Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64737
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡海國(Hai-Gwo Hwu)
dc.contributor.authorChih-Min Liuen
dc.contributor.author劉智民zh_TW
dc.date.accessioned2021-06-16T22:58:16Z-
dc.date.available2012-09-19
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-08-08
dc.identifier.citationAbecasis GR, Cardon LR, Cookson WO. A general test of association for quantitative traits in nuclear families. Am J Hum Genet. 2000;66(1):279-92.
Abecasis GR, Cookson WO. GOLD--graphical overview of linkage disequilibrium. Bioinformatics. 2000;16(2):182-3.
Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin--rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet. 2002;30(1):97-101.
Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A. 2000;97(14):8104-9.
Abreu PC, Greenberg DA, Hodge SE. Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases. Am J Hum Genet. 1999;65(3):847-57.
Addington J, Addington D, Maticka-Tyndale E. Cognitive functioning and positive and negative symptoms in schizophrenia. Schizophr Res. 1991;5(2):123-34.
Akil H, Brenner S, Kandel E, Kendler KS, King MC, Scolnick E, et al. Medicine. The future of psychiatric research: genomes and neural circuits. Science. 2010;327(5973):1580-1.
Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet. 2008;40(7):827-34.
Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell. 2011;9(2):113-8.
Andreasen N. The Scale for the Assessment of Negative Symptoms (SANS). Iowa City, IA: University of Iowa; 1983.
Andreasen NC. The scale for assessment of positive symptoms (SAPS). Iowa City, IA: University of Iowa; 1984.
Anokhin AP, Golosheykin S, Grant JD, Heath AC. Developmental and genetic influences on prefrontal function in adolescents: a longitudinal twin study of WCST performance. Neurosci Lett. 2010;472(2):119-22.
Antonarakis SE, Blouin JL, Pulver AE, Wolyniec P, Lasseter VK, Nestadt G, et al. Schizophrenia susceptibility and chromosome 6p24-22. Nat Genet. 1995;11(3):235-6.
APA. Diagnostic and Statistical Manual of Mental Disorders Fourth Edition (DSM-IV). Washington DC: American Psychiatric Association; 1994.
Arolt V, Lencer R, Nolte A, Muller-Myhsok B, Purmann S, Schurmann M, et al. Eye tracking dysfunction is a putative phenotypic susceptibility marker of schizophrenia and maps to a locus on chromosome 6p in families with multiple occurrence of the disease. American journal of medical genetics. 1996;67(6):564-79.
Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 2002;7(4):405-11.
Bahn S, Augood SJ, Ryan M, Standaert DG, Starkey M, Emson PC. Gene expression profiling in the post-mortem human brain--no cause for dismay. J Chem Neuroanat. 2001;22(1-2):79-94.
Bailer U, Leisch F, Meszaros K, Lenzinger E, Willinger U, Strobl R, et al. Genome scan for susceptibility loci for schizophrenia. Neuropsychobiology. 2000;42(4):175-82.
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-5.
Bassett AS, Hodgkinson K, Chow EW, Correia S, Scutt LE, Weksberg R. 22q11 deletion syndrome in adults with schizophrenia. American journal of medical genetics. 1998;81(4):328-37.
Benjamini Y, Hochberg Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289-300.
Bierut LJ, Rice JP, Edenberg HJ, Goate A, Foroud T, Cloninger CR, et al. Family-based study of the association of the dopamine D2 receptor gene (DRD2) with habitual smoking. American journal of medical genetics. 2000;90(4):299-302.
Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799-816.
Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders--cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet. 2001;69(2):428-33.
Blaveri E, Kalsi G, Lawrence J, Quested D, Moorey H, Lamb G, et al. Genetic association studies of schizophrenia using the 8p21-22 genes: prepronociceptin (PNOC), neuronal nicotinic cholinergic receptor alpha polypeptide 2 (CHRNA2) and arylamine N-acetyltransferase 1 (NAT1). Eur J Hum Genet. 2001;9(6):469-72.
Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G, et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet. 1998;20(1):70-3.
Braff DL, Geyer MA. Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry. 1990;47(2):181-8.
Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology. 2001;156(2-3):234-58.
Bray NJ, Preece A, Williams NM, Moskvina V, Buckland PR, Owen MJ, et al. Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Human molecular genetics. 2005;14(14):1947-54.
Bray NJ. Gene expression in the etiology of schizophrenia. Schizophr Bull. 2008;34(3):412-8.
Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473(7346):221-5.
Brewer WJ, Francey SM, Wood SJ, Jackson HJ, Pantelis C, Phillips LJ, et al. Memory impairments identified in people at ultra-high risk for psychosis who later develop first-episode psychosis. Am J Psychiatry. 2005;162(1):71-8.
Brown AS. The environment and susceptibility to schizophrenia. Prog Neurobiol. 2011;93(1):23-58.
Brzustowicz LM, Honer WG, Chow EW, Hogan J, Hodgkinson K, Bassett AS. Use of a quantitative trait to map a locus associated with severity of positive symptoms in familial schizophrenia to chromosome 6p. Am J Hum Genet. 1997;61(6):1388-96.
Brzustowicz LM, Honer WG, Chow EW, Little D, Hogan J, Hodgkinson K, et al. Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet. 1999;65(4):1096-103.
Buchanan RW, Strauss ME, Kirkpatrick B, Holstein C, Breier A, Carpenter WT, Jr. Neuropsychological impairments in deficit vs nondeficit forms of schizophrenia. Arch Gen Psychiatry. 1994;51(10):804-11.
