Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64713
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃德富
dc.contributor.authorYing-Ru Chenen
dc.contributor.author陳盈如zh_TW
dc.date.accessioned2021-06-16T22:57:54Z-
dc.date.available2017-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-09
dc.identifier.citationAngiolillo, D. J., Ueno, M., and Goto, S. (2010). Basic principles of platelet biology and clinical implications. Circ J 74, 597-607.
Aplin, A. E., Howe, A. K., and Juliano, R. L. (1999). Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol 11, 737-744.
Armstrong, P. C., and Peter, K. (2012). GPIIb/IIIa inhibitors: from bench to bedside and back to bench again. Thromb Haemost 107, 808-814.
Avraamides, C. J., Garmy-Susini, B., and Varner, J. A. (2008). Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8, 604-617.
Bennett, J. S. (2005). Structure and function of the platelet integrin alphaIIbbeta3.
J Clin Invest 115, 3363-3369.
Boylan, B., Gao, C., Rathore, V., Gill, J. C., Newman, D. K., and Newman, P. J. (2008). Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood 112, 2780-2786.
Brass, L. F. (2003). Thrombin and platelet activation. Chest 124, 18S-25S.
Calvete, J. J. (1999). Platelet integrin GPIIb/IIIa: structure-function correlations. An update and lessons from other integrins. Proc Soc Exp Biol Med 222, 29-38.
Calvete, J. J., Marcinkiewicz, C., Monleon, D., Esteve, V., Celda, B., Juarez, P., and Sanz, L. (2005). Snake venom disintegrins: evolution of structure and function. Toxicon 45, 1063-1074.
Calvete, J. J., Moreno-Murciano, M. P., Sanz, L., Jurgens, M., Schrader, M., Raida, M., Benjamin, D. C., and Fox, J. W. (2000). The disulfide bond pattern of catrocollastatin C, a disintegrin-like/cysteine-rich protein isolated from Crotalus atrox venom. Protein Sci 9, 1365-1373.
Calvete, J. J., Moreno-Murciano, M. P., Theakston, R. D., Kisiel, D. G., and Marcinkiewicz, C. (2003). Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem J 372, 725-734.
Chang, H. H., Hu, S. T., Huang, T. F., Chen, S. H., Lee, Y. H., and Lo, S. J. (1993). Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun 190, 242-249.
Chung, M. C., Ponnudurai, G., Kataoka, M., Shimizu, S., and Tan, N. H. (1996). Structural studies of a major hemorrhagin (rhodostoxin) from the venom of Calloselasma rhodostoma (Malayan pit viper). Arch Biochem Biophys 325, 199-208.
Coller, B. S. (2001). Anti-GPIIb/IIIa drugs: current strategies and future directions. Thromb Haemost 86, 427-443.
Coller, B. S., Peerschke, E. I., Scudder, L. E., and Sullivan, C. A. (1983). A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa. J Clin Invest 72, 325-338.
Davi, G., and Patrono, C. (2007). Platelet activation and atherothrombosis. N Engl J Med 357, 2482-2494.
Faulds, D., and Sorkin, E. M. (1994). Abciximab (c7E3 Fab). A review of its pharmacology and therapeutic potential in ischaemic heart disease. Drugs 48, 583-598.
Frenette, P. S., Johnson, R. C., Hynes, R. O., and Wagner, D. D. (1995). Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci U S A 92, 7450-7454.
Gan, Z. R., Gould, R. J., Jacobs, J. W., Friedman, P. A., and Polokoff, M. A. (1988). Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J Biol Chem 263, 19827-19832.

Gao, C., Boylan, B., Bougie, D., Gill, J. C., Birenbaum, J., Newman, D. K., Aster, R. H., and Newman, P. J. (2009). Eptifibatide-induced thrombocytopenia and thrombosis in humans require FcgammaRIIa and the integrin beta3 cytoplasmic domain. J Clin Invest 119, 504-511.
Greenberg, J. P., Packham, M. A., Guccione, M. A., Harfenist, E. J., Orr, J. L., Kinlough-Rathbone, R. L., Perry, D. W., and Mustard, J. F. (1979). The effect of pretreatment of human or rabbit platelets with chymotrypsin on their responses to human fibrinogen and aggregating agents. Blood 54, 753-765.
Haas, T. A., and Plow, E. F. (1994). Integrin-ligand interactions: a year in review. Curr Opin Cell Biol 6, 656-662.
Hagedorn, I., Vogtle, T., and Nieswandt, B. (2010). Arterial thrombus formation. Novel mechanisms and targets. Hamostaseologie 30, 127-135.
Hartman, G. D., Egbertson, M. S., Halczenko, W., Laswell, W. L., Duggan, M. E., Smith, R. L., Naylor, A. M., Manno, P. D., Lynch, R. J., Zhang, G., and et al. (1992). Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J Med Chem 35, 4640-4642.
Hood, J. D., and Cheresh, D. A. (2002). Role of integrins in cell invasion and migration. Nat Rev Cancer 2, 91-100.
Huang, T. F., Chang, C. H., Ho, P. L., and Chung, C. H. (2008). FcgammaRII mediates platelet aggregation caused by disintegrins and GPIIb/IIIa monoclonal antibody, AP2. Exp Hematol 36, 1704-1713.
Huang, T. F., Holt, J. C., Kirby, E. P., and Niewiarowski, S. (1989). Trigramin: primary structure and its inhibition of von Willebrand factor binding to glycoprotein IIb/IIIa complex on human platelets. Biochemistry 28, 661-666.
Huang, T. F., Holt, J. C., Lukasiewicz, H., and Niewiarowski, S. (1987). Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem 262, 16157-16163.
Huang, T. F., Liu, C. Z., Ouyang, C. H., and Teng, C. M. (1991a). Halysin, an antiplatelet Arg-Gly-Asp-containing snake venom peptide, as fibrinogen receptor antagonist. Biochem Pharmacol 42, 1209-1219.
Huang, T. F., Sheu, J. R., and Teng, C. M. (1991b). A potent antiplatelet peptide, triflavin, from Trimeresurus flavoviridis snake venom. Biochem J 277 ( Pt 2), 351-357.
Huang, T. F., Sheu, J. R., Teng, C. M., Chen, S. W., and Liu, C. S. (1991c). Triflavin, an antiplatelet Arg-Gly-Asp-containing peptide, is a specific antagonist of platelet membrane glycoprotein IIb-IIIa complex. J Biochem 109, 328-334.
Huang, T. F., Wang, W. J., Teng, C. M., Liu, C. S., and Ouyang, C. (1991d). Purification and characterization of an antiplatelet peptide, arietin, from Bitis arietans venom. Biochim Biophys Acta 1074, 136-143.
Kallech-Ziri, O., Luis, J., El Ayeb, M., and Marrakchi, N. (2007). [Snake venom disintegrins: classification and therapeutic potential]. Arch Inst Pasteur Tunis 84, 29-37.
Knight, D. M., Wagner, C., Jordan, R., McAleer, M. F., DeRita, R., Fass, D. N., Coller, B. S., Weisman, H. F., and Ghrayeb, J. (1995). The immunogenicity of the 7E3 murine monoclonal Fab antibody fragment variable region is dramatically reduced in humans by substitution of human for murine constant regions. Mol Immunol 32, 1271-1281.
Koh, C. Y., and Kini, R. M. (2012). From snake venom toxins to therapeutics--cardiovascular examples. Toxicon 59, 497-506.
Kornecki, E., Niewiarowski, S., Morinelli, T. A., and Kloczewiak, M. (1981). Effects of chymotrypsin and adenosine diphosphate on the exposure of fibrinogen receptors on normal human and Glanzmann's thrombasthenic platelets. J Biol Chem 256, 5696-5701.

Kulkarni, S., Dopheide, S. M., Yap, C. L., Ravanat, C., Freund, M., Mangin, P., Heel,
K. A., Street, A., Harper, I. S., Lanza, F., and Jackson, S. P. (2000). A revised model of platelet aggregation. J Clin Invest 105, 783-791.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
Leytin, V., Mody, M., Semple, J. W., Garvey, B., and Freedman, J. (2000). Quantification of platelet activation status by analyzing P-selectin expression. Biochem Biophys Res Commun 273, 565-570.
Ma, Y. Q., Qin, J., and Plow, E. F. (2007). Platelet integrin alpha(IIb)beta(3): activation mechanisms. J Thromb Haemost 5, 1345-1352.
Matsui, T., Hamako, J., and Titani, K. (2010). Structure and function of snake venom proteins affecting platelet plug formation. Toxins (Basel) 2, 10-23.
McLane, M. A., Sanchez, E. E., Wong, A., Paquette-Straub, C., and Perez, J. C. (2004). Disintegrins. Curr Drug Targets Cardiovasc Haematol Disord 4, 327-355.
Merten, M., and Thiagarajan, P. (2000). P-selectin expression on platelets determines size and stability of platelet aggregates. Circulation 102, 1931-1936.
Michelson, A. D. (2010). Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov 9, 154-169.
Mitchell, W. B., Li, J., Murcia, M., Valentin, N., Newman, P. J., and Coller, B. S. (2007). Mapping early conformational changes in alphaIIb and beta3 during biogenesis reveals a potential mechanism for alphaIIbbeta3 adopting its bent conformation. Blood 109, 3725-3732.
Montalescot, G. (2011). Platelet biology and implications for antiplatelet therapy in atherothrombotic disease. Clin Appl Thromb Hemost 17, 371-380.
Nurden, A. T., Poujol, C., Durrieu-Jais, C., and Nurden, P. (1999). Platelet glycoprotein IIb/IIIa inhibitors: basic and clinical aspects. Arterioscler Thromb Vasc Biol 19, 2835-2840.
Offermanns, S. (2006). Activation of platelet function through G protein-coupled receptors. Circ Res 99, 1293-1304.
Peter, K., Schwarz, M., Ylanne, J., Kohler, B., Moser, M., Nordt, T., Salbach, P., Kubler, W., and Bode, C. (1998). Induction of fibrinogen binding and platelet aggregation as a potential intrinsic property of various glycoprotein IIb/IIIa (alphaIIbbeta3) inhibitors. Blood 92, 3240-3249.
Phillips, D. R., Charo, I. F., Parise, L. V., and Fitzgerald, L. A. (1988). The platelet membrane glycoprotein IIb-IIIa complex. Blood 71, 831-843.
Plow, E. F., Haas, T. A., Zhang, L., Loftus, J., and Smith, J. W. (2000). Ligand binding to integrins. J Biol Chem 275, 21785-21788.
Proimos, G. (2001). Platelet aggregation inhibition with glycoprotein IIb--IIIa inhibitors. J Thromb Thrombolysis 11, 99-110.
Rucinski, B., Niewiarowski, S., Holt, J. C., Soszka, T., and Knudsen, K. A. (1990). Batroxostatin, an Arg-Gly-Asp-containing peptide from Bothrops atrox, is a potent inhibitor of platelet aggregation and cell interaction with fibronectin. Biochim Biophys Acta 1054, 257-262.
Ruggeri, Z. M. (2002). Platelets in atherothrombosis. Nat Med 8, 1227-1234.
Savage, B., Almus-Jacobs, F., and Ruggeri, Z. M. (1998). Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94, 657-666.
Scarborough, R. M., Naughton, M. A., Teng, W., Rose, J. W., Phillips, D. R.,
Nannizzi, L., Arfsten, A., Campbell, A. M., and Charo, I. F. (1993). Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J Biol Chem 268, 1066-1073.
Scarborough, R. M., Rose, J. W., Hsu, M. A., Phillips, D. R., Fried, V. A.,
Campbell, A. M., Nannizzi, L., and Charo, I. F. (1991). Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem 266, 9359-9362.
Schneider, D. J., Taatjes, D. J., and Sobel, B. E. (2000). Paradoxical inhibition of fibrinogen binding and potentiation of alpha-granule release by specific types of inhibitors of glycoprotein IIb-IIIa. Cardiovasc Res 45, 437-446.
Schwarz, M., Katagiri, Y., Kotani, M., Bassler, N., Loeffler, C., Bode, C., and Peter, K. (2004). Reversibility versus persistence of GPIIb/IIIa blocker-induced conformational change of GPIIb/IIIa (alphaIIbbeta3, CD41/CD61). J Pharmacol Exp Ther 308, 1002-1011.
Schwarz, M., Meade, G., Stoll, P., Ylanne, J., Bassler, N., Chen, Y. C.,
Hagemeyer, C. E., Ahrens, I., Moran, N., Kenny, D., et al. (2006). Conformation-specific blockade of the integrin GPIIb/IIIa: a novel antiplatelet strategy that selectively targets activated platelets. Circ Res 99, 25-33.
Shebuski, R. J., Ramjit, D. R., Bencen, G. H., and Polokoff, M. A. (1989). Characterization and platelet inhibitory activity of bitistatin, a potent arginine-glycine-aspartic acid-containing peptide from the venom of the viper Bitis arietans. J Biol Chem 264, 21550-21556.
Sheu, J. R., Teng, C. M., and Huang, T. F. (1992). Triflavin, an RGD-containing antiplatelet peptide, binds to GpIIIa of ADP-stimulated platelets. Biochem Biophys Res Commun 189, 1236-1242.
Straub, A., Azevedo, R., Beierlein, W., Wendel, H. P., Dietz, K., and Ziemer, G. (2005). Glycoprotein IIb/IIIa inhibition reduces prothrombotic events under conditions of deep hypothermic circulatory arrest. Thromb Haemost 94, 115-122.
Tsai, I. H., Wang, Y. M., and Lee, Y. H. (1994). Characterization of a cDNA encoding the precursor of platelet aggregation inhibition and metalloproteinase from Trimeresurus mucrosquamatus venom. Biochim Biophys Acta 1200, 337-340.
van der Flier, A., and Sonnenberg, A. (2001). Function and interactions of integrins. Cell Tissue Res 305, 285-298.
Varga-Szabo, D., Pleines, I., and Nieswandt, B. (2008). Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 28, 403-412.
Xiao, T., Takagi, J., Coller, B. S., Wang, J. H., and Springer, T. A. (2004). Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59-67.
Xiong, J. P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S. L., and Arnaout, M. A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151-155.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64713-
dc.description.abstractDisintegrins是小分子量的抗血栓蛋白,最早由蛇毒蛋白中所發現,並有著強效的血小板凝集抑制活性。Disintegrins的作用機轉是抑制血小板上的GPIIb/IIIa,被認為具有開發為抗血栓抑制劑的潛力。龜殼花 (Trimeresurus mucrosquamatus) 蛇毒蛋白原毒粉末依序經由CM-Sephadex C-50離子交換層析法、Sephadex G-75 膠質過濾法、FPLC Superdex-75膠質過濾法,最後再以逆向高效液相色譜分析法進行最後純化分離,純化得到的兩種disintegrin分別為TMV-2和TMV-7。在本篇研究中,主要的目的是探討並比較TMV-2和TMV-7抗血栓作用和機轉不同之處。TMV-2和TMV-7有著不一樣的等電點,TMV-2的等電點約為4.5而TMV-7的等電點約為5-7。TMV-2和TMV-7都是單鏈的小分子,分子量經由MALDI-TOF測定分別為7663 和7672 Da。由LC-MS/MS所鑑定出的部分序列顯示,TMV-2有24%的序列相似於batroxostatin (由Bothrops atrox蛇毒蛋白中分離出的disintegrin);而TMV-7也有24%的序列相似於batroxostatin,但有高達79%的序列相似於cotiarin (由Bothrops cotiara蛇毒蛋白中分離出的disintegrin)。TMV-2和TMV-7都能有效抑制在人類富含血小板的血漿、人類血小板懸浮液以及經elastase處理的人類血小板懸浮液中所引發的凝集反應,其抑制的程度會隨著濃度上升而增大。TMV-2和TMV-7都不會影響thromboxane A2的生成,但都會增強由collagen和thrombin所引起的P-selectin的表現。利用流式細胞儀的分析,可觀察到TMV-2對於GPIIb/IIIa的單株抗體7E3結合到GPIIb/IIIa上有明顯抑制作用,然而TMV-7卻不會抑制單株抗體7E3結合到GPIIb/IIIa上。而TMV-2和TMV-7對於另一種GPIIb/IIIa的單株抗體10E5的影響卻是會加強此單株抗體結合到GPIIb/IIIa上。在動物實驗方面,TMV-2和TMV-7也能抑制老鼠富含血小板的血漿所中所引起的血小板凝集反應,其抑制的程度也能隨著濃度上升而增大。在給予老鼠0.25μg/g的劑量之下,TMV-2會顯著的延長出血時間,然而TMV-7則不會延長出血時間。另外,TMV-2和TMV-7兩者都不會減少血小板的數量。綜合上述結果可知,TMV-2和TMV-7這兩個等電點不相同的disintegrin有著不一樣的特性。TMV-2比起TMV-7有著更強效的血小板凝集抑制效果,而且TMV-7結合到GPIIb/IIIa上的位置顯然和TMV-2及單株抗體7E3不同。另外,我們發現當TMV-2或TMV-7和單株抗體10E5一起作用時反而會引發血小板的活化。而給予老鼠0.25μg/g的劑量之下,TMV-7的副作用和TMV-2比起來顯得較少。由此我們認為TMV-2和TMV-7這兩種disintegrin之間的差異研究可利於新一代GPIIb/IIIa拮抗劑的研發,而且由TMV-2和TMV-7作用於GPIIb/IIIa的不同之處或許可以提供訊息來探討GPIIb/IIIa拮抗劑所引發血小板減少症的機轉。zh_TW
dc.description.abstractDisintegrins are small moleculars and potent platelet inhibitors found in the snake venom. Disintegrins are GPIIb/IIIa antagonists and potential antithrombotic agents. By means of CM-Sephadex C-50, Sephadex G-75 gel filtration, FPLC Superdex 75 gel filtration and reverse phase HPLC, two disintegrins, TMV-2 and TMV-7, were purified from Trimeresurus mucrosquamatus snake venom. In this study, we investigated and compared the difference between TMV-2 and TMV-7. TMV-2 and TMV-7 had different isoelectric point (pI). The pI of TMV-2 was estimated to be around 4.5, whereas that of TMV-7 was estimated to be around 5-7. TMV-2 and TMV-7 were shown to be a single peptide chain. By MALDI-TOF, the molecular weigh of TMV-2 and TMV-7 were determined as 7663 and 7672 Da, respectively. The sequence of TMV-2 was 24% identical to batroxostatin, a disintegrin purified from the snake venom of Bothrops atrox, whereas the sequence of TMV-7 was 24% identical to batroxostatin and 79% identical to cotiarin, a disintegrin purified from the snake venom of Bothrops cotiara. Both TMV-2 and TMV-7 concentration-dependently inhibited platelet aggregation in human platelet-rich plasma, washed human platelet suspension and elastase-treated human platelets. Also, TMV-2 and TMV-7 did not interfere with the formation of thromboxane A2. However, both TMV-2 and TMV-7 enhanced the P-selectin expression induced by collagen and thrombin. In the indirect binding assay, TMV-2 significantly inhibited 7E3, a mAb raised against GPIIb/IIIa, binding to GPIIb/IIIa, but TMV-7 did not. Both TMV-2 and TMV-7 enhanced 10E5, a mAb raised against GPIIb/IIIa, binding to GPIIb/IIIa. In the animal models, TMV-2 and TMV-7 dose-dependently inhibited platelet aggregation in mice PRP. Furthemore, TMV-2 (0.25μg/g) prolonged the bleeding time more significantly than TMV-7 (0.25μg/g) as they were intravenously administered. However, both TMV-2 and TMV-7 did not alter the platelet counts. In conclusion, TMV-2 and TMV-7, two disintegrins with different isoelectric point, have the different characters. Although both TMV-2 and TMV-7 are GPIIb/IIIa inhibitor, the inhibitory effect of TMV-2 was more potent than TMV-7. Also, our data revealed that the binding site of TMV-7 on GPIIb/IIIa was different from TMV-2 and mAb 7E3. Moreover, combination of TMV-2 or TMV-7 with mAb 10E5 could lead to platelet activation. Finally, we found that TMV-7 had fewer side effects than TMV-2 at the same dosage. Therefore, the difference between TMV-2 and TMV-7 may provide valuable information for the development of GPIIb/IIIa inhibitors and the mechanisms involved in GPIIb/IIIa inhibitor-induced thrombocytopenia.en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:57:54Z (GMT). No. of bitstreams: 1
ntu-101-R99443006-1.pdf: 3958222 bytes, checksum: 30fa9afd6a3879ad35baa65db05d076b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
誌謝 ....................................................i
中文摘要 ................................................ii
Abstract ................................................iv
Contents ................................................vi
Figures .................................................x
Tables ..............................................xiii
Abbreviations .....................................xiv
Chapter 1 Introduction ..............................1
1.1 The role of platelets in haemostasis and thrombosis .................................................1
1.2 Stages in the formation of platelet plug...............2
1.2.1 The initiation phase ..............................2
1.2.2 The extension phase ..............................3
1.2.3 The perpetuation phase ..............................3
1.3 Integrins ............................................4
1.4 Platelet integrin : GPIIb/IIIa structure and ligand binding .................................................5
1.5 Platelet integrin : activation of GPIIb/IIIa receptor...................................................6
1.6 Disintegrins .......................................6
1.7 GPIIb/IIIa inhibitors ..............................8
1.7.1 Monoclonal antibody: Abciximab ....................8
1.7.2 Drugs designed based on snake venom disintegrins : Eptifibatide and Tirofiban ..............................9
1.8 Thrombocytopenia induced by GPIIb/IIIa inhibitors ................................................10
1.9 Aims ................................................11
Chapter 2 Materials and methods ...................15
2.1 Materials ......................................15
2.2 Purification of platelet aggregation inhibitor from Trimeresurus mucrosquamatus snake venom .........16
2.2.1 Sephadex G-75 column chromatography .........16
2.2.2 FPLC Superdex 75 HR 10/300 GL ...................17
2.2.3 Reverse-phase HPLC C18 column ...................17
2.3 BCA assay for protein quantification .........18
2.4 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) ................................................18
2.5 2D gel electrophoresis (2D SDS-PAGE) .........18
2.6 Coomassie blue staining ............................19
2.7 In gel digestion ............................19
2.8 Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) .........20
2.9 Liquid chromatography–mass spectrometry (LC-MS / MS) ...............................................20
2.10 Preparation of human platelet-rich plasma .........21
2.11 Preparation of human platelet suspension .........21
2.12 Elastase-treated platelet suspension .........22
2.13 Platelet aggregation ............................22
2.14 Measurement of thromboxane B2 formation .........23
2.15 Analysis of P-selectin expression ...................23
2.16 Flow cytometric analysis of TMV-2 and TMV-7 binding to platelets ...............................................24
2.17 In vitro and ex vivo mouse platelet aggregation ...............................................24
2.18 Tail bleeding time in mice ..................25
2.19 Platelet counts in mice ............................25
2.20 Statistical analysis ............................26
Chapter 3 Results .....................................27
3.1 Purification of TMV-2 and TMV-7 from Trimeresurus mucrosquamatus snake venom ............................27
3.2 Determination of molecular mass of TMV-2 and TMV-7 ...............................................28
3.3 The isoelectric point (pI) of TMV-2 and TMV-7 ...............................................28
3.4 Protein identification of TMV-2 and TMV-7 .........29
3.5 Effect of TMV-2 and TMV-7 on platelet aggregation of human platelet-rich plasma ............................29
3.6 Effect of TMV-2 and TMV-7 on platelet aggregation of human platelet suspension ............................30
3.7 Effect of TMV-2 and TMV-7 on fibrinogen-induced aggregation of elastase-treated platelets .........30
3.8 Effect of TMV-2 and TMV-7 on thromboxane B2 formation ...............................................31
3.9 Effect of TMV-2 and TMV-7 on P-selectin expression ...............................................32
3.10 Effect of TMV-2 and TMV-7 on the expression of GPIIb/IIIa on unstimulated platelet ..................33
3.11 Effect of TMV-2 and TMV-7 on the expression of GPIIb/IIIa on ADP-stimulated platelets ..................33
3.12 Effect of TMV-2 and TMV7 on in vitro and ex vivo mice platelet aggregation ............................34
3.13 Effect of TMV-2 and TMV-7 on bleeding time and platelet counts .....................................35
Chapter 4 Discussion ............................71
Chapter 5 Conclusion ............................80
References .....................................82

Figures
Fig. 1-1 Mechanism of platelet adhesion activation and aggregation. .....................................12
Fig. 1-2 The conformation of GPIIb/IIIa. ........13
Fig. 1-3 Cartoon models of the conformational states of GPIIb/IIIa under physiological conditions or in presence of inhibitors. .....................................14
Fig. 3-1 CM-Sephadex C-50 column chromatography of Trimeresurus mucrosquamatus (Adopted from Shu-Ya Yang) ...............................................36
Fig. 3-2 Sephadex G-75 column chromatography of fraction II. ...............................................37
Fig. 3-3 Purification of TMV-2 using reverse-phase HPLC. ...............................................38
Fig. 3-4 Sephadex G-75 column chromatography of fraction VII. (Adopted from Shu-Ya Yang) ..................39
Fig. 3-5 FPLC Superdex 75 HR 10/300 GL column chromatography of fraction VII-2. ..................40
Fig.3-6 Purification of TMV-7 using reverse-phase HPLC. ...............................................41
Fig. 3-7 Pattern of SDS-gel electrophoresis and 2D-gel electrophoresis of purified TMV-2 and TMV-7. ........42
Fig. 3-8 The molecular mass of TMV-2 analyzed by MALDI-TOF. ..............................................43
Fig. 3-9 The molecular mass of TMV-7 analyzed by MALDI-TOF. ..............................................44
Fig. 3-10 Partial sequences of TMV-2 and TMV-7 obtained from LC-MS/MS. .....................................45
Fig. 3-11 Effect of TMV-2 and TMV-7 on ADP-induced platelet aggregation of human platelet-rich plasma. ........46
Fig. 3-12 Effect of TMV-2 and TMV-7 on collagen-induced human platelet aggregation. ...........................48
Fig. 3-13 Effect of TMV-2 and TMV-7 on thrombin-induced platelet aggregation of washed human platelet suspension. ..............................................49
Fig. 3-14 Effect of TMV-2 and TMV-7 on U46619-induced human platelet aggregation. ...........................51
Fig. 3-15 Concentration-inhibition curve of TMV-2 and TMV-7 in human platelet-rich plasma and washed human platelet suspension. ....................................54
Fig. 3-16 Effect of TMV-2 and TMV-7 on fibrinogen-induced aggregation of elastase-treated platelets. .......55
Fig. 3-17 Concentration-inhibition curve of TMV-2 and TMV-7 in elastase-treated platelet suspension .......56
Fig. 3-18 Effect of TMV-2 and TMV-7 on fibrinogen-induced aggregation of elastase-treated platelets (II). .......57
Fig. 3-19 Effect of TMV-2 and TMV-7 on thromboxane B2 formation induced by collagen in washed human platelets..............................................59
Fig. 3-20 Effect of TMV-2 and TMV-7 on P-selectin expression activated by collagen. .................60
Fig. 3-21 Effect of TMV-2 and TMV-7 on P-selectin expression activated by thrombin. .................61
Fig. 3-22 Effect of TMV-2 and TMV-7 on the expression of membrane GPIIb/IIIa probed by mAb 7E3 on unstimulated platelets. ....................................62
Fig. 3-23 Effect of TMV-2 and TMV-7 on the expression of membrane GP IIb/IIIa probed by mAb 7E3 on ADP-stimulated platelets. ....................................63
Fig. 3-24 Effect of TMV-2 and TMV-7 on the expression of membrane GP IIb/IIIa probed by mAb 10E5 on unstimulated platelets. ....................................64
Fig. 3-25 Effect of TMV-2 and TMV-7 on the expression of membrane GP IIb/IIIa probed by mAb 10E5 on ADP-stimulated platelets. ....................................65
Fig. 3-26 Effect of TMV-2 and TMV-7 on in vitro mouse platelet aggregation of PRP induced by collagen. .......66
Fig. 3-27 Effect of TMV-2 and TMV-7 on ex vitro mouse platelet aggregation of PRP induced by collagen. .......67
Fig. 3-28 Effect of TMV-2 and TMV-7 on tail bleeding time in mice. .............................................69
Fig. 3-29 Effect of TMV-2 and TMV-7 on platelet count in mice. .............................................70
Fig. 4-1 The locations of the 10E5 and 7E3 epitopes on models of the ...................................79
bent and extended forms of GP IIb/IIIa. ......79
Tables
Table. 4-1 The estimated isoelectric point of different disintegrins isolated from snake venoms. ......77
Table. 4-2 Comparision the IC50 of TMV-2 with TMV-7 in human platelet-rich plasma (PRP) and washed human platelets. .............................................78
Table. 4-3 Comparision the IC50 of TMV-2 with TMV-7 in elastased-treated human platelets. .................78
Table. 4-4 Comparision the IC50 of TMV-2 with TMV-7 in mice PRP. ..............................................78
dc.language.isoen
dc.subject抗血栓zh_TW
dc.subject蛇毒蛋白zh_TW
dc.subject龜殼花zh_TW
dc.subjectsnake venomen
dc.subjectTrimeresurus mucrosquamatusen
dc.subjectantithromboticen
dc.title龜殼花蛇毒蛋白Disintegrin抗血栓活性與作用機轉之探討zh_TW
dc.titleThe Antithrombotic Effects and Mechanisms of Disintegrin Purified from Trimeresurus mucrosquamatus Snake Venomen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧哲明,顏茂雄,楊春茂,吳文彬
dc.subject.keyword蛇毒蛋白,龜殼花,抗血栓,zh_TW
dc.subject.keywordsnake venom,Trimeresurus mucrosquamatus,antithrombotic,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2012-08-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved