B表現量升高,顯示細胞被活化且具有細胞毒殺能力。將PBC小鼠的CD8 T細胞後天轉移至正常小鼠中,結果接受轉移的小鼠血清中AMA明顯上升、肝臟單核細胞分泌IFN-γ增加,與T細胞轉移實驗結果相仿。
接著,我們利用2-OA-BSA/α-GalCer分別誘發正常基因小鼠與CD8基因剔除(CD8-/-)小鼠產生PBC反應,結果發現缺乏CD8 T細胞的小鼠仍會被誘發產生PBC: AMA產生、肝臟單核細胞分泌IFN-γ,以及肝臟發炎、門脈三角淋巴球浸潤、膽道破壞及肝纖維化等病理變化,其門脈浸潤的情形比正常基因小鼠更為嚴重。進一步探討CD8-/-小鼠受2-OA-BSA/α-GalCer誘發產生PBC的原因,我們發現致敏後CD8-/-小鼠的肝臟γδ T細胞大量增加,且會分泌 IFN-γ並表現FasL及Granzyme B,可能具有取代CD8 T細胞使CD8-/-小鼠產生PBC的能力。
綜合以上實驗數據,我們認為CD8 T細胞在2-OA-BSA/α-GalCer誘發的PBC小鼠模式中具有細胞毒殺性,可以直接或間接促使肝臟發炎、膽管破壞,逐漸發展至肝纖維化。然而在缺乏CD8 T細胞的情形下,γδT細胞可能會受2-OA-BSA/α-GalCer誘發,取代CD8 T細胞使小鼠產生PBC。
zh_TW
dc.description.abstractPrimary biliary cirrhosis (PBC) is a liver-specific autoimmune disease with progressive destruction of intrahepatic bile ducts, decreased bile flow and destruction of hepatocytes, leading to scarring, fibrosis and then cirrhosis. In PBC patients, the number of autoantigen specific T cells in the liver is higher than in peripheral blood and CD8 T cells infiltration in the portal tracts is also present. Our lab previously established a murine model of PBC with xenobiotics (2-OA-BSA) /α-GalCer immunization The 2-OA-BSA/α-GalCer injected mice had an increased number of liver CD8 T cell numbers and developed PBC-like features such as liver lymphoid infiltration, portal inflammation, and fibrosis. In this study, we investigated the role of CD8 T cells in the pathogenesis of PBC.
First, we confirmed that the number of conventional T cells and CD8 T cells were increased in 2-OA-BSA /α-GalCer induced PBC mice and T cells infiltration in portal tracts were also observed. In addition, the secretion of IFN-γ and IL-17 from liver mononuclear cells (LMNCs) of PBC mice was increased. After adoptive transferring of T cells from PBC mice, increased serum levels of AMAs and secretion of IFN-γ of LMNC in recipients was noted. Further, we demonstrated that the frequency of IFN-γproducing liver CD8 T cells was higher than that of liver CD4 T cells. Moreover, CD8 T cells from PBC mice expressed higher CD69, FasL and granzyme B than in naive mice, suggesting that the CD8 T cells in PBC mice are activated and can be cytotoxic. We then adoptively transferred CD8 T cells from PBC mice into naive mice. Increased serum levels of AMAs and secretion of IFN-γ from LMNC of recipients were also obeserved, which was similar to the results of mice transferred with total T cells.
However, CD8 deficient (CD8-/-) mice immunized with 2-OA-BSA /α-GalCer developed AMAs in serum, IFN-γ secretion of LMNC, liver portal infiltration and fibrosis like the characteristics in wild type mice. Additionally, we found γδ T cells were expanded in CD8-/- PBC mice and possessed cytotoxic potential, suggesting γδ T cells might be pathogenic in CD8-/- PBC mice.
In conclusion, our data suggested that CD8 T cells in 2-OA-BSA /α-GalCer induced PBC mice were hyperreactive and cytotoxic, and that these cells directly or indirectly induced lesions of PBC. In addition, γδ T cells might replace the pathogenesis role of CD8 T cells when CD8 T cells are deficient.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:58:23Z (GMT). No. of bitstreams: 1
ntu-101-R99424019-1.pdf: 6733606 bytes, checksum: e5c719fc79502dd58c36107b2d8bef10 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 i
Abstract iii
Abbreviation v
圖表目錄 xi
第一章 總論 1
1.1. 原發性膽道硬化症(Primary biliary cirrhosis ; PBC) 1
1.2. 組織病理學特徵與疾病病程分期 1
1.3. 血清免疫學特徵 1
1.4. 發病原因與致病因子 2
1.4.1. 自體抗體反應與自體反應B細胞 (Auto-antibody response and auto-reactive B cell) 2
1.4.2. 自體抗原特異性T細胞(Autoantigen-specific T cell) 3
1.4.3. 遺傳與環境因子 3
1.5. PBC的小鼠模式 3
1.5.1. 2-OA-BSA/α-GalCer induced PBC小鼠模式 4
第二章 探討CD8 T細胞在原發性膽道硬化症之角色 5
1. 研究背景 5
1.1. CD8 T 細胞 5
1.2. 自體抗原特異性T細胞的活化 5
1.3. CD8 T 細胞與自體免疫疾病 5
1.3.1. CD8 T細胞與多發性硬化症 6
1.3.2. CD8 T細胞與胰島素第一型糖尿病 7
1.3.3. CD8 T細胞與類風濕性關節炎 7
1.3.4. CD8 T 細胞與原發性膽道硬化症 8
2. 研究目的 10
3. 材料與方法 11
3.1. 實驗用小鼠 11
3.2. 2-OA-BSA/α-GalCer induced PBC 小鼠模式 11
3.3. 小鼠肝臟灌流與肝臟單核細胞分離 11
3.4. 以流式細胞儀分析肝臟單核細胞表面抗原 12
3.5. 細胞激素分泌分析 13
3.6. 小鼠肝臟組織切片製備 13
3.7. 免疫組織化學染色 13
3.8. 後天轉殖(adoptive transfer) T 細胞 14
3.9. 脾臟單核細胞分離 15
3.10. 肝臟單核細胞細胞內抗原分析 15
3.11. 血清樣品之收集 16
3.12. 血清中抗粒線體抗體效價測定 16
3.13. 繪圖與統計分析 17
4. 實驗結果 18
4.1. 以 2-OA-BSA/α-GalCer致敏之PBC小鼠的肝臟T細胞及CD8 T細胞數量增加且分泌高量IFN-γ及IL-17 18
4.2. 以 2-OA-BSA/α-GalCer致敏之PBC小鼠的肝臟門脈區有T細胞浸潤,其中包含CD8 T細胞 18
4.3. 將 2-OA-BSA/α-GalCer致敏之PBC小鼠的T細胞轉移至正常小鼠,可以促使接受轉移小鼠血清中AMAs效價升高,且其肝臟單核細胞可分泌較高量IFN-γ 19
4.4. 以 2-OA-BSA/α-GalCer致敏之PBC小鼠的CD8 T細胞表現IFN-γ的比例高於CD4 T細胞,且CD69+比例、FasL及Granzyme B表現量高於Naive小鼠。 20
4.5. 將 2-OA-BSA/α-GalCer致敏之PBC小鼠的CD8 T細胞轉移至正常小鼠,可以促使小鼠血清中AMAs效價升高,且肝臟單核細胞可分泌較高量IFN-γ及IL-17 20
4.6. 缺乏CD8 T細胞的小鼠仍會受 2-OA-BSA/α-GalCer誘發產生PBC,但肝臟單核細胞分泌IFN-γ及IL-17的量較低 21
4.6.1. 以 2-OA-BSA/α-GalCer誘發PBC之WT與CD8-/- 小鼠血清中均可以測得AMAs,且兩者間並無差異 22
4.6.2. 以 2-OA-BSA/α-GalCer誘發PBC之CD8-/- 小鼠的肝臟T細胞仍會分泌IFN-γ及IL-17,但分泌量低於WT小鼠 22
4.6.3. 以 2-OA-BSA/α-GalCer誘發PBC之CD8-/- 小鼠的肝臟門脈有淋巴球浸潤,且發炎程度高於WT PBC小鼠,但肝臟纖維化程度沒有顯著差異。 22
4.7. 12週後,以 2-OA-BSA/α-GalCer誘發產生PBC之CD8-/-小鼠肝臟單核細胞總數與WT PBC小鼠沒有顯著差異,但其中 γδ T細胞數增加 23
4.8. 12週後,以 2-OA-BSA/α-GalCer誘發產生PBC之CD8-/-小鼠肝臟γδ T細胞數較Naive之CD8-/-小鼠高,且升高比例大於WT小鼠。 24
4.9. 以 2-OA-BSA/α-GalCer誘發產生PBC之CD8-/-小鼠肝臟γδ T細胞會表現FasL、IFN-γ及Granzyme B。 24
5.結論與討論 26
第三章 圖 31
參考文獻 52
附錄 59
dc.language.isozh-TW
dc.subjectγδ T細胞zh_TW
dc.subjectCD8 T細胞zh_TW
dc.subject2-OA-BSAzh_TW
dc.subject原發性膽道硬化症zh_TW
dc.subjectPrimary Biliary Cirrhosisen
dc.subjectCD8 T cellen
dc.subject2-OA-BSAen
dc.subjectgamma delta T cellen
dc.title以外源生質物誘發之小鼠模式探討CD8 T細胞在原發性膽道硬化症之角色zh_TW
dc.titleStudy on the Role of CD8 T Cells in Xenobiotic Induced Primary Biliary Cirrhosis Murine Modelen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陶秘華,孫昭玲,楊宏志
dc.subject.keyword原發性膽道硬化症,2-OA-BSA,CD8 T細胞,γδ T細胞,zh_TW
dc.subject.keywordPrimary Biliary Cirrhosis,CD8 T cell,2-OA-BSA,gamma delta T cell,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2012-08-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved