請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64720完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張國鎮(Kuo-Chun Chang) | |
| dc.contributor.author | Chen-An Tsai | en |
| dc.contributor.author | 蔡鎮安 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:58:01Z | - |
| dc.date.available | 2012-08-15 | |
| dc.date.copyright | 2012-08-15 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-08 | |
| dc.identifier.citation | [1] Lu Deng, Cai C. S., “A Review of Bridge Scour: Prediction, Modeling, Monitoring, and Countermeasures”, Practice Periodical on Structural Design and Construction, Vol. 15, No. 2, pp. 125-134, 2010.
[2] 林詠彬、張國鎮、翁士晟、李路生、彭信文、陳俊仲、賴進松,「橋梁多重災害無線網路監測系統」,橋梁沖刷安全監測與評估研討會,第95-123頁,2010。 [3] Rytter A., “Vibration based inspection of civil engineering structures”. Ph.D. Dissertation, Department of Building Technology and Structural Engineering, Aalborg University, Denmark, 1993. [4] Neild S. A., McFadden P. D., Williams M. S., “A review of time-frequency methods for structural vibration analysis”, Engineering Structures, Vol. 25, Issue 6, pp. 713–728, 2003. [5] Lin Silian, Yang Jann N., Zhou Li, “Damage identification of a benchmark building for structural health monitoring”, Smart Materials and Structures, Vol. 14, No. 3, pp. S162-S169, 2005. [6] Evaggelos Ntotsios, Costas Papadimitriou, Panagiotis Panetsos, Grigorios Karaiskos, Kyriakos Perros, Philip C. Perdikaris, 'Bridge health monitoring system based on vibration measurements', Bulletin of Earthquake Engineering, Vol. 7, No. 2, pp. 469-483, 2009. [7] J. M. Ko, Y. Q. Ni, “Technology developments in structural health monitoring of large-scale bridges”, Engineering Structures, Vol. 27, Issue 12, pp. 1715–1725, 2005. [8] Chen Bo, Liu Wenjia, “Mobile agent computing paradigm for building a flexible structural health monitoring sensor network”, Computer-Aided Civil and Infrastructure Engineering, Vol. 25, No. 7, pp. 504-516, 2010. [9] Jian Zhang, Tadanobbu Sato, Susumu Iai, “Novel support vector regression for structural system identification”, Structural Control and Health Monitoring, Vol. 14, Issue 4, pp. 609-626, 2006. [10] Mascarenas David, Flynn Eric, Farrar Charles, Park Gyuhae, Todd Michael, “A mobile host approach for wireless powering and interrogation of structural health monitoring sensor networks”, IEEE Sensors Journal, Vol. 9, No. 12, pp. 1719-1726, 2009. [11] Wang Yang, Lynch Jerome P., Law Kincho H., “A wireless structural health monitoring system with multithreaded sensing devices: Design and validation”, Structure and Infrastructure Engineering, Vol. 3, No. 2, pp. 103-120, 2007. [12] M. Azarbayejani, M. Jalalpour, A. I. El-Osery, MMReda Taha, “Field application of smart SHM using field programmable gate array technology to monitor an RC bridge in New Mexico”, Smart Materials and Structures, Vol. 20, No. 8, 2011. [13] A. Z. Kouzani, 'Classification of face images using local iterated function systems', Machine Vision and Applications, Vol. 19, Issue 4, pp. 223-248, 2008. [14] Supti Sarkar, Li Kim Lee, Stephen L. Hart, Helen C. Hailes, Susana M. Levy, Alethea Tabor, Parviz Ayazi Shamlou, 'The fractal structure of polycation-DNA complexes', Biotechnology and Applied Biochemistry, Vol.41, Issue 2, pp. 127-136, 