Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64675
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃德富(Tur-Fu Huang)
dc.contributor.authorShu-Ya Yangen
dc.contributor.author楊舒雅zh_TW
dc.date.accessioned2021-06-16T22:57:13Z-
dc.date.available2012-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-09
dc.identifier.citationAbbal C, Lambelet M, Bertaggia D, Gerbex C, Martinez M, Arcaro A., Schapira M and Spertini O (2006) Lipid raft adhesion receptors and Syk regulate selectin-dependent rolling under flow conditions, Blood 108(10): 3352-9.
Faili A, Randon J, Francischetti IM, Vargaftig BB, Hatmi M (1994) Convulxin- induced platelet aggregation is accompanied by a powerful activation of the phospho- lipase C pathway, Biochem. J. 298: 87-91.
Aktas B, Utz A, Hoenig-Liedl P, Walter U, Geiger J. (2003) Dipyridamole enhances NO/cGMP-mediated vasodilator-stimulated phosphoprotein phosphory- lation and signaling in human platelets: in vitro and in vivo/ex vivo studies., Stroke 34: 764 -769.
Alfonso F (2006) Pathophysiology of stent thrombosis: platelet activation, mechanical factors, or both?, J Am Coll Cardiol 47(5): 1086-7; author reply 1087.
Andrews, R. K. and Berndt, M. C. (2004) Platelet physiology and thrombosis, Thromb Res 114(5-6): 447-53.
Ahn HS , Foster C, Boykow G, Stamford A, Manna M and Graziano M. (2000) Inhibition of Cellular Action of Thrombin by N3-Cyclopropyl-7-{[4-(1-methylethyl) phenyl]methyl}-7Hpyrrolo[3,2-f]quinazoline-1,3-diamine (SCH 79797), a Nonpeptide Thrombin Receptor Antagonist, Biochem Pharmacol 60: 1425–34.
Berndt MC, Shen Y, Dopheide SM, Gardiner EE and Andrews RK (2001) The vascular biology of the glycoprotein Ib-IX-V complex, Thromb Haemost 86(1): 178-88.
Bezman NA, Lian L, Abrams CS, Brass LF, Kahn ML, Jordan MS, and Koretzky GA (2008) Requirements of SLP76 tyrosines in ITAM and integrin receptor signaling and in platelet function in vivo, the journal of experimenal medicine.
Bortoleto RK, Murakami MT, Watanabe L, Soares AM and Arni RK (2002) Purification, characterization and crystallization of Jararacussin-I, a fibrinogen-clotting enzyme isolated from the venom of Bothrops jararacussu. , Toxicon 40: 1307-1312.
Brass, LF (2003) Thrombin and Platelet Activation, chest physians 124: 15s-18s.
Brass, LF, Zhu L and Stalker TJ (2005) Minding the gaps to promote thrombus growth and stability, J Clin Invest 115(12): 3385-92.
Bjarnason JB, Fox JW (1995) Snake venom metalloendopeptidases: Reprolysins, Methods Enzymol. 248: 345-368.
Castro HC, Zingali RB, Albuquerquec MG, Pujol-Luza M and Rodriguesd CR (2004) Snake venom thrombin-like enzymes: from reptilase to now, CMLS Cellular and Molecular Life Sciences 61: 843-856.
Chang CH, Chung CH, Kuo HL, Hsu CC and Huang TF (2008) The highly specific platelet glycoprotein (GP) VI agonist trowaglerix impaired collagen-induced platelet aggregation ex vivo through matrix metalloproteinase-dependent GPVI shedding, Journal of Thrombosis and Haemostasis, 6: 669-76.
Chung CH, Au LC and Huang TF (1999) Molecular cloning and sequence analysis of aggretin, a collagen-like platelet aggregation inducer, Biochem Biophys Res Commun 263(3): 723-7.
Chung, CH, Peng HC and Huang TF (2001) Aggretin, a C-type lectin protein, induces platelet aggregation via integrin alpha(2)beta(1) and GPIb in a phosphatidylinositol 3-kinase independent pathway, Biochem Biophys Res Commun 285(3): 689-95.
Clemetson KJ, Lu Q, Clemetson JM (2005) Snake C-Type Lectin-Like Proteins and Platelet Receptors, Pathophysiol Haemost Thromb 34: 150-155.
Coughlin SR (2000) Thrombin signalling and protease-activated receptors, Natue 504.
Cranshaw JH, Evans TW and Mitchell JA (2001) Characterization of the effects of isoprostanes on platelet aggregation in human whole blood, Br J Pharmacol 132(8): 1699-706.
Day JRS, Punjabi PP, Randi AM, Haskard DO, Landis RC and Taylor KM (2004) Clinical Inhibition of the Seven-ransmembrane Thrombin Receptor (PAR-1) by Intravenous Aprotinin During Cardiothoracic Surgery, Circulation 110: 2597-2600.
Dormann D, Clemetson JM, Navdaev A, Kehrel BE, Clemetson K.J (2001) Alboaggregin A activates platelets by a mechanism involving glycoprotein VI as well as glycoprotein Ib , Blood Cells Mol Dis 97: 929-936.
Gardiner EE, Arthur JF, Kahn ML, Berndt MC, and Andrews RK (2004) Regulation of platelet membrane levels of glycoprotein VI by a platelet-derived metalloproteinase, Blood 104(12): 3611-3617.
Gross BS, Lee JR, Clements JL, Turner M, VLJ Tybulewicz, PR Findell, Koretzky GA, and Watson SP (1999) Tyrosine Phosphorylation of SLP-76 Is Downstream of Syk following Stimulation of the Collagen Receptor in Platelets, J Biol Chem 274(9): 5963–5971.
Guo YW, Chang TY, Lin KT, Liu HW, Shih KC and Cheng SH (2001) Cloning and functional expression of the mucrosobin protein, a beta-fibrinogenase of Trimeresurus mucrosquamatus (Taiwan Habu), Protein Expr. Purif. 23(483-490).
Stocker K and Barlow GH (1976) The coagulant enzyme from Bothrops atrox venom (batroxobin), Methods Enzymol. 45: 214-223.
Holinstat M, Preininger AM, Milne AB, Hudson WJ, Brown HA, and Hamm HE (2009) Irreversible Platelet Activation Requires Protease-Activated Receptor 1-Mediated Signaling to Phosphatidylinositol Phosphates, Mol Pharmacol. 76(22): 303-313.
Hsu CC, Huang TF (2011) Biological activities of snake venom metallo- oteinases on platelets, neutrophils, endothelial cells, and extracellular matrices , TOXINS AND HEMOSTASIS, Part 9: 723-732.
Hsu CC, Wu WB, Huang TF (2008) A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions , J. Thromb. Haemost 6: 1578-85.
Hsu CC, Wu WB, Chang YH, Kuo TF (2007) Antithrombotic effect of a protein type I class snake venom metalloproteinase, kistomin, is mediated by affecting glycoprotein Ib-von willebrand foactor interaction , Mol. Pharmacol. 72: 984-992.
Huang KF, Hung CC, Chiou SH (1993) Characterization of three fibrinogenolytic proteases isolated from the venom of Taiwan habu (Trimeresurus mucrosquamatus), Biochem Mol Biol Int 31(6): 1041-50.
Huang TF, Chang MC, Teng CM (1993) Antiplatelet proteinase, kistomin, selectivity cleaves human platelet glycoprotein Ib , BBA 1158: 293-299.
Huang TF, Liu CZ and Yang SH (1995) Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist, Biochem J 309 ( Pt 3): 1021-7.
Hung CC, Huang KF, Chiou SH (1994) Characterization of one novel venom protease with b-fibrinogenase activity from the Taiwan Habu, Biochem Biophys Res Commun 20058(3): 1707-15.
Inoue O, Suzuki-Inoue K, Dean WL, Frampton J and Watson SP (2003) Integrin a2b1-mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCγ2, J Cell Biol 160(5): 769-80.
Iwasaki A, Shieh TC, Shimohigashi Y, Waki M, Kihara H and Ohno M (1990) Purification and characterization of a coagulant enzyme, okinaxobin I, from the venom of Trimeresurus okinavensis (Himehabu snake) which releases fibrinopeptide., B. J. Biochem. (Tokyo) 108: 822-828.
Jackson SP, Schoenwaelder SM (2003) Antiplatelet therapy: in search of the 'magic bullet', Nat Rev Drug Discov. 2(10):775-89.
Jandrot-Perrus M, Busfield S, Lagrue AH, Xiong X, Debili N, Chickering T, Couedic JPL, Goodearl A, Dussault B, Fraser C, Vainchenker W, and Villeval JL (2000) Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily, Blood 96(5): 1798-1807.
Judd BA and Koretzky GA (2001) The role of the adaptor molecule of SLP-76 in platelet function , Oncogene 20: 6291-99.
Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR (1999) Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin., J Clin Invest. 103: 879-887.
Kim S, Mangin P, Dangelmaier C, Lillian R, Jackson SP , Daniel JL , and Kunapuli SP (2009) Role of Phosphoinositide 3-Kinase in Glycoprotein VI-mediated Akt Activation in Platelets, J Biol Chem 284(49): 33763–772.
King SM, McNamee RA, Houng AK, Patel R, Brands M and Reed GL (2009) Platelet dense-granule secretion plays a critical role in thrombosis and subsequent vascular remodeling in atherosclerotic mice, Circulation 120(9): 785-91.
Kini RM, Clemetson KJ, Markland FS, McLane MA, Morita T et al. (2011) Toxin and Hemostasis.
Komori Y and Nikai T (1998) Chemistry and biochemistry of kallikrein-like enzyme from snake venoms., J. Toxicol. Toxin 17: 261-277.
Komori Y, Tanaka K and Nikai T (2002) Characterization of Habu thrombin-like enzyme (THLE) with a new n-terminal sequence from the venom of Trimeresurus flavoviridis (Habu), J. Nat. Toxins. 11: 205-212.
Kong DF, Califf RM, Miller DP, Moliterno DJ, White HD, Harrington RA, Tcheng JE, Lincoff AM, Hasselblad V, Topol EJ. (1998) Clinical outcomes of therapeutic agents that block the platelet glycoprotein IIb/IIIa integrin in ischemic heart disease, Circulation 98: 2829 -2835.
Kurecki T, Laskowski MS, Kress L. (1978) Purification and some properties of two proteinases from Crotalus adamanteus venom that inactivate human a,-proteinase inhibitor., J Biol Chem 253: 8340-8345.
Lasser G, Guchhait P, Ellsworth JL, Sheppard P, Lewis K, Bishop P, Cruz MA, Lopez JA, Fruebis J. (2006) C1qTNF-related protein-1 (CTRP-1): a vascular wall protein that inhibits collagen-induced platelet aggregation by blocking VWF binding to collagen, Blood Cells Mol Dis 107: 423-430.
Leduc M and Bon C (1998) Cloning of subunits of convulxin, a collagen-like platelet-aggregating protein from Crotalus durissus terrificus venom, Biochem. J. 333: 389-393.
Li Z, Delaney MK, OBrien KA, Du X (2010) Signaling During Platelet Adhesion and Activation, Arterioscler Thromb Vasc Biol. 30(12): 2341-9.
Lu Q, Navdaev A, Clemetson JM, Clemetson KJ (2005) Snake venom C-type lectins interacting with platelet receptors. Structure–function relationships and effects on haemostasis, Toxicon 45: 1089-98.
Markland FS (1998) Snake venoms and the hemostatic system, Toxicon 36(12): 1749-1800.
Markland FS, Kettner C, Schiffman S, Shaw E, Bajwa SS, Reddy KN (1982) Kallikrein-like activity of crotalase, a snake venom enzyme that clots fibrinogen, Proc. Natl.Acad. Sci. USA 79: 1688-1692.
Marrakchi N, Barbouche R, Guermazi S, Karoui H, Bon C and El Ayeb M (1997) Cerastotin, a serine protease from Cerastes cerastes venom, with platelet-aggregating and agglutinating properties., Eur. J. Biochem 247: 121-128.
Marrakchi N, Zingali RB, Karoui H, Bon C and El Ayeb M (1995) Cerastocytin, a new thrombin-like platelet activator from the venom of the Tunisian viper Cerastes cerastes., Biochim. Biophys. Acta. 1244: 147-156.
Marsh N (1994) Inventory of haemorrhagic factors from snake venoms., Thromb. Haemost 71: 793-797.
Matsui T, Fujimura Y and Titani K (2000) Snake venom proteases affecting hemostasis and thrombosis, Biochim. Biophys.Acta Anaesthesiol Belg 7: 146-156.
Navdaev A, Clemestson JM, Polgar J, Kehrel BE, Glauner M, Magnenati E, Timothy NC, and Clemetson KJ (2001) Aggretin, a Heterodimeric C-type Lectin from Calloselasma rhodostoma (Malayan Pit Viper), Stimulates Platelets by Binding to alpha2 beta1 Integrin and Glycoprotein Ib, Activating Syk and Phospholipase C gamma2, but Does Not Involve the Glycoprotein VI/Fc Receptor g Chain Collagen Receptor, J Biol Chem 276(24): 20882–89.
Nesbitt WS, Kulkarni S, Giuliano S, Goncalves I, Dopheide SM, Yap CL, Harper IS, Salem HH and Jackson SP. (2002) Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow, J Biol Chem 277(4): 2965-72.
Niewiarowski S, Kirby EP, Brudzynski TM and Stocker K (1979) Thrombocytin, a serine protease from Bothrops atrox venom. 2.Interaction with platelets and plasma-clotting factors., Biochemistry (Mosc) 18 3570-35707.
Nishida S, Fujimura Y, Miura S, Ozaki Y, Suzuki M, Titani K (1994) Purification and characterization of bothrombin, a fibrinogen-clotting serine protease from the venom of Bothrops jararaca, Biochemistry (Mosc) 33: 1843-1849. O Brien, K. A., Stojanovic-Terpo, A., Hay, N. and Du, X. (2011) An important role for Akt3 in platelet activation and thrombosis, Blood 118(15): 4215-23.
Nolan C, Hall LS, Barlow GH (1976) Ancrod, the coagulating enzyme from Malayan pit viper (Agkistrodon rhodostoma) venom. Methods Enzymol. 45:205-213
Ouyang CH and Teng CM (1976) Fibrinogenolytic enzymes of trimeresurus mucrosquamatus venom, Biochim Biophys Acta 420: 298-308.
Ouyang CH, Teng CM. (1979) Alpha and beta-fibrinogenases from Trimeresurus gramineus snake venom., Biochim Biophys Acta 571(2): 270-283.
Ouyang CH, Teng CM (1978) The effect of Trimeresurus ucrosquamatus snake venom on platelet aggregation, Toxicon 16(6).
Ouyang CH, Wang JP, Teng CM (1980) A potent platelet aggregation inducer purified from Trimeresurus mucrosquamatus snake venom, Biochim Biophys Acta 630(2): 246-253.
Keely PJ and Parise LV (1996) The The alpha2 beta1 Integrin Is a Necessary Co-receptor for Collagen-induced Activation of Syk and the Subsequent Phosphorylation of Phospholipase Cr2 in Platelets, J Biol Chem 271(43): 26668–76.
Pirkle H (1998) Thrombin-like enzymes from snake venoms: an update inventory, Thromb. Haemost. 79: 675-683.
Polgar J, Clemetson JM, Kehrel BE, Wiedemann M, Magnenat EM, Wells TNC, and Clemetson KJ (1997) Platelet Activation and Signal Transduction by Convulxin, a C-type Lectin from Crotalus durissus terrificus (Tropical Rattlesnake) Venom via the p62/GPVI Collagen Receptor, J Biol Chem 272(21): 13576-83.
Prado-Franceschi J, Brazil OV (1981) Convulxin, a new toxin from the venom of the South American rattlesnake Crotalus durissus terrificus., Toxicon 19(6): 875-87.
Rosing J, Govers-Riemslag JW, Yukelson L, Tans G (2001) Factor V activation and inactivation by venom proteases., Haemostasis 31: 241-246.
Roth GJ, Majerus PW (1975) The mechanism of the effect of aspirin on human platelets. I. Acetylation of a particulate fraction protein, J Clin Invest. 56: 624-632.
Ruggeri ZM (2002) Platelets in atherothrombosis, nat medicine 8(11): 1227-34.
Iwanaga S, Takeya H (1993) Structure and function of snake venom metalloproteinase family, Plenum Press, New York: 107-15.
Santoro SA, Walsh JJ, Staatz WD and Baranski KJ (1991) Distinct determinants on collagen support a2,1 integrin-mediated platelet adhesion and platelet activation, CELL REGULATION 2: 905-13.
Santos BF, Serrano SM, Kuliopulos A and Niewiarowski S (2000) Interaction of viper venom serine peptidases with thrombin receptors on human platelets. , FEBS Lett. 477: 199-202.
Schoenwaelder SM, Ono A, Sturgeon S, Chan SM, Mangin P, Maxwell MJ, Turnbull S, Mulchandani M, Anderson K, Kauffenstein G. (2007) Identification of a unique co-operative phosphoinositide 3-kinase signaling mechanism regulating integrin alpha IIb beta 3 adhesive function in platelets, J Biol Chem 282(39): 28648-58.
Shieh TC, Kawabata S, Kihara H, Ohno M and Iwanaga S (1988) Amino acid sequence of a coagulant enzyme, flavoxobin, from Trimeresurus flavoviridis venom, J. Biochem. 103: 596-605.
Shin Y, Morita T (1998) Rhodocytin, a functional novel platelet agonist belonging to the heterodimeric C-type lectin family, induces platelet aggregation independently of glycoprotein Ib, Biochem. Biophys. Res. Commun 245: 741-745.
Shigeta O, Kojima H, Jikuya T, Terada Y, Atsumi N, Sakakibara Y, Nagasawa T, Mitsui T (1997) Aprotinin Inhibits Plasmin-Induced Platelet Activation During Cardiopulmonary Bypass, Circulation 96: 569-74.
Steinhubl SR, Berger PB, Mann JT, Fry ET, DeLago A, Wilmer C, Topol EJ (2002) Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial., JAMA 288: 2411-2420.
Stocker W, Grams F, Baumann U, Reinemer P, Gomis-Ruth FX, McKay DB, Bode W (1995) The metzincins-topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases, Protein Sci. 4: 823-840.
Surin, WR, Barthwal, MK and Dikshit, M. (2008) Platelet collagen receptors, signaling and antagonism: emerging approaches for the prevention of intravascular thrombosis, Thromb Res 122(6): 786-803.
Taei M, Yoshihiro F, Koiti T (2000) Snake venom proteases a!ecting hemostasis and thrombosis, BBA 1477: 146-156.
Telly AM, Deepak LB (2007) Clinical Aspects of Platelet Inhibitors and Thrombus Formation, Cancer Res 100: 1261-75.
Teng CM, Ko FN (1988) A comparison of the platelet aggregation induced by three thrombin-like enzymes of snake venoms and thrombin. , Thromb. Haemost. 59(2): 304-309.
Teng CM, Ko FN, Tsai IH, Hung ML, Huang TF (1993) Trimucytin: a collagen-like aggregating inducer isolated from Trimeresurus mucrosquamatus snake venom, Thromb Haemost. 69(3): 286-92.
Teng CM, Wang JP, Peng HC, Ouyang C (1989) Edema-producing proteins isolated from Trimeresurus mucrosquamatus snake venom, Toxicon 27(8): 899-905.
Tepe G, Schott U, Erley CM, Albes J, Claussen CD and Duda SH (1999) Platelet glycoprotein IIb/IIIa receptor antagonist used in conjunction with thrombolysis for peripheral arterial thrombosis, AJR Am J Roentgenol 172(5): 1343-6.
Verkleij MW, Morton LF, Knight CG, Groot PGd, Barnes MJ, and Sixma JJ (1998) Simple Collagen-Like Peptides Support Platelet Adhesion Under Static But Not Under Flow Conditions: Interaction Via alpha2 beta1 and von Willebrand Factor With Specific Sequences in Native Collagen Is a Requirement to Resist Shear Forces, Blood 91(10): 3808-16.
Voss B, McLaughlin JN, Holinstat M, Zent R and Hamm HE (2007) PAR1, but Not PAR4, Activates Human Platelets through a Gi/o/Phosphoinositide-3 Kinase Signaling Axis, Mol Pharmacol 71(5): 1399-1406.
Watson SP and Gibbins J (1998) Collagen receptor signalling in platelets: extending the role of the ITAM, Immunobiology today 190(6): 260-64.
Woulfe DS (2005) Platelet G protein-coupled receptors in hemostasis and thrombosis, J Thromb Haemost 3(10): 2193-200.
Wu WB and Huang TF (2003) Gramicetin, a new agonist that activates platelets via glycoprotein Ib ligation . The International Society on Thrombosis and Haemostasis: XIX Congress and 49th Annul SSC Meeting, Birmingham, UK, Abstract 296.
Yamamoto C, Tsuru D, Oda-Ueda N, Ohno M, Hattori S and Kim ST (2002) Flavoxobin, a serine protease from Trimeresurus flavoviridis (habu snake) venom, independently cleaves Arg726-Ser727 of human C3 and acts as a novel, heterologous C3 convertase , Immunology 107: 111-117.
Zhang S, Ma B, Sakai J, Shiono H, Matsui T, Sugie I (2001) Characterization of a thrombin-like serine protease, Kangshuanmei, isolated from the venom of a Chinese snake, Agkistrodon halys brevicaudus stejnegeri. , J. Nat. Toxins 10: 221-238.
Zingali RB, Jandrot-Perrus M, Guillin MC, Bon C (1993) Bothrojaracin, a new thrombin inhibitor isolated from Bothrops jararaca venom: Characterization and mechanism of thrombin inhibition , Biochemistry 32: 10794-10802.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64675-
dc.description.abstract台灣龜殼花(Trimeresurus mucrosquamatus) 原毒粉末經離子交換樹脂與膠體過濾法,再經由FPLC 膠體過濾層析法純化出一能引發血小板凝集之成分,並命其為TMF。經SDS-PAGE 分析,在還原狀態下,其分子量則為26 kDa 與23 kDa。並且在二維電泳還原狀態下,可得知在26 kDa 與23 kDa 位置分別有四個點等電點相近,在26 kDa 位置等電點為5.8~6.5;而在23 kDa 位置等電點為 6.7~~7.2。經LC/MS/MS 分析比對後,發現的TMF-b (26 kDa) 與β-fibrinogenase 約有42%相似性,而TMF-a (23 kDa)與metalloprotease (α-fibrinogenase) 約有25%相似性。
TMF 在人類血小板,包括富血小板血漿(PRP)與血小板懸浮液(PS)的功能分析
上,其所引起凝集的程度皆呈濃度相關性。其中在PRP 中引起血小板凝集的EC50
為0.3 μg/ml,而在PS 中的EC50 則為1.8±0.32 μg/ml。TMF 也會依濃度相關地誘發血小板表面分子P-selectin 表現,同時引發TxB2 釋放及細胞內的Ca2+增加。PGE1、EDTA 與BAPTA/AM 皆能有效抑制由TMF 所引起的血小板凝集,而heparin、hirudin 和aprotinin 則不影響。另外,apyrase 與MEK 抑制劑(PD98059) 不影響TMF引發的血小板凝集;indomethacin, CP/CPK、Tyrosine kinase 抑制劑 (genistein) 能稍抑制; Ro-31-7549 與PLC 抑制劑 (U73122) 分別抑制99% 與 45%; 而cytochalasin D 與 PI3K 抑制劑 (LY294002)分別有20% 與62% 的抑制作用外,使用Syk 抑制劑 (piceatannol) 抑制80%,並且 Src family kinase 抑制劑 (PP2) 全面性抑制TMF 所引發血小板的形變 (shape change)與凝集反應。GPIb 拮抗劑 (6D1),GPIa/IIa 拮抗劑(6F1),僅能些微抑制TMF 引起的血小板凝集反應; IIb/IIIa 拮抗劑 (7E3) 雖能抑制血小板凝集,卻無法壓制血小板凝活化過程的形變;低濃度GPVI 拮抗劑 (326E12) 能有效抑制血小板凝集反應,由此可知TMF 誘發血小板凝集是透過醣蛋白VI。以流式細胞儀來分析TMF 在血小板表面分子的結合性,TMF 稍微影響6D1、6F1 結合至GPIb 與GPIa/IIa,卻不影響7E3結合IIb/IIIa,而TMF 可以依濃度相關性抑制326E12 結合到GPVI。利用西方點墨法,我們也發現TMF 引起血小板凝集的訊息傳遞可引起血小板內tyrosine kinases(包含Syk、Src、LAT、PLCγ2 等)活化,並且使用piceatannol 與PP2 會全面性抑制TMF 所引發血小板凝集的訊息傳遞。
在酵素活性方面,以fibrinogen 當作受質與TMF 於37 ℃作用後,我們觀察
到 TMF 分解fibrinogen 的酵素活性,呈現濃度與作用時間相關性,因此推測TMF可能具有proteinase 活性。預先以EDTA 處理,不影響TMF 的血小板凝集活性和β-fibrinogenolytic activity,卻可抑制 α-fibrinogenolytic activity。另外,使用serineprotease 抑制劑PMSF 預先和TMF 作用,PMSF 可抑制其分解Bβ活性,但仍不影響其活化血小板活性。因此推測TMF 可能含有可分解Aα之金屬依賴性蛋白脢(metalloprotease) 和可分解Bβ的serine protease,而TMF 活化血小板活性與其酵素活性不相關。
總結上述,TMF 在等張溶液下,可能呈現TMF-b (β-fibrinogenase) 和TMF-a(α-fibrinogenase)的複合體。除了具有分解fibrinogen 活性,於PRP 中不會引起血液凝固,為非典型serine proteinase,於活體中更引發thrombocytopenia 現象。TMF藉由作用於血小板表面受體GPVI 引發許多訊息分子,包括Syk、Src、LAT、Fyn、PLCγ2、PI3K、Akt 之磷酸化; 經由細胞內游離鈣離子增加,誘發TxB2 的形成和P-selectin 的表現,最後引發IIb/IIIa 的活化進而使血小板凝集。藉由TMF 對於血小板表面醣蛋白VI 的專一性,相較於已知的結合蛋白(例如蛇毒蛋白convulxin 與trowagerix)之間差異,可用以探討TMF 與GPVI 之分子作用機制,有利於小分子GPVI 拮抗劑的研發,以做為新一代的抗血栓藥物。
zh_TW
dc.description.abstractTMF, a platelet aggregation inducer, was purified from Trimeresurus
mucrosquamatus venom. By means of cationic exchange, gel filtration and FPLC
column chromatography, two bands were detected on SDS-PAGE with apparent
molecular weights of 26 kDa and 23 kDa, respectively, under reducing condition. On
2-D PAGE under reduction, there were four bands with different pI ranges 5.8~6.5 withsimilar mass of 26 kDa; pI 6.7~7.2 with similar mass of 23 kDa. Through LC/MS/MS
analysis, the 26 kDa bands exhibit high similarity to β-fibrinogenase and the 23 kDa
bands was similar to metalloprotease (α-fibrinogenase).
TMF concentration-dependently induced platelet aggregation both in platelet-rich
plasma (PRP) and platelet suspension (PS), with EC50 0.3 and 1.8±0.32 μg/ml,
respectively. TMF also concentration-dependently caused P-selectin expression,
increase of intracellular Ca2+ concentration, and release of TxB2. PGE1, EDTA and
BAPTA/AM effectively inhibited TMF induced platelet aggregation, but heparin,
hirudin, aprotinin did not. TMF specifically inhibited the binding of 326E12, mAbs of
GPVI to platelet measured by Flow cytometry. TMF activated the signaling molecules
involved in GPVI signal pathway, including Syk, Src, PLCγ2, LAT, which were
completely inhibited by PP2. Regarding enzymatic activity, TMF concentration-dependently degraded α- and β-chain of fibrinogen. After incubation with
serine protease inhibitors, PMSF or metalloprotease inhibitor, EDTA, its activities of
β-fibrinogenase and α-fibrinogenase were respectively inhibited while its aggregation
was not affected. These results suggest that its platelet aggregating activity is not related
to the intrinsic enzymatic activities.
Taken together, TMF might exist as a complex under isotonic condition, consisting
of two proteins, namely serine proteinase (i.e.β-fibrinogenase) and metalloprotease
(i.e.α-fibrinogenase). It activates platelets and the downstream signaling molecules
mainly through the specific biding of platelet GPVI. By phosphorylation of Syk, Src,
LAT, Fyn, PLCγ2, PI3K and Akt, TMF induced expression of P-selectin and TxB2
biosynthesis, and finally activated integrin IIb-IIIa, resulting in platelet aggregation.
However, its platelet aggregating activity is not related to the proteolytic activity. This
snake venom protein may provide a useful tool for studying how it interacts with
platelet GPVI at a molecular level. The information may provide insights for designing
the novel small-mass antagonist of platelet GPVI, a new class of antithrombotic agent.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:57:13Z (GMT). No. of bitstreams: 1
ntu-101-R99443008-1.pdf: 3987069 bytes, checksum: 5364772857938b589a234d140968643e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
Abstract v
Abbreviation table vii
Contents x
Chapter 1 1
Introduction 1
1-1 Formation and characterization of platelets 1
1-2 Atherothrombosis, platelets and atherosclerosis 2
1-3 General kinetics in platelet aggregation under rheological conditions 3
1-4 Roles of adhesion receptors and soluble agonists involved in platelet aggregation 4
1-4-1 Ca2+ signaling during platelet activation 6
1-4-2 vWF/GPIb-V-IX-mediated signaling 7
1-4-3 Collagen/GPVI mediated signaling transduction 7
1-4-4 Thrombin-mediated signaling pathway via G-protein coupled receptor (GPCR) 9
1-5 Effects of snake proteins on hemostatic system 11
1-5-1 Snake venom C-type lectin-like proteins (SNACLEs) 11
1-5-2 Serine proteinase and fibrinogenases 12
1-6 Recent studies in antiplatelet therapy 15
1-7 Specific aim of the study 17
Chapter 2 25
Materials and methods 25
Materials 25
Methods 26
2-1 Purification and isolation of crude TMV 26
2-2 Desalting and protein quantification 27
2-3 Protein electrophoresis analysis 28
2-3-1 SDS-PAGE 28
2-3-2 2D-gel electrophoresis 28
2-3-3 Coomassie brilliant blue staining 29
2-3-4 Determination of molecular weight of TMF 29
2-4 Protein identification by LC/MS/MS analysis 29
2-5 Determination of N-terminal sequence of TMF 30
2-6 Preparation human platelet-rich plasma (PRP) and platelet suspension (PS) 30
2-7 Measurement of platelet aggregation 31
2-8 Formalin-fixed platelet suspensions 32
2-9 Flow cytometry analysis of P-selectin expression 32
2-10 Binding analysis of TMF on platelets 33
2-11 Measurement of TxB2 formation in platelets 33
2-12 Western blotting 34
2-13 Determination of fibrinogenolytic activity 35
2-14 Deglycosylation analysis 35
2-15 Animal models 35
2-15-1 Tail-bleeding time in mice 35
2-15-2 Platelet counts in mice 36
2-16 Statistic analysis 36
Chapter 3 37
Results 37
3-1 Purification of TMF from Trimereserus mucrosquamatus venom
37
3-2 Electrophoresis of TMF 37
3-3 N-terminal amino acid sequence of TMF 38
3-4 Characterization of TMF by LC/MS/MS 38
3-5 Effects of TMF on human platelet aggregation 39
3-6 Effects of inhibitors on TMF-induced platelet aggregation 39
3-7 Effects of TMF on P-selectin expression of washed platelets 41
3-8 Effect of TMF on thromboxane B2 formation in human washed platelets 41
3-9 The effects of receptor blocking antibodies on TMF-induced platelet aggregation 42
3-10 Determination of TMF binding site on platelets 42
3-11 The effect of TMF on fixed platelets 43
3-12 TMF induces protein tyrosine phosphorylation in human washed platelets 43
3-13 Effects of TMF on fibrinogen in PRP and effects of heparin and hirudin on TMF-induced platelet aggregation 45
3-14 Fibrinogenolytic activity of TMF 45
3-15 Effect of EDTA on TMF-induced platelet aggregation and fibrinogenolytic activity of TMF 46
3-16 Effects of serine protease inhibitors on TMF-induced platelet aggregation and fibrinogenolytic activity of TMF 47
3-17 Effect of deglycosylated TMF on platelet aggregation 47
3-18 In vivo effects of TMF in animal models 48
Chapter 4 78
Discussion 78
Chapter 5 84
Conclusion and perspectives 84
References 86
dc.language.isoen
dc.subject纖維蛋白原zh_TW
dc.subject蛇毒zh_TW
dc.subject台灣龜殼花zh_TW
dc.subject醣蛋白VIzh_TW
dc.subject血小板zh_TW
dc.subjectGPVIen
dc.subjectsnake venomen
dc.subjectTrimerserurus mucrosquamatasen
dc.subjectfibrinogenen
dc.subjectplateleten
dc.title作用於醣蛋白VI引發血小板凝集之一種台灣龜殼花蛇毒蛋白的特性和作用機轉之探討zh_TW
dc.titleCharacterization and Mechanism of Action of a GPVI-targeting Platelet Aggregation Inducer from
Snake Venom of Trimeresurus mucrosquamatus
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧哲明(Che-Ming Teng),楊春茂(Chuen-Mao Yang),顏茂雄(Mao-Hsiung Yen),吳文彬(Wen-Bin Wu)
dc.subject.keyword蛇毒,台灣龜殼花,醣蛋白VI,血小板,纖維蛋白原,zh_TW
dc.subject.keywordsnake venom,Trimerserurus mucrosquamatas,GPVI,platelet,fibrinogen,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2012-08-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved