請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64707完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙治宇 | |
| dc.contributor.author | Ron Shieh | en |
| dc.contributor.author | 謝榕 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:57:45Z | - |
| dc.date.available | 2014-08-10 | |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-09 | |
| dc.identifier.citation | [1] http://www.eia.gov/forecasts/ieo/index.cfm
[2] Pathways to 2050 the role of electricity in a carbon constrained world [3] E. Becquerel, Comptes Rendus 9, 561 (1839) [4] D. M. Chapin, C. S. Fuller, and G. L. Pearson, J. Appl. Phys. 25, 676 (1954) [5] National Renewable Energy Laboratory, “Best Research-cell Efficiency” [6] F. C. Krebs, H. Spanggard, T. Kjaer, M. Biancardo, and J. Alstrup, Mater. Sci. Eng., B 138, 106 (2007) [7] C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, Sol. Energy Mater. Sol. Cells 91, 379 (2007) [8] M. Niggemann, B. Zimmermann, J. Haschke, M. Glatthar, and A. Gombert, Thin Solid Films 516, 7181 (2008) [9] R. Tipnis, J. Bernkopf, S. Jia, J. Krieg, S. Li, M. Storch, and D. Laird, Sol. Energy Mater. Sol. Cells 93, 442 (2009) [10] 張正華,李陵嵐,葉楚平,馬振基,有機與塑膠太陽能電池,五南圖書出版 公司,(2008) [11] L. Blankenburg, K. Schultheis, H. Schache, S. Sensfuss, and M. Schrodner, Sol. Energy Mater. Sol. Cells 93, 476 (2009) [12] F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 465 (2009) [13] F. C. krebs, S. A. Gevorgyan, and J. Alstrup, J. Mater. Chem. 19, 5442 (2009) [14] N. Espinosa, H. F. Dam, D. M. Tanenbaum, J. W. Andreasen, M. Jorgensen, and F. C. Krebs, Mater. Lett. 4, 169 (2011) [15] H. Kallmans and M. Pope, J. Mater. Chem. 30, 585 (1958) [16] L. J. A. Koster and D. E. Markov, Adv. Mater. 19, 1551 (2007) [17] A. Moliton and J. M. Nunzi, Polym. Int. 55, 583 (2006) [18] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992) [19] 沈佑民,國立臺灣大學電機資訊學院光電工程學研究所碩士論文 (2011) [20] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, and others, Adv. Funct. Mater. 11, 15 (2001) [21] C. W. Tang, Appl. Phys. Lett. 48, 183 (1986) [22] 韓于凱,「塑膠材料」研發團隊簡訊 (第三期) [23] M. Theander, A. Yartsev, D. Zigmantas, V. Sundstrom, W. Mammo, M. R. Anders-son, and O. Inganas, Phys. Rev. B 61, 12957 (2000) [24] K. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004) [25] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gugel, and K. Mullen, Phys. Rev. B 59, 15246 (1999) [26] C. W. Chu, H. C. Yang, W. J. Huang, G. Li, and Y. Yang, Appl. Phys. Lett. 92, 103306 (2008) [27] D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, J. Phys. Chem. C 111, 16640 (2007) [28] Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, Appl. Phys. Lett. 86, 063502 (2005) [29] Gang Li, V. Shrotriya, Y. Yao, and Y. Yang, Journal of Appl. Phys. 98, 043704 (2005) [30] H. Kim, W. Wook, and S. J. Moon, Sol. Energy Mater. Sol. Cells 91, 581 (2006). [1] A. Moliton and J. M. Nunzi, Polym. Int. 55, 583 (2006) [2] L. J. A. Koster and D. E. Markov, Adv. Mater. 19, 1551 (2007) [3] B. Kippelen and J. Breda, Environ. Sci. Technol. 2, 251 (2009) [4] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, Appl. Phys. Lett. 80, 1288 (2002) [5] S. Khodabakhsh, S. C. J. Meskers, and R. A. J. Janssen, J., Adv. Funct. Mater. 16, 95 (2006) [6] F. Zhang, M. Ceder, and O. Inganas, Adv. Mater. 19, 1835 (2007) [7] 蔡進譯, “超高效率太陽能電池-從愛因斯坦的光電效應談起”, 物理雙月刊27, 701 (2005) [8] N. S. Sariciftci, L. Smilwitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992) [9] 沈佑民,有機太陽能電池薄膜型態之修飾與效率提升,國立臺灣大學電機資 訊學院光電工程學研究所碩士論文 (2011) [10] M. C. Scharber D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006) [11] S. M. Sze, Semiconductor devices: physics and technology. Weley-India (2009) [12] ASTM International, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37o Tilted Surface, G 173-03 (2003) [13] http://en.wikipedia.org/wiki/Sunlight [1] Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, App. Phys. Lett. 86, 063502 (2005) [2] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Fun. Mater. 15, 1617 (2005) [3] K. Kim, J. Liu, M. A. Namboothiry, and D. L. Carroll, Appl. Phys. Lett. 90, 163511 (2007) [4] M. R. Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005); [5] S. Berson, R. D. Bettignies, S. Bailly, and S. Guillerez, Adv. Funct. Mater. 17, 1377 (2007) [6] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, J. Appl. Phys. 98, 043704 (2005) [7] X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, NANO LETTERS 5, 579 (2005) [8] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C. J. Brabec, Adv. Funct. Mater. 15, 1193 (2005) [9] V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Funct. Mater. 16, 699 (2006) [10] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18, 572 (2006) [11] R. A. J. Janssen, J. C. Hummelen, and N. S. Sariciftci, MRS Bull. 30, 33 (2005) [12] PHOTOVOLTAICS: Enhancements enable solar simulators to shed light on new photovoltaic designs [13] 謝嘉民、賴一凡、林永昌、枋治堯,奈米通訊,第十二卷第二期,28頁 [14] V. Shrotriya, Y. Yao, G. Li, and Y. Yang, Appl. Phys. Lett. 89, 063505 (2006) [15] 鄭揚霖,雞尾酒有機色素增感太陽電池之研究,國立成功大學化學工程學系 碩士論文 (2006) [16] 伍秀菁、汪若文、林美吟編輯,'儀器總覽-化學分析儀器'、行政院國家科學 委員會精密儀器發展中心,第一頁 (1998) [1] L. S. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, J. and C. Hummelen, Adv. Mater. 12, (2000) [2] S. I. Na, S. S. Kim, J. Jo, S. H. Oh, J. Kim, and D. Y. Kim, Adv. Funct. Mater. 18, 3956 (2008) [3] S. I. Na, S. S. Kim, S. S. Kwon, J. Jo, and J. Kim, Appl. Phys. Lett. 91, 173509 (2007) [4] J. B. Emah, R. J. Curry, and S. R. P. Silva, Appl. Phys. Lett. 93, 103301 (2008) [5] S. Admassiea and O. Inganas, J. Electrochem. Soc. 151, 153 (2004) [6] F. Zhang, T. Nyberg, and O. Inganas, Nano Lett. 2, 1373 (2002) [7] J. H. Lee, D. W. Kim, H. Jang, J. K. Choi, J. Geng, J. W. Jung, S. C. Yoon, and H. T. Jung, small 5, 2139 (2009) [8] C. F. Shih, K. T. Hung, J. W. Wu, C. Y. Hsiao, and W. M. Li, Appl. Phys. Lett. 94, 143505 (2009) [9] A. J. Pidduck, S. D. Haslam, G. P. B. Brown, R. Bannister, and I. D. Kitely, Appl. Phys. Lett. 71, 17 (1997) [10] J. Y. Hwang, K. H. Nam, J. H. Kim, D. S. SEO, and D. H. Suh, Jpn. J. Appl. Phys. 43, 03R10110 (2004) [11] S. J. Kang, Y. Y. Noh, K. J. Baeg, J. Ghim, J. H. Park, and D. Y. Kim, Appl. Phys. Lett. 92, 052107 (2008) [12] S. Z. Weng, W. S. Hu, C. H. Kuo, and Y. T. Tao, Appl. Phys. Lett. 89, 172103 (2006) [13] G. Li, V. Shrotriya, J. Huang, Y. Yao, Tommoriarty, K. Emery, and Y. Yang, Nature mater. 4, 864 (2005) [14] C. Melzer, E. J. Koop, V. D. Mihailetchi, and P. W. M. Blom, Adv. Funct. Mater. 14, 865 (2004) [15] D. H. Wang, D. G. Choi, K. J. Lee, J. H. Jeong, S. H. Jeon, O O. Park, J. H. Park, Org. Electron. 11, 285 (2010) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64707 | - |
| dc.description.abstract | 有機高分子太陽能電池相對其他種類太陽能電池具有輕薄、大面積、可撓曲、製作成本低的優點,其中又以混合異質接面結構最受矚目,近年來在此領域的進展極為快速,而在各個介面之間製造奈米結構以增加光電轉換效率就是一個重要的研究方向。本論文分為三個部分;首先介紹本實驗室初進入有機高分子太陽能電池領域時,所開發的標準樣品製程,接著介紹在PEDOT:PSS上以摩擦配向技術製作奈米溝槽對元件的影響,最後提出以此技術在主動層上製作奈米溝槽的潛在應用。
為了能夠確認奈米結構製程的效果,一個穩定的有機高分子太陽能電池標準製程是必要的;在開發有機太陽能電池標準製程的過程,我們針對厚/薄ITO玻璃的選擇、過濾步驟、以及退火溫度等參數做了測試;雖然受實驗室環境、儀器的限制,我們無法將標準片效率提升到如同參考文獻一般,但亦已發展到具有對照參考價值的標準元件製程。 接著,我們利用摩擦配向技術製作奈米溝槽於有機高分子太陽能電池的PEDOT:PSS膜上,在本實驗室環境成功將能量轉換效率由0.82 %提升至1.28 %;為了得到更進一步驗證,我們很榮幸能與王立義老師合作,並成功以摩擦配向技術將其實驗室標準元件之能量轉換效率由3.45 % 提升至3.82 %,這顯示摩擦配向製作奈米溝槽的方法能夠使用在不同環境、製程的系統中;同時我們也以原子力顯微鏡證實摩擦配向確實在PSDOT:PSS上製造出週期約500 nm、深度約10 nm之溝槽;此外,我們還量測了吸收光頻譜、光致螢光光譜、X光繞射分析、電洞遷移率,證實這些溝槽能提升結晶性並幫助光吸收上升,使電子電洞再結合率下降,以及提升電洞遷移率。 最後,介紹利用摩擦配向技術製作奈米溝槽於有機高分子太陽能電池主動層與陰極電極介面,並在本實驗室環境成功將光電轉換效率由0.82 %提升至1.20 %,而進一步的分析與討論就留待未來他人的開發研究。 總結而言,我們開發出有機太陽能電池領域前所未見的奈米結構製作技術,並證實其能幫助光電轉換效率提升,而且此技術的使用完全符合有機太陽能電池低成本製程、可大面積應用等特性,具有實際應用的潛能。 | zh_TW |
| dc.description.abstract | Compared with other solar cells, polymer solar cells have been widely noted due to the advantages including: easy fabrication, low cost, light, large area fabrication, and flexibility. It is an important research direction that fabricating nanostructure on differ-ent layer to enhance the efficiency. In this thesis, we adopt rubbing process, which is a low cost, simple and size-unlimited process, to produce nanostructure on PEDOT:PSS and active layer respectively, and execute some measurements to propose the reasons of efficiency enhancement.
First of all, for the comparison of the effects of rubbing process, it is necessary to build up a standard fabrication of polymer solar cells. After some factors testing, in-cluding the choice of ITO film thickness, the use of filter, and the annealing temperature, we successfully established a stable fabrication process of standard polymer solar cells. Second, we introduced rubbing process into the fabrication of polymer solar cells. We produced nanostructure on PEDOT:PSS layer, and enhanced the conversion effi-ciency from 0.82 % to 1.28 % in our lab. For further understanding of this effect, we cooperated with Prof. Wang, and successfully enhanced the conversion efficiency from 3.45 % to 3.82 %. It revealed that rubbing process could be applied in different system. In addition, we used Atomic Force Microscope to prove the presence of nanostructure on PEDOT:PSS layer. We also measured the absorption spectrum, photoluminescence, X-ray diffraction, and hole mobility to certificate that rubbing-induced nanostructure could enhance light absorption, reduce recombination, increase hole mobility, and en-hance the crystallinity of PCBM. Finally, we used rubbing process to produce nanostructure on active layer, and we successfully enhanced the efficiency from 0.82 % to 1.20 %. Further research about this issue will be completed in the future. In conclusion, we have introduced rubbing process to the fabrication of polymer solar cells, and produced nanostructure to enhance the conversion efficiency. The ad-vantages of rubbing process are identical with polymer solar cells. Coupled with the feasibility of multilayer fabrication, it has large potential to benefit the commercializa-tion of polymer solar cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:57:45Z (GMT). No. of bitstreams: 1 ntu-101-R99245003-1.pdf: 2176870 bytes, checksum: d78b866bae28ff34daa35d2676d0e227 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV 目錄 VI 圖目錄 VIII 表目錄 X 第一章 研究背景 1 1.1前言 1 1.2太陽能電池的發展 3 1.3有機太陽能電池的發展 4 1.3.1單層結構 5 1.3.2雙層異質結構 6 1.3.3 混合異質接面結構 8 1.4 參考資料 9 第二章 有機太陽能電池工作原理 11 2.1太陽能電池效率 11 2.2 太陽能電池等效電路分析 14 2.3 太陽能電池性能參數 16 2.4 AM指標參數與太陽光譜 19 2.5 參考資料 21 第三章 混合異質接面有機太陽能電池標準製程開發 22 3.1研究動機與文獻回顧 22 3.2製備流程 23 3.2.1 事前準備 23 3.2.2 元件製程 25 3.3 參數測試結果與討論 27 3.3.1 過濾步驟 27 3.3.2 退火溫度之影響 29 3.3.3 厚、薄ITO玻璃測試 31 3.4 結論 33 3.5 儀器介紹 34 3.5.1 太陽光模擬量測 34 3.5.2 吸收頻譜曲線 35 3.5.3 光致螢光頻譜曲線 (Photoluminescence) 36 3.5.4 電洞遷移率量測(hole mobility) 37 3.5.5 原子力顯微鏡 38 3.5.6 入射光電轉化效率量測 (IPCE) 39 3.5.7 X光繞射分析法(XRD) 40 3.5.8 摩擦配向機 41 3.6 參考資料 42 第四章 摩擦配向製造奈米結構對混合異質接面結構元件之影響 44 4.1 研究動機與文獻回顧 44 4.2 大氣下摩擦配向PEDOT:PSS對混合異質接面結構之影響 46 4.2.1實驗流程 46 4.2.2實驗結果與討論 47 4.2.3 參考文獻提出之解釋 49 4.3手套箱中摩擦配向混合異質接面結構PEDOT:PSS之影響 51 4.3.1 實驗流程 51 3.3.2 實驗結果與討論 52 4.4大氣下摩擦配向混合異質接面結構主動層之影響 59 4.4.1 實驗流程 59 4.4.2 實驗結果與討論 60 4.5. 結論 62 4.6. 參考資料 63 第五章 總結 65 5.1 論文回顧 65 5.2 未來展望 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 摩擦配向 | zh_TW |
| dc.subject | 奈米結構 | zh_TW |
| dc.subject | 混合異質接面結構 | zh_TW |
| dc.subject | 有機高分子太陽能電池 | zh_TW |
| dc.subject | organic polymer solar cell | en |
| dc.subject | bulk heterojunction | en |
| dc.subject | rubbing process | en |
| dc.subject | nanostructure | en |
| dc.title | 摩擦配向製作奈米結構於有機高分子太陽能電池之影響 | zh_TW |
| dc.title | The effects of rubbing-induced nanostructure in polymer solar cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳忠幟,朱士維,梁啟德,管傑雄 | |
| dc.subject.keyword | 有機高分子太陽能電池,混合異質接面結構,摩擦配向,奈米結構, | zh_TW |
| dc.subject.keyword | organic polymer solar cell,bulk heterojunction,rubbing process,nanostructure, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-09 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