2005. [15] M. A. Vyzantiadou, A. V. Avdelas, S. Zafiropoulos, 'The application of fractal geometry to the design of grid or reticulated shell structures', CAD Computer Aided Design, Vol. 39, Issue1, pp. 51-59, 2007. [16] Euripides S. Mistakidis, Olympia K. Panagouli; 'Strength evalution of retrofit shear wall elements with interfaces of fractal geometry', Engineering Structures, Vol. 24, Issue 5, pp. 649-659, 2002. [17] N. Pirmoradian, A. R. Sepaskhah, M. A. Hajabbasi, 'Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments', Biosystems Engineering, Vol. 90, Issue 2, pp. 227-234, 2005. [18] M. Son, T. J. Hsu, 'The effect of variable yield strength and variable fractal dimension on flocculation on cohesive sediment', Water Research, Vol. 43, Issue 14, pp. 3582-3592, 2009. [19] A. Carpinteri, S. Puzzi, 'The fractal-statistical approach to the size-scale effects on material strength and toughness', Probabilistic Engineering Mechanics, Vol. 24, Issue 1, pp. 75-83, 2009. [20] Andrea Carpinteri, A. Spagnoli, S. Vantadori, 'An approach to size effect in fatigue of metals using fractal theories', Fatigue and Fracture of Engineering Materials and Structures, Vol. 25, Issue 7, pp. 619-627, 2002. [21] Shaofei Jiang, Feng Xu, Chun Fu, 'Intelligent damage identification model of an arch bridge based on box-counting dimension and probabilistic neural network', Journal of Computational Information Systems, Vol. 6, Issue 4, pp. 1185-1192, 2010. [22] Pizhong Qiao, Maosen Cao, 'Waveform fractal dimension for mode shape-based damage identification of beam-type structures', International Journal of Solids and Structures, Vol. 45, Issue 22-23, pp. 5946-5961, 2008. [23] Shirhole A. M., Holt R. C., “Planning for a comprehensive bridge safety program”, Transportation Research Record No. 1290, Transportation Research Board, National Research Council, Washington, D.C., 1991. [24] Yankielun Norbert E., Zabilansky Leonard S., “Laboratory experiments with an FM-CW reflectometry system proposed for detecting and monitoring bridge scour in real time”, Canadian Journal of Civil Engineering, Vol. 27, No. 1, pp. 26-32, 2000. [25] Parker G. W., Bratton L., Armstrong D. S., “Stream stability and scour assessments at bridges in Massachusetts”, U.S. Geological Survey Open File Report No. 97-588, Massachusetts Highway Dept. Bridge Section, Marlborough, Massachusetts, 1997. [26] Melville B. W., S. E. Coleman, “Bridge Scour”, Water Resources Publications, LLC., Highlands Ranch, Colorado, USA, 2000. [27] 林呈,「本省西部重要河川橋梁基礎災害分析與橋基保護工資料庫系統之建立」,交通部運輸研究所專題研究計畫成果報告,第1-505頁,1998。 [28] 范文綱,「橋梁基礎局部沖刷監測與安全預警系統」,國立台灣大學碩士論文,2009。 [29] 苟昌煥,「橋梁與洪水之關係」,中華大學土木工程學系演講簡報,2004。 [30] 財團法人國家實驗研究院,國家地震工程研究中心,「高科技橋梁檢測系統建置試辦計畫期中報告」,2011。 [31] 財團法人台灣營建研究院,「鐵路橋梁過河沖刷段橋墩與基礎結構系統檢測技術之研究」,2008。 [32] 林高玄,「基礎裸露橋梁之耐洪能力評估」,國立台灣大學碩士論文,2004。 [33] 顏宏宇,「河川橋梁下部結構之整體耐洪能力評估」,國立台灣大學碩士論文,2005。 [34] 交通部台灣區國道新建工程局,「公路橋梁耐震設計規範之補充研究」,1998。 [35] ASTM International, “Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density”, ASTM Vol. 04.08 Soil and Rock (I) D4254 – 00, 2006. [36] ASTM International, “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table”, ASTM Vol. 04.08 Soil and Rock (I) D4253 – 00, 2006. [37] ASTM International, “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer”, ASTM Volume 04.08 Soil and Rock (I) D854 – 10, 2010. [38] 林士誠,「標準貫入試驗N值應用之彙整」,技師報,台灣省土木技師公會,2009。 [39] 駱建利,「降雨導致邊坡破壞與土顆粒流出機制之研究」,國力成功大學博士論文,2009。 [40] J. M. J. Journee, W. W. Massie, “Offshore Hydromechanics”, First Edition. Delft University of Technology, pp.12-7, 2001. [41] James W. Cooley, John W. Tukey, “An algorithm for the machine calculation of complex Fourier series”, Mathematics of Computation Vol. 19, No. 90, 1965. [42] Srdjan Stankovi’c, ”Time-frequency analysis and its application in digital watermarking”, Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume, 2010. [43] Goldberger AL, “Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside”, The Lancet, Vol. 347, Issue 9011, pp. 1312 – 1314., 1996. [44] B. Mandelbrot, 'The Fractal Geometry of Nature', W.H. Freeman, New York, 1982 [45] W. Yan, K. Komvopoulos, 'Contact analysis of elastic-plastic fractal surface'. Journal of Applied Physics, Vol. 84, pp. 3617-3624, 1998. [46] M.V. Berry, 'Diffractals', Journal of Physics A: Mathematical and Theoretical Vol. 12, No. 6, pp. 781-797, 1979. [47] B.Mandelbrot, D. Passoja, A. Paullay, “Fractal character of fracture surface of metals”, Nature, Vol. 308, pp. 721, 1984. [48] S. Chester, H. Y. Wen, M Lundin, G. Kasper. ”Fractal-based characterization of surface texture”, Applied Surface Science, Vol. 40, pp. 185-192, 1989. [49] B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot, S. W. Zucker, ”Evaluating the fractal dimension of profiles”, Physical Review A, Vol. 39, pp. 1500-1512, 1989. [50] J. Nogues, J. L. Costa, K. V. Rao, “Fractal dimension of thin film surfaces of gold”, Physica A, Vol.182, pp. 532-541, 1992. [51] A. Papoulis, 'Probability, random variables and stochastic process', McGraw-Hill, New York, 1965. [52] M.V. Berry, D. H. Berman, 'On the weieratrass-mandelbrot fractal function', Proceedings of Royal Society of London, A370, pp. 459-484, 1980. [53] 林其穎,「橋梁沖刷監測預警系統建置之試驗研究」。國立台灣大學碩士論文,2011年。 [54] Braja M. Das, ”Peinciples of geotechnical engineering”, Sixth edition. California State University, pp. 603, 2006. [55] 國立台灣大學水工試驗所,「橋墩沖刷水工模型操作及水理分析委託」,2008。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64720 | - |
| dc.description.abstract | 台灣地形破碎,跨河橋梁眾多,加上地處熱帶、亞熱帶氣候交界,受經常性颱風侵襲,降雨強度大,且本島地理山高谷深,河川坡陡流急,因此跨河橋梁基礎普遍存在沖刷問題。無論國內外,橋梁損傷主因之一皆指向基礎沖刷,而橋梁基礎埋置深度是影響橋梁結構穩定性之重要指標,是目前計算基礎安全性不可或缺的參數,故發展出一套可即時掌握橋梁基礎剩餘埋置深度之方法,進而可準確的推算橋梁安全係數,供相關橋梁權責管理單位進行災前應變乃為當務之急。
本研究提出以橋梁微振動訊號作為識別橋梁埋置深度之方法,首先透過靜力試驗簡化沖刷問題,得知埋置深度是掌控結構主要頻率之主控因子,且其關係可以二次曲線表示,並以有限元素模型驗證實驗趨勢,而後以短時傅立葉轉換作為即時結構頻率擷取工具,再以埋置深度與頻率之關係式將頻率轉換成埋置深度,結合環境因子資料收集,輔以碎形理論作為結構穩定性判別,最後以埋置深度計算安全係數,以碎形理論計算安全指標,判定橋梁安全性。 為證實本研究方法之可行性與精確性,於實驗室進行縮尺橋梁沖刷試驗,藉由縮尺橋墩內之攝影機紀錄即時沖刷深度,驗證以微振訊號推算出之剩餘埋置深度。經一系列試驗結果可證實此研究方法可有效預測埋置深度之變化,環境因子之監測有助於釐清因沖刷以外造成橋梁頻率變化之因素。此方法對橋梁結構健康診斷有相當助益,可在災害發生前提出預警,減少生命財產之損失。 | zh_TW |
| dc.description.abstract | Bridges are prone to suffer from multiple hazards such as earthquake, wind, or floods for the special structural characteristic. To guarantee the stability of bridge structure, how to precisely evaluate the scour depth of bridge foundation has become an important issue recently as most of the unexpected damage or collapse of bridges are caused by hydraulic issue. In this paper, a vibration-based bridge health monitoring system considering the response of superstructure only is proposed to rapidly evaluate the embedded depth of bridge pier. To clarify the complex fluid-solid coupling phenomenon, the effect of embedded depth and water level was first verified through a series of static experiment. A finite element model with confinement simulated by soil spring was then established to illustrate the relationship between the fundamental frequency and the embedded depth. With the proposed algorithm, the health condition of the bridge can be inferred by processing the ambient vibration response of the superstructure. To implement the proposed algorithm, a SHM prototype system monitoring the environmental factors such as temperature, water level, and inclination was developed to support on-line processing. The performance of the proposed system was verified by a series of dynamic bridge scour experiment conducted in laboratory flume and compared with the reading from water-proof camera. The result has shown that by using the proposed vibration-based bridge health monitoring system, the embedded depth of bridge pier during complex scour process can be reliably reflected. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:58:01Z (GMT). No. of bitstreams: 1 ntu-101-R99521205-1.pdf: 19235409 bytes, checksum: 33153eff4cbe9fecb4eb8845d7f28665 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 IV
摘要 VI 英文摘要(Abstract) VIII 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 1 1.3論文章節架構 3 第二章 文獻回顧 7 2.1結構健康診斷系統 7 2.2橋梁沖刷議題 9 2.4橋梁沖刷破壞機制 12 第三章 橋梁健康診斷邏輯先期研究 31 3.1試驗目的 31 3.2試驗規劃及步驟 31 3.3試驗結果與現象觀察 32 3.4有限元素模型建置與靜力試驗趨勢分析 33 3.4.1土壤彈簧數值模型 33 3.4.2砂土性質試驗 37 3.4.3有限元素模型建置 39 3.4.4趨勢驗證 40 3.5小結 42 第四章 橋梁健康診斷邏輯分析方法 61 4.1短時傅立葉轉換 61 4.2碎形理論 62 4.2.1 W-M碎形方程式 (Weieratrass-Mandelbrot Fractal Function) 62 4.2.2尺度常數、碎形維度、高度尺寸三者之關係 63 4.2.3以變異法計算碎形維度 65 4.2.4以能量頻譜法求高度尺寸與尺度常數 67 4.3埋置深度推算方法 68 4.4安全係數計算與安全因子判定邏輯 69 4.4.1 土壤承載力破壞 70 4.4.2 水流作用力傾倒破壞 72 4.4.3 不穩定傾倒破壞 75 4.5安全因子邏輯訂定與安全係數計算結果 76 第五章 縮尺橋墩沖刷試驗準備 93 5.1驗證方法模型製作 93 5.2監測硬體配置與軟體開發 94 5.2.1橋梁健康診斷雛型機組 94 5.2.2微振訊號量測 96 5.2.3環境因子監測 96 5.3軟體開發與監測介面 98 第六章 實驗驗證 115 6.1前言 115 6.2單墩沖刷試驗 116 6.2.1單墩沖刷試驗─0305 117 6.2.2單墩沖刷試驗─0416 119 6.2.3單墩沖刷試驗─0508 120 6.3 全橋沖刷試驗先期研究 122 第七章 結論與建議 153 7.1 結論 153 7.2 建議 154 參考文獻 157 附錄一 縮尺橋墩沖刷試驗建置 163 | |
| dc.language.iso | zh-TW | |
| dc.subject | 橋梁沖刷 | zh_TW |
| dc.subject | 結構健康診斷 | zh_TW |
| dc.subject | 短時傅立葉轉換 | zh_TW |
| dc.subject | 碎形理論 | zh_TW |
| dc.subject | 結構穩定性 | zh_TW |
| dc.subject | Fractal theory | en |
| dc.subject | Bridge scour | en |
| dc.subject | Structure health monitoring | en |
| dc.subject | Structure stability | en |
| dc.subject | Short-time Fourier Transform | en |
| dc.title | 以結構振動訊號診斷橋梁受沖刷之安全性研究 | zh_TW |
| dc.title | Implementation of a Vibration-Based Bridge Health Monitoring System on Scour Issue | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅俊雄(Chin-hsiung Loh),宋裕祺(Yu-Chi Sung) | |
| dc.subject.keyword | 橋梁沖刷,結構健康診斷,短時傅立葉轉換,碎形理論,結構穩定性, | zh_TW |
| dc.subject.keyword | Bridge scour,Structure health monitoring,Short-time Fourier Transform,Fractal theory,Structure stability, | en |
| dc.relation.page | 171 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 18.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