Buchanan RW, Strauss ME, Breier A, Kirkpatrick B, Carpenter WT, Jr. Attentional impairments in deficit and nondeficit forms of schizophrenia. Am J Psychiatry. 1997;154(3):363-70.
Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476(7359):224-7.
Calkins ME, Dobie DJ, Cadenhead KS, Olincy A, Freedman R, Green MF, et al. The Consortium on the Genetics of Endophenotypes in Schizophrenia: model recruitment, assessment, and endophenotyping methods for a multisite collaboration. Schizophr Bull. 2007;33(1):33-48.
Campana A, Macciardi F, Gambini O, Scarone S. The Wisconsin Card Sorting Test (WCST) performance in normal subjects: a twin study. Neuropsychobiology. 1996;34(1):14-7.
Cannon TD, Huttunen MO, Lonnqvist J, Tuulio-Henriksson A, Pirkola T, Glahn D, et al. The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am J Hum Genet. 2000;67(2):369-82.
Caohuy H, Pollard HB. Protein kinase C and guanosine triphosphate combine to potentiate calcium-dependent membrane fusion driven by annexin 7. J Biol Chem. 2002;277(28):25217-25.
Capon F, Allen MH, Ameen M, Burden AD, Tillman D, Barker JN, et al. A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Human molecular genetics. 2004;13(20):2361-8.
Cardno AG, Gottesman, II. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. American journal of medical genetics. 2000;97(1):12-7.
Carpenter WT, Jr., Heinrichs DW, Wagman AM. Deficit and nondeficit forms of schizophrenia: the concept. Am J Psychiatry. 1988;145(5):578-83.
Caspi A, Reichenberg A, Weiser M, Rabinowitz J, Kaplan Z, Knobler H, et al. Cognitive performance in schizophrenia patients assessed before and following the first psychotic episode. Schizophr Res. 2003;65(2-3):87-94.
Chang SS, Liu CM, Lin SH, Hwu HG, Hwang TJ, Liu SK, et al. Impaired flush response to niacin skin patch among schizophrenia patients and their nonpsychotic relatives: the effect of genetic loading. Schizophr Bull. 2009;35(1):213-21.
Chen PL, Avramopoulos D, Lasseter VK, McGrath JA, Fallin MD, Liang KY, et al. Fine mapping on chromosome 10q22-q23 implicates Neuregulin 3 in schizophrenia. Am J Hum Genet. 2009;84(1):21-34.
Chen WJ, Hsiao CK, Hsiao LL, Hwu HG. Performance of the Continuous Performance Test among community samples. Schizophr Bull. 1998;24(1):163-74.
Chen WJ, Chang CH, Liu SK, Hwang TJ, Hwu HG. Sustained attention deficits in nonpsychotic relatives of schizophrenic patients: a recurrence risk ratio analysis. Biol Psychiatry. 2004;55(10):995-1000.
Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen KY, Morley M, et al. Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet. 2003;33(3):422-5.
Chiu J-H. The comparisons of Continuous Performance Test (CPT) and Wisconsin Card Sorting Test (WCST) between schizophrenia and bipolar affective patients. Taipei: National Taiwan University; 1999.
Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11(6):415-25.
Clayton D. A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet. 1999;65(4):1170-7.
Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661-78.
Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression. Nat Rev Genet. 2009;10(3):184-94.
Cornblatt BA, Keilp JG. Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophr Bull. 1994;20(1):31-46.
Cottingham RW, Jr., Idury RM, Schaffer AA. Faster sequential genetic linkage computations. Am J Hum Genet. 1993;53(1):252-63.
Coyle JT, Tsai G. The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology. 2004;174(1):32-8.
Craddock N, O'Donovan MC, Owen MJ. Phenotypic and genetic complexity of psychosis. Invited commentary on ... Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry. 2007;190:200-3.
Creutz CE, Pazoles CJ, Pollard HB. Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules. J Biol Chem. 1978;253(8):2858-66.
Crow TJ. Molecular pathology of schizophrenia: more than one disease process? British medical journal. 1980;280(6207):66-8.
Crow TJ. The two-syndrome concept: origins and current status. Schizophr Bull. 1985;11(3):471-86.
Crowe RR. Candidate genes in psychiatry: an epidemiological perspective. American journal of medical genetics. 1993;48(2):74-7.
Cundiff PE, Anderson SA. Impact of induced pluripotent stem cells on the study of central nervous system disease. Curr Opin Genet Dev. 2011;21(3):354-61.
Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR, et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry. 2003;60(5):443-56.
De Luca V, Voineskos D, Shinkai T, Wong G, Kennedy JL. Untranslated region haplotype in dysbindin gene: analysis in schizophrenia. J Neural Transm. 2005;112(9):1263-7.
Debey S, Schoenbeck U, Hellmich M, Gathof BS, Pillai R, Zander T, et al. Comparison of different isolation techniques prior gene expression profiling of blood derived cells: impact on physiological responses, on overall expression and the role of different cell types. Pharmacogenomics J. 2004;4(3):193-207.
DeLisi LE, Shaw S, Crow TJ, Shields G, Smith AB, Larach VW, et al. Lack of evidence for linkage to chromosomes 13 and 8 for schizophrenia and schizoaffective disorder. American journal of medical genetics. 2000;96(2):235-9.
DeRosse P, Funke B, Burdick KE, Lencz T, Ekholm JM, Kane JM, et al. Dysbindin genotype and negative symptoms in schizophrenia. Am J Psychiatry. 2006;163(3):532-4.
Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Human molecular genetics. 2003;12(3):205-16.
Durner M, Vieland VJ, Greenberg DA. Further evidence for the increased power of LOD scores compared with nonparametric methods. Am J Hum Genet. 1999;64(1):281-9.
Eastwood SL, Burnet PW, Harrison PJ. Decreased hippocampal expression of the susceptibility gene PPP3CC and other calcineurin subunits in schizophrenia. Biol Psychiatry. 2005;57(7):702-10.
Egan MF, Goldberg TE, Gscheidle T, Weirich M, Bigelow LB, Weinberger DR. Relative risk of attention deficits in siblings of patients with schizophrenia. Am J Psychiatry. 2000;157(8):1309-16.
Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R, et al. Chromosome 1 loci in Finnish schizophrenia families. Human molecular genetics. 2001;10(15):1611-7.
Ekelund J, Hennah W, Hiekkalinna T, Parker A, Meyer J, Lonnqvist J, et al. Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol Psychiatry. 2004;9(11):1037-41.
Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet. 2004;36(2):131-7.
Erickson SL, O'Shea KS, Ghaboosi N, Loverro L, Frantz G, Bauer M, et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development. 1997;124(24):4999-5011.
Everitt BS, Landau S, Leese M. Cluster Analysis, Hardcover: Edward Arnol; 2001.
Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D, et al. Genomewide linkage scan for schizophrenia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 10q22. Am J Hum Genet. 2003;73(3):601-11.
Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet. 2005;77(6):918-36.
Fanous AH, van den Oord EJ, Riley BP, Aggen SH, Neale MC, O'Neill FA, et al. Relationship between a high-risk haplotype in the DTNBP1 (dysbindin) gene and clinical features of schizophrenia. Am J Psychiatry. 2005;162(10):1824-32.
Faraone SV, Taylor L, Tsuang MT. The molecular genetics of schizophrenia: an emerging consensus. Expert Rev Mol Med. 2002;4(14):1-13.
Faraone SV, Hwu HG, Liu CM, Chen WJ, Tsuang MM, Liu SK, et al. Genome scan of Han Chinese schizophrenia families from Taiwan: confirmation of linkage to 10q22.3. Am J Psychiatry. 2006;163(10):1760-6.
Fernandez PA, Tang DG, Cheng L, Prochiantz A, Mudge AW, Raff MC. Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron. 2000;28(1):81-90.
Ferraris D, Duvall B, Ko YS, Thomas AG, Rojas C, Majer P, et al. Synthesis and biological evaluation of D-amino acid oxidase inhibitors. J Med Chem. 2008;51(12):3357-9.
Frayling TM. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet. 2007;8(9):657-62.
Funke B, Finn CT, Plocik AM, Lake S, DeRosse P, Kane JM, et al. Association of the DTNBP1 locus with schizophrenia in a U.S. population. Am J Hum Genet. 2004;75(5):891-8.
Garcia RA, Vasudevan K, Buonanno A. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A. 2000;97(7):3596-601.
Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature. 1995;378(6555):390-4.
Gehlenborg N, O'Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, et al. Visualization of omics data for systems biology. Nat Methods. 2010;7(3 Suppl):S56-68.
Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M, et al. Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci U S A. 2003;100(15):8993-8.
Gerlai R, Pisacane P, Erickson S. Heregulin, but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioral tasks. Behavioural brain research. 2000;109(2):219-27.
Geyer MA, McIlwain KL, Paylor R. Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry. 2002;7(10):1039-53.
Glatt SJ, Faraone SV, Lasky-Su JA, Kanazawa T, Hwu HG, Tsuang MT. Family-based association testing strongly implicates DRD2 as a risk gene for schizophrenia in Han Chinese from Taiwan. Mol Psychiatry. 2009;14(9):885-93.
Glidden DV, Liang KY, Chiu YF, Pulver AE. Multipoint affected sibpair linkage methods for localizing susceptibility genes of complex diseases. Genet Epidemiol. 2003;24(2):107-17.
Goff DC, Tsai G, Manoach DS, Coyle JT. Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry. 1995;152(8):1213-5.
Goldberg TE, Weinberger DR, Berman KF, Pliskin NH, Podd MH. Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test. Arch Gen Psychiatry. 1987;44(11):1008-14.
Gondo Y. Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet. 2008;9(10):803-10.
Gooding DC, Kwapil TR, Tallent KA. Wisconsin Card Sorting Test deficits in schizotypic individuals. Schizophr Res. 1999;40(3):201-9.
Gornick MC, Addington AM, Sporn A, Gogtay N, Greenstein D, Lenane M, et al. Dysbindin (DTNBP1, 6p22.3) is associated with childhood-onset psychosis and endophenotypes measured by the Premorbid Adjustment Scale (PAS). J Autism Dev Disord. 2005;35(6):831-8.
Gottesman, II, Shields J. A polygenic theory of schizophrenia. Proc Natl Acad Sci U S A. 1967;58(1):199-205.
Gottesman, II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160(4):636-45.
Gould TD, Gottesman, II. Psychiatric endophenotypes and the development of valid animal models. Genes, brain, and behavior. 2006;5(2):113-9.
Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry. 1996;153(3):321-30.
Gu J, Gu X. Induced gene expression in human brain after the split from chimpanzee. Trends in genetics : TIG. 2003;19(2):63-5.
Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS, et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet. 2001;68(3):661-73.
Hall D, Gogos JA, Karayiorgou M. The contribution of three strong candidate schizophrenia susceptibility genes in demographically distinct populations. Genes Brain Behav. 2004;3(4):240-8.
Han C, Chen T, Li N, Yang M, Wan T, Cao X. HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain. Biochem Biophys Res Commun. 2007;353(2):280-5.
Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain. 1999;122 ( Pt 4):593-624.
Hedrick PW. Gametic disequilibrium measures: proceed with caution. Genetics. 1987;117(2):331-41.
Heinrichs RW, Ruttan L, Zakzanis KK, Case D. Parsing schizophrenia with neurocognitive tests: evidence of stability and validity. Brain and cognition. 1997;35(2):207-24.
Heinrichs RW. The primacy of cognition in schizophrenia. The American psychologist. 2005;60(3):229-42.
Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106(23):9362-7.
Hoff AL, Sakuma M, Wieneke M, Horon R, Kushner M, DeLisi LE. Longitudinal neuropsychological follow-up study of patients with first-episode schizophrenia. Am J Psychiatry. 1999;156(9):1336-41.
Holliday EG, Handoko HY, James MR, McGrath JJ, Nertney DA, Tirupati S, et al. Association study of the dystrobrevin-binding gene with schizophrenia in Australian and Indian samples. Twin Res Hum Genet. 2006;9(4):531-9.
Holzman PS, Solomon CM, Levin S, Waternaux CS. Pursuit eye movement dysfunctions in schizophrenia. Family evidence for specificity. Arch Gen Psychiatry. 1984;41(2):136-9.
Holzman PS. Behavioral markers of schizophrenia useful for genetic studies. J Psychiatr Res. 1992;26(4):427-45.
Horiuchi Y, Ishiguro H, Koga M, Inada T, Iwata N, Ozaki N, et al. Support for association of the PPP3CC gene with schizophrenia. Mol Psychiatry. 2007;12(10):891-3.
Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM. Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet Epidemiol. 2004;26(1):61-9.
Huang YZ, Won S, Ali DW, Wang Q, Tanowitz M, Du QS, et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron. 2000;26(2):443-55.
Hwu HG, Yeh EK, Chang LY. Prevalence of psychiatric disorders in Taiwan defined by the Chinese Diagnostic Interview Schedule. Acta Psychiatr Scand. 1989;79(2):136-47.
Hwu HG. Psychiatric diagnostic assessment. 2 ed. Taipei: Publication Committee, College of Medicine, National Taiwan University 1999.
Hwu HG, Lin MW, Lee PC, Lee SF, Ou-Yang WC, Liu CM. Evaluation of linkage of markers on chromosome 6p with schizophrenia in Taiwanese families. American journal of medical genetics. 2000;96(1):74-8.
Hwu HG, Chen CH, Hwang TJ, Liu CM, Cheng JJ, Lin SK, et al. Symptom patterns and subgrouping of schizophrenic patients: significance of negative symptoms assessed on admission. Schizophr Res. 2002;56(1-2):105-19.
Hwu HG, Liu CM, Fann CS, Ou-Yang WC, Lee SF. Linkage of schizophrenia with chromosome 1q loci in Taiwanese families. Mol Psychiatry. 2003;8(4):445-52.
Hwu HG, Faraone SV, Liu CM, Chen WJ, Liu SK, Shieh MH, et al. Taiwan schizophrenia linkage study: the field study. Am J Med Genet B Neuropsychiatr Genet. 2005;134B(1):30-6.
Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949-51.
Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324(5924):218-23.
Institute S. SAS/Genetics User's Guide. Cary: SAS Institute Inc.; 2002.
Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P. Mice with genetically altered glutamate receptors as models of schizophrenia: a comprehensive review. Neurosci Biobehav Rev. 2010;34(3):285-94.
Ivanov D, Kirov G, Norton N, Williams HJ, Williams NM, Nikolov I, et al. Chromosome 22q11 deletions, velo-cardio-facial syndrome and early-onset psychosis. Molecular genetic study. Br J Psychiatry. 2003;183:409-13.
Jain AK, Murty MN, Flynn PJ. Data Clustering: A Review. ACM Computing Surveys 1999;31:264-323.
Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148(10):1301-8.
Joo EJ, Lee KY, Jeong SH, Ahn YM, Koo YJ, Kim YS. The dysbindin gene (DTNBP1) and schizophrenia: no support for an association in the Korean population. Neurosci Lett. 2006;407(2):101-6.
Kainulainen K, Perola M, Terwilliger J, Kaprio J, Koskenvuo M, Syvanen AC, et al. Evidence for involvement of the type 1 angiotensin II receptor locus in essential hypertension. Hypertension. 1999;33(3):844-9.
Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD, et al. NIMH Genetics Initiative Millenium Schizophrenia Consortium: linkage analysis of African-American pedigrees. American journal of medical genetics. 1998;81(4):282-9.
Ke X, Cardon LR. Efficient selective screening of haplotype tag SNPs. Bioinformatics. 2003;19(2):287-8.
Kelly C, Sharkey V, Morrison G, Allardyce J, McCreadie RG. Nithsdale Schizophrenia Surveys. 20. Cognitive function in a catchment-area-based population of patients with schizophrenia. Br J Psychiatry. 2000;177:348-53.
Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F, et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry. 1996;153(12):1534-40.
Kety SS, Wender PH, Jacobsen B, Ingraham LJ, Jansson L, Faber B, et al. Mental illness in the biological and adoptive relatives of schizophrenic adoptees. Replication of the Copenhagen Study in the rest of Denmark. Arch Gen Psychiatry. 1994;51(6):442-55.
Kidd KK. Associations of disease with genetic markers: deja vu all over again. American journal of medical genetics. 1993;48(2):71-3.
Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A. 2011;108(19):7838-43.
Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465(7295):182-7.
Kirkpatrick B, Ross DE, Walsh D, Karkowski L, Kendler KS. Family characteristics of deficit and nondeficit schizophrenia in the Roscommon Family Study. Schizophr Res. 2000;45(1-2):57-64.
Kirov G, Ivanov D, Williams NM, Preece A, Nikolov I, Milev R, et al. Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biol Psychiatry. 2004;55(10):971-5.
Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M, et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Human molecular genetics. 2008;17(3):458-65.
Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P, et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Human molecular genetics. 2009;18(8):1497-503.
Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385-9.
Koren D, Seidman LJ, Harrison RH, Lyons MJ, Kremen WS, Caplan B, et al. Factor structure of the Wisconsin Card Sorting Test: dimensions of deficit in schizophrenia. Neuropsychology. 1998;12(2):289-302.
Kremen WS, Buka SL, Seidman LJ, Goldstein JM, Koren D, Tsuang MT. IQ decline during childhood and adult psychotic symptoms in a community sample: a 19-year longitudinal study. Am J Psychiatry. 1998;155(5):672-7.
Kremen WS, Eisen SA, Tsuang MT, Lyons MJ. Is the Wisconsin Card Sorting Test a useful neurocognitive endophenotype? Am J Med Genet B Neuropsychiatr Genet. 2007;144B(4):403-6.
Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996;58(6):1347-63.
Kruglyak L. The road to genome-wide association studies. Nat Rev Genet. 2008;9(4):314-8.
Kunugi H, Curtis D, Vallada HP, Nanko S, Powell JF, Murray RM, et al. A linkage study of schizophrenia with DNA markers from chromosome 8p21-p22 in 25 multiplex families. Schizophr Res. 1996;22(1):61-8.
Kurtz MM. Neurocognitive impairment across the lifespan in schizophrenia: an update. Schizophr Res. 2005;74(1):15-26.
Lahiri DK, Bye S, Nurnberger JI, Jr., Hodes ME, Crisp M. A non-organic and non-enzymatic extraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods tested. Journal of biochemical and biophysical methods. 1992;25(4):193-205.
Laird NM, Horvath S, Xu X. Implementing a unified approach to family-based tests of association. Genet Epidemiol. 2000;19 Suppl 1:S36-42.
Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995;11(3):241-7.
Lander ES, Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A. 1987;84(8):2363-7.
Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, et al. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatry. 2008;63(1):9-12.
Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM. PBAT: tools for family-based association studies. Am J Hum Genet. 2004;74(2):367-9.
Laruelle M, Kegeles LS, Abi-Dargham A. Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Annals of the New York Academy of Sciences. 2003;1003:138-58.
Lau LF, Huganir RL. Differential tyrosine phosphorylation of N-methyl-D-aspartate receptor subunits. J Biol Chem. 1995;270(34):20036-41.
Lawrie SM, Whalley H, Kestelman JN, Abukmeil SS, Byrne M, Hodges A, et al. Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet. 1999;353(9146):30-3.
Lee CH, Liu CM, Wen CC, Chang SM, Hwu HG. Genetic copy number variants in sib pairs both affected with schizophrenia. J Biomed Sci. 2010;17:2.
Lerer B, Segman RH, Hamdan A, Kanyas K, Karni O, Kohn Y, et al. Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24. Mol Psychiatry. 2003;8(5):488-98.
Lestou VS, De Braekeleer M, Strehl S, Ott G, Gadner H, Ambros PF. Non-random integration of Epstein-Barr virus in lymphoblastoid cell lines. Genes Chromosomes Cancer. 1993;8(1):38-48.
Levinson DF, Mahtani MM, Nancarrow DJ, Brown DM, Kruglyak L, Kirby A, et al. Genome scan of schizophrenia. Am J Psychiatry. 1998;155(6):741-50.
Levinson DF, Levinson MD, Segurado R, Lewis CM. Genome scan meta-analysis of schizophrenia and bipolar disorder, part I: Methods and power analysis. Am J Hum Genet. 2003;73(1):17-33.
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20.
Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet. 2003;73(1):34-48.
Lewis CM, Whitwell SC, Forbes A, Sanderson J, Mathew CG, Marteau TM. Estimating risks of common complex diseases across genetic and environmental factors: the example of Crohn disease. J Med Genet. 2007;44(11):689-94.
Li T, Zhang F, Liu X, Sun X, Sham PC, Crombie C, et al. Identifying potential risk haplotypes for schizophrenia at the DTNBP1 locus in Han Chinese and Scottish populations. Mol Psychiatry. 2005;10(11):1037-44.
Lian Ie B, Lin YH, Lin YC, Yang HC, Chang CJ, Fann CS. Using the longest significance run to estimate region-specific p-values in genetic association mapping studies. BMC Bioinformatics. 2008;9:246.
Liao HM, Chen CH. Mutation analysis of the human dystrobrevin-binding protein 1 gene in schizophrenic patients. Schizophr Res. 2004;71(1):185-9
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64737-
dc.description.abstract精神分裂症是一嚴重慢性的神經精神疾病,已知遺傳病因扮演致病重要角色,目前致病模式傾向由多個基因與多種環境因素交互作用而成,是一種複雜疾病 (complex disorder)。探尋這類疾病易感性基因的方法主要為位置選殖策略 (positional cloning strategy),包括遺傳連鎖研究 (genetic linkage study),候選基因關聯性研究 (candidate gene association study),位置候選基因研究 (positional candidate gene association study),全基因體關聯性研究 (genome-wide association study)。本論文總結作者過去以位置選殖的方法,以台灣精神分裂症家族為樣本所做的易感性基因探尋的研究結果,並討論各種策略的優缺點,及未來的展望。
關於遺傳連鎖研究,以第八對染色體短臂22-12區域 (8p22-12) 的遺傳連鎖研究為例。本研究針對52個至少有兩名罹病手足的臺灣精神分裂症患者家族,使用染色體 8p22-21上的11個微衛星標記 (microsatellite markers),研究這個染色體區域是否與精神分裂症有連鎖證據。結果發現於標記 D8S1222 發現最大無母數連鎖分數 (NPL分數) 為2.45 (p = 0.008)。標記D8S1222距離GGF2基因 (glial growth factor 2) 之外顯子 (exon) 1約 400 kbp,而GGF2是NRG1基因 (Neuregulin 1) 的同質體 (isoform),是可能性極高的精神分裂症候選基因之一。本研究結果提供了臺灣人樣本之精神分裂症與位於染色體 8p21,接近NRG1基因位點建議性的連鎖證據。
關於候選基因關聯性研究,以dystrobrevin-binding protein 1 (DTNBP1) 的候選基因關聯性研究為例。許多連鎖研究發現精神分裂症與第六對染色體短臂 (6p) 區域有顯著的連鎖證據,其中包括候選基因DTNBP1。本研究針對693個至少有兩名罹病手足的臺灣精神分裂症患者家族,探討此疾病與DTNBP1的關聯性證據。定出此基因之9個單核苷酸多型性變異 (single nucleotide polymorphism, SNP) 的基因型,標記間平均距離為17 kb。使用GOLD計算標記間的連鎖不平衡 (linkage disequilibrium, LD),並使用TRANSMIT進行單一基因位點與單套型 (haplotype)關聯性分析。結果發現單一基因位點與單套型分析中,精神分裂症與DTNBP1皆無顯著關聯性。本研究以相當大的單一種族樣本,仍無法重現之前其他研究中DTNBP1與精神分裂症的關聯性,此基因在臺灣家族樣本之精神分裂症病因中可能並未扮演關鍵角色。
關於位置候選基因關聯性研究,我們以全台灣收集的557個精神分裂症家族樣本進行全基因體遺傳連鎖研究 (genome-wide linkage study) 發現10q22連鎖的證據,進一步使用原先的家族樣本,標認出這個染色體區域的易感性基因。研究樣本為476個精神分裂症家庭,每個家庭至少有兩位或以上的手足罹患精神分裂症,這些家庭中至少有一位患病手足接受持續性表現測驗 (Continuous Performance Test, CPT) 以及威斯康辛卡片分類測驗 (Wisconsin Card Sorting Test, WCST)。
第一階段,首先我們以GENEFINDER在之前全基因體遺傳分析樣本中標認出遺傳連鎖證據的95%信賴區間,位於標記D10S1432 (93.97cM) 和D10S1239 (121.81cM) 之間,在這個區間選取額外的18個微衛星標記,定出476個家庭樣本的基因型,使用MERLIN作連鎖分析,發現最大的NPL分數為2.79落在標記D10S195 (94.72cM) 上。其次,以階層群集分析 (hierarchical clustering),依據患病手足的CPT和WCST的表現,將這些家庭分成四個亞群,連鎖分析發現在持續注意力及執行功能皆缺損的亞群家庭樣本中 (Attention Deficit and Execution Deficit, ADED),其最大的NPL分數達到3.70 (p = 0.00008),也落在標記D10S195上。
第二階段,我們在標記D10S1432 (93.97 cM) and D10S580 (95.52cM)之間選取了79個單套型標記 (haplotype tagged) SNP,定出90個ADED家庭的基因型,使用FBAT和TRANSMIT分析發現有9個SNP有顯著關聯性,使用最長連續顯著段落分析 (the longest significance run, LSR) 發現橫跨四個SNP (rs4492736, rs7087762, rs12644, rs4746136) 的基因體區域與精神分裂症的關聯性達到顯著 (p = 0.0048)。這個區域長度為427kb,包含了9個基因。
第三階段,以即時反轉錄聚合脢鏈鎖反應 (real-time RT-PCR) 的方法,定出顯著關聯區域中的9個基因的傳訊核醣核酸 (mRNA) 在EBV轉型淋巴球 (EBV-transformed lymphocyte) 中的相對表現量,研究樣本為95位精神分裂症病患及36位正常對照個案。結果發現ANXA7 (annexin A7),PPP3CB (protein phosphatase 3 (formerly 2B), catalytic subunit, beta isoform),和DNAJC9 (DnaJ (Hsp40) homolog, subfamily C, member 9) 三個基因的mRNA的表現量在病患組顯著較低,而ZMYND17 (zinc finger, MYND-type containing 17) 的表現量在病患組顯著為高。帶有危險基因型的病患其ANXA7的表現量較沒有帶危險基因型的病患及正常對照組顯著為低。病患組的ANXA7和PPP3CB的表現量與WCST的表現呈現顯著的正相關。
這個研究發現ANXA7,PPP3CB, DNAJC9,ZMYND17與持續注意力及執行功能皆缺損的精神分裂症亞群有顯著的遺傳關聯性,且表現量在病患組與正常對照組也有顯著差異,以基因功能及基因表現與基因型及神經認知缺損的關係推論,ANXA7和PPP3CB是最可能的候選基因。其基因病理機轉可能與基因表現量的改變有關,進一步探尋在這兩個基因的調節區域 (regulatory element) 的功能性變異,以及基因在神經細胞及神經系統扮演的主要功能,是未來研究的重點。
綜合以上研究,結合遺傳連鎖研究找出的染色體位置,進行位置候選基因研究,可增加關聯性研究的事前機率 (prior probability),使用精神分裂症的神經生物缺損作為內生性表現型 (endophenotype),可減少精神分裂症表現型的異質性,再輔以基因表現的研究,找出最可能的候選基因,是較好的策略。未來的研究,包括全基因體關聯性研究,複製數量變異 (copy number variation),全外顯體定序研究 (exome sequencing) 及使用誘導多能幹細胞 (induced pluripotent stem cell) 進行基因及神經生物功能的研究。
zh_TW
dc.description.abstractSchizophrenia is a chronic debilitating neuropsychiatric illness. The causes of schizophrenia are still unclear, but family, twin, and adoption studies indicate that it has a strong genetic component and high heritability. It is a complex disorder. The methods for searching the susceptibility genes are positional cloning strategies, including genetic linkage study, candidate gene association study, positional candidate gene association study, and genome-wide association study. This thesis summarized the research results using positional cloning to search for the susceptibility genes of schizophrenia in Taiwanese family samples, and commented on the strength and weakness of different strategies and proposed future perspectives.
As for the genetic linkage study, we took the linkage study on chromosome 8p22-21 in Taiwanese schizophrenia families for example.This study genotyped eleven microsatellite markers on chromosome 8p22-21 in 52 Taiwanese schizophrenic families with at least two affected siblings. Maximum non-parametric linkage scores (NPL score) of 2.45 (p = 0.008) were obtained for the marker D8S1222. The marker D8S1222 was about 400 kbp distal to the exon 1 of glial growth factor 2 (GGF2), an isoform of Neuregulin 1 gene (NRG1), which has been highly suggested to be a candidate gene for schizophrenia. The results provide suggestive linkage evidence of schizophrenia to loci near NRG1 on chromosome 8p21 in an ethnically distinct Taiwanese sample. Further exploration of the candidate gene and nearby chromosome regions is warranted.
As for the candidate gene association study, we took the association study between Dystrobrevin-binding protein 1 (DTNBP1) and schizophrenia in Taiwan. The aim was to examine the association evidence of the candidate gene in 693 Taiwanese families with at least two affected siblings of schizophrenia. We genotyped nine SNPs of this gene with average intermarker distance of 17 kb. Single locus and haplotype association analyses were performed with TRANSMIT program. We found no significant association between schizophrenia and DTNBP1 either through single locus or haplotype analyses. We failed to replicate the association evidence between DTNBP1 and schizophrenia and this gene may not play a major role in the etiology of schizophrenia in this Taiwanese family sample.
As for the positional candidate gene association study, the genome wide linkage study of 557 family samples in Taiwan has revealed linkage evidence of chromosome 10q22 to schizophrenia. We further performed fine mapping study to identify the susceptibility genes in this region. The study sample comes from the original family sample, including 476 Han Taiwanese families having at least two siblings affected with schizophrenia and at least one of the affected siblings has received the Continuous Performance Test (CPT) and Wisconsin Card Sorting Test (WCST).
First, based on the results of the previous linkage analysis, we identified the region from D10S1432 (93.97 cM) to D10S1239 (121.81 cM) as the region with a 95% confidence interval of linkage. Then we selected 18 additional microsatellite markers in this region for further genotyping. The maximum NPL score was 2.79 on D10S195 (94.72cM) using MERLIN. We clustered families into four different subgroups by performances of CPT and WCST of affected siblings using hierarchical clustering method. We found the maximum NPL score was 3.70 (p = 0.00008) on D10S195 in the family cluster with attention deficit and execution deficit (ADED).
Second, we genotyped 79 haplotype tagSNPs between D10S1432 (93.97 cM) and D10S580 (95.52 cM) in 90 ADED families. Single-point association analysis using FBAT and TRANSMIT indicated significant transmission distortion for nine SNPs. Using the longest significance run (LSR) method, we identified a 427-kb genomic region that spanned the four SNPs (rs4492736, rs7087762, rs12644, rs4746136) as a significant candidate region (p = 0.0048). This genomic region encompasses nine genes.
Third, we studied the relative mRNA transcript levels of the nine genes in the EBV-transformed lymphocytes of 95 schizophrenic patients and 36 normal controls. In schizophrenic patients, there was significantly lower expression of annexin A7 (ANXA7), protein phosphatase 3 (formerly 2B), catalytic subunit, beta isoform (PPP3CB), and DnaJ (Hsp40) homolog, subfamily C, member 9 (DNAJC9) and significantly higher expression of zinc finger, MYND-type containing 17 (ZMYND17). Expression of ANXA7 was significantly lower in patients with the risk allele of the tagSNP (rs12258241) than those without this allele and the controls. The expression levels of ANXA7 and PPP3CB are significantly positively correlated with the performance of WCST of the schizophrenic patients.
We have identified ANXA7, PPP3CB, DNAJC9, and ZMYND17 as potential candidate genes for schizophrenia, especially in patients with deficits in sustained attention and executive function. Considering the biological function and the relationship with the neurocognitive deficits of these four genes, ANXA7 and PPP3CB are the most likely susceptibility genes.
In summary, it is a better strategy to combine positional candidate gene association study and endophenotype approach using neurobiological deficits, and further to integrate the genetic association and gene expression results to identify the most potential candidate genes. In the future, genome-wide association study, copy number variations study, exome sequencing study and genetic and neurobiological studies using induced pluripotent stem cells may cast much insight for understanding the pathophysiological mechanism of this disorder.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:58:16Z (GMT). No. of bitstreams: 1
ntu-101-D92421006-1.pdf: 1586992 bytes, checksum: 472fe2dfb14ca5b3b797b6405235fd37 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents1. 緒論 (Introduction) 1
1.1 精神分裂症的臨床精神病理 1
1.2 精神分裂症的流行病學,環境病因及病理生理基礎 3
1.3 精神分裂症的遺傳病因 5
1.4 精神分裂症的分子遺傳研究 8
1.5 以內生性表現型進行分子遺傳研究 16
1.6 台大醫院精神分裂症基因體研究之發展 18
2. 研究方法與材料(Materials and methods) 26
2.1 遺傳連鎖研究: 染色體8p的遺傳連鎖研究 26
2.2 候選基因關聯性研究: DTNBP1的關聯性研究 28
2.3 位置候選基因關聯性研究: 染色體10q的細部定位研究 32
3. 結果 (Results) 37
3.1 遺傳連鎖研究: 染色體8p的遺傳連鎖研究 37
3.2 候選基因關聯性研究: DTNBP1的關聯性研究 38
3.3 位置候選基因關聯性研究: 染色體10q的細部定位研究 38
4. 討論 (Discussion) 43
4.1 遺傳連鎖研究:染色體8p的遺傳連鎖研究 44
4.2 候選基因關聯性研究: DTNBP1的關聯性研究 47
4.3 位置候選基因關聯性研究: 染色體10q的細部定位研究 48
4.4 遺傳統計方法的討論 53
4.5 精神分裂症位置選殖的策略 55
5. 展望 (Prospect) 60
5.1 候選基因的重新定序以找尋風險多型性及探尋其生物功能 60
5.2 台灣的全基因體關聯性研究,以家族為基礎的全基因體研究 60
5.3 更多更精細的內生性表現型研究 61
5.4 基因基因交互作用及路徑分析研究 62
5.5 大規模的重新定序及發掘罕見變異 64
5.6 更直接的細胞神經生物的研究:多能幹細胞的相關研究 65
5.7 動物模式研究 67
5.8 以候選基因生物路徑為基礎的藥物發展 68
6. 論文英文簡述 (English summary) 71
6.1 Genetic linkage study: Linkage Evidence of Schizophrenia to Loci near Neuregulin 1 Gene on Chromosome 8p21 in Taiwanese Families 71
6.2 Genetic association study: No association evidence between schizophrenia and dystrobrevin-binding protein 1 (DTNBP1) in Taiwanese families 76
6.3 10q fine mapping study: ANXA7, PPP3CB, DNAJC9, and ZMYND17 Genes at Chromosome 10q22 Associated with the Subgroup of Schizophrenia with Deficits in Attention and Executive Function 82
7. 參考文獻 (Reference) 97
8. 表與圖 (Tables and Figures) 133
9. 附錄 (Appendix) 152
9.1 中英文對照表 152
9.2 修業期間發表之相關文獻 157
9.3 修業期間發表之其他文獻 157
dc.language.isozh-TW
dc.subject位置選殖zh_TW
dc.subject基因表現zh_TW
dc.subject內生性表現型zh_TW
dc.subject遺傳關聯zh_TW
dc.subject精神分裂症zh_TW
dc.subject易感性基因zh_TW
dc.subject遺傳連鎖zh_TW
dc.subjectpositional cloningen
dc.subjectgenetic associationen
dc.subjectendophenotypeen
dc.subjectgene expressionen
dc.subjectsusceptibility genesen
dc.subjectgenetic linkageen
dc.subjectschizophreniaen
dc.title探尋精神分裂症的易感性基因:位置選殖策略zh_TW
dc.titleSearching for susceptibility genes of schizophrenia: positional cloning strategyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.coadvisor尹相姝(Hsiang-Shu Yin)
dc.contributor.oralexamcommittee楊偉勛(Wei-Shiung Yang),范盛娟(Cathy SJ Fann),陳為堅(Wei J Chen),陳嘉祥(Chia-Hsiang Chen)
dc.subject.keyword精神分裂症,易感性基因,位置選殖,遺傳連鎖,遺傳關聯,內生性表現型,基因表現,zh_TW
dc.subject.keywordschizophrenia,susceptibility genes,positional cloning,genetic linkage,genetic association,endophenotype,gene expression,en
dc.relation.page163
dc.rights.note有償授權
dc.date.accepted2012-08-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved