請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64674完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張斐章(Fi-John Chang) | |
| dc.contributor.author | Cheng-Hsien Lin | en |
| dc.contributor.author | 林承賢 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:57:12Z | - |
| dc.date.available | 2012-08-18 | |
| dc.date.copyright | 2012-08-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-09 | |
| dc.identifier.citation | 1. Bredehoeft, J. D., 1967. Response of well-aquifer systems to earth tides. Journal of Geophysical Research, 72, 3075-3087.
2. Chang, F. J. and Chen, Y. C., 2001. A counterpropagation fuzzy-neural network modeling approach to real-time streamflow prediction. Journal of Hydrology, 245, 153-164. 3. Chang, L.C., Chang, F.J. and Tsai, Y.H., 2005. Fuzzy exemplar-based inference system for flood forecasting. Water Resources Research, 41(2): 12. 4. Chang, F.J. and Chang, Y.T., 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources, 29(1): 1-10. 5. Chang, L.C. and Chang, F.J., 2001. Intelligent control for modelling of real-time reservoir operation. Hydrological Processes, 15(9): 1621-1634. 6. Chang, F.J., Chen, Y.C. and Liang, J.M., 2002. Fuzzy clustering neural network as flood forecasting model. Nordic Hydrology, 33(4): 275-290. 7. Chen, S.H., Lin, Y.H., Chang, L.C. and Chang, F.J., 2006. The strategy of building a flood forecast model by neuro-fuzzy network. Hydrological Processes, 20(7): 1525-1540. 8. Firat, M. and Gungor, M., 2008. Hydrological time-series modelling using an adaptive neuro-fuzzy inference system. Hydrological Processes, 22(13): 2122-2132. 9. Ioannis N. Daliakopoulos , 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 1–12. 10. Jacob, C. E., 1940. The flow of water in an elastic artesian aquifer. Eos Trans., 21, 574-586. 11. Jang, J. S. R. and Sun, C. T., 1997. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice-Hall, Inc., 614 pp. 12. Jang, J. S. R., 1993. ANFIS - adaptive-network-based fuzzy inference system. Ieee Transactions on Systems Man and Cybernetics, 23(3): 665-685. 13. Matsumoto, N., 1992. Regression analysis for anomalous changes of ground water level due to earthquakes. Geophysical Research Letters, 19(12), 1193-1196. 14. Maidment, D.R., 1993. Handbook of hydrology. McGraw-Hill, New York :. 15. Mamdani, E. H. and Assilian, S., 1975. Experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1): 1-13. 16. Mendel, J. M., 2001. Uncertain rule-based fuzzy logic systems : introduction and new directions. Prentice-Hall, Inc. 17. Nourani, V., Mogaddam, A. A., Nadiri, A. O., 2008. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Processes 22 (26), 5054–5066. 18. Nourani, V., Ejlali, R. G., Alami, M. T., 2011. Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study. Environmental Engineering Science 28 (3), 217–228. 19. Nayak, P. C., Sudheer, K. P., Rangan, D. M. and Ramasastri, K. S., 2004. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1-2): 52-66. 20. Nayak, 2006. Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach. Water Resources Management 20, 77–90. 21. Rojstaczer, S., 1988. Determination of fluid flow properties from the response of water levels in wells to barometric loading. Water Resources Research, 24(11), 1927-1938. 22. Sugeno, M. and Kang, G.T., 1988. Structure identification of fuzzy model. Fuzzy Sets Syst., 28(1): 15-33. 23. Takagi, T. and Sugeno, M., 1985. Fuzzy identification of systems and its applications to modeling and control. Ieee Transactions on Systems Man and Cybernetics, 15(1): 116-132. 24. Van der Kamp, G., Gale, J. E., 1983. Theory of earth tides and barometric effects in porous formations with compressible grains. Water Resources Research, 19,538-544. 25. 余貴坤,1986,「降雨量與深井水位變動的關係研究」,台灣地區地球物理研討會,165-173 頁。 26. 余貴坤、簡顯光、陳遠斌、呂佩玲、趙曉玲,2008,「發展除去非構造因子影響水位變化效應的技術」,中央氣象局地震技術報告彙編,第 48 卷,217-230頁。 27. 林進國,2003,「降雨和地下水位變化之關聯性分析」,國立成功大學水利及海洋工程研究所碩士論文。 28. 徐年盛、林尉濤、陳敬文,2009,「運用類神經網路預測濁水溪沖積扇地下水位變化之研究」,中國土木水利工程學刊,Vol. 21, No. 3, 285–293頁。 29. 徐年盛、魏志強、陳敬文、陳俊廷,2009,「應用類神經網路於地面地下水聯合運用之硏究 --以雲林地區為例」,海峽兩岸水利科技交流研討會。 30. 張斐章、張麗秋,2010,「類神經網路導論」,蒼海書局。 31. 陳宗顯,2006,「降雨引致地下水位變化之研究 - 以那菝、六甲與東和地下水位觀測井為例」,國立成功大學水利及海洋工程研究所博士論文。 32. 陳宗顯、詹錢登、陳伸賢、曾鈞敏,2005,「降雨和地下水位變化之相關性研究」,台灣水利,53(4),1-12頁。 33. 黃皇嘉、溫志超、謝孟益,2005,「降雨量大小對土壤入滲機制之影響」,農業工程學報,51(1):34 -45頁。 34. 鄭皆達、洪豪男、周良勳,2003,「應用時間數列方法分析降雨及地下水位之關係」,水土保持學報(中興大學),35(1),47-56頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64674 | - |
| dc.description.abstract | 近年來臺灣因工商業蓬勃發展使得用水需求量激增,地下水因其成本低廉且取用方便等優點而成為枯水期或缺乏儲水設施地區之重要水源。本研究以濁水溪流域上游山區為研究案例以建立地下水位變動推估模式,首先進行雨量、流量及地下水位變動之水文環境分析,利用相關性分析得知地下水位變動與雨量有一天之稽延關係;與流量為當日之稽延關係。接者透過地下水位觀測井的地質結構資料探討淺層與深層地下水位觀測井的地下水位變動關係,結果顯示黏土層為導致深淺層地下水位觀測井地下水位變動量相關性低的原因,而礫石層則為深淺層地下水位觀測井地下水位變動趨勢呈現一致的原因。
本研究期找出影響地下水位變動的有效降雨量,經由使用徐昇氏多邊形法計算後之集水區平均雨量作為門檻值以進行雨量篩選,並與各地下水位觀測井地下水位變動量做相關性分析,結果可分為四個類型: 緩升型、階梯型、緩降型、無規則型,同時以地下水位觀測井的深度與地質資料探討該相關成因。 因影響地下水位變動的因素眾多,故本研究分別採用具優越非線性映射能力及高度精確性之倒傳遞類神經網路(BPNN)與具模糊規則庫之調適性網路模糊推論系統(ANFIS)建構地下水位變動之推估模型,並且針對雨量、流量、雨量加流量等三種模式輸入組合進行模式推估之比較探討,成果顯示BPNN與ANFIS都有相當良好的推估的表現。緊鄰濁水溪的地下水位觀測井之地下水位變動受河川側向補注的影響較大,地下水位變動推估模式採流量輸入表現較佳;距離濁水溪主流較遠的地下水位觀測井之地下水位變動則受河川側向補注影響較小,地下水位變動推估模式採雨量輸入表現較佳;而結合雨量加流量兩種不同資訊的地下水位變動推估模式具更好的推估結果。了解山區水資源與地下水位變動之交互影響機制,將有助於未來進一步探討山區水資源之涵養策略,以期減緩下游地層下陷之問題。 | zh_TW |
| dc.description.abstract | In the past decade water demand has increased drastically due to the rapid development in economy and industry in Taiwan. Groundwater has become an important water source during drought periods and/or at the areas short of water storage facilities owing to its advantages such as low-cost and easy-to-access. So far, few studies have discussed about the estimation of the groundwater level variations at the mountainous areas of the Central Taiwan. Therefore, it will be beneficial to develop a reliable model for precisely estimating groundwater level variations at mountainous areas. The mountainous area at the upstream of the Zhuoshui River basin is used as a case study. First, the hydro-system and hydro-environment of the mountainous area are investigated. Second, the correlation among rainfall, streamflow and groundwater level variation is analyzed. The time lag between groundwater level variation and rainfall is one day while the time lag between groundwater level variation and steamflow is within one day. Third, the geological structure of the groundwater monitoring wells is used to explore the relationship of groundwater level variations between shallow groundwater wells and deep groundwater wells. The results show that the groundwater level variations of shallow groundwater wells have low relationship with those of deep ones in the clay layer, while the groundwater level variations of shallow and deep groundwater wells have similar trends.
This research also investigates the effective impacts of rainfall amount on groundwater level variations and uses the Thiessen polygon method to calculate the average rainfall over the basin area based on different thresholds for threshold screening purpose. The correlations among groundwater level variations and rainfall filtered by different thresholds are analyzed and classified into four types: slow-ascending type; ladder-type; slow-descending type; and random type. In addition, the depth and geological structure of groundwater wells are used to find out the causes of those four types. Because the impacts on the variations of groundwater level are nonlinear, we uses both the backpropagation neural network (BPNN) due to its superior nonlinear mapping ability and high model accuracy and the adaptive network fuzzy inference system (ANFIS) with a fuzzy rule base to construct estimation models for groundwater level variations. We conduct a comparison study among different model input combinations: rainfall only; streamflow only; and rainfall and streamflow, and the results show that all the BPNN and ANFIS models perform well. Besides, the groundwater level variations of groundwater wells near the Zhuoshui River are much influenced by the lateral recharge from the river and the estimation models with streamflow as the only input perform better. While the groundwater level variations of groundwater wells far from the Zhuoshui River are influenced less by the lateral recharge from the river and the estimation models with rainfall as the only input perform better. The estimation models with rainfall and streamflow as inputs perform the best. Understanding the interactive recharge mechanisms between mountainous water resources and groundwater can facilitate future discussion on mountainous water resource conservation strategy for alleviating land subsidence in downstream areas. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:57:12Z (GMT). No. of bitstreams: 1 ntu-101-R99622031-1.pdf: 4730955 bytes, checksum: 49658a6ce018d7749e955a4ce2839457 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘 要 I
Abstract III 目 錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究方法 2 1-3 論文架構 3 第二章 文獻回顧 5 2-1 地下水位 5 2-2 類神經網路 8 第三章 理論概述 10 3-1 相關性分析 10 3-2 徐昇氏多邊形法 12 3-3 類神經網路 14 3-4 倒傳遞類神經網路 17 3-5 模糊推論系統 19 3-6 調適性網路模糊推論系統 23 第四章 研究案例 27 4-1 研究區域簡介 27 4-2 水文環境分析 31 4-3 時空變異度分析 38 4-3-1 稽延關係分析 38 4-3-2 相對深淺層地下水位觀測井探討 42 4-3-3 訂定影響地下水位變動之有效降雨量 47 第五章 結果與討論 51 5-1 有效降雨量門檻值結果探討 51 5-2 地下水位抬升量推估模式建立 58 第六章 結論與建議 68 6-1 結論 68 6-2 建議 70 參考文獻 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 徐昇氏多邊形法 | zh_TW |
| dc.subject | 雨量 | zh_TW |
| dc.subject | 流量 | zh_TW |
| dc.subject | 地下水位 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | Rainfall | en |
| dc.subject | Streamflow | en |
| dc.subject | Groundwater Level | en |
| dc.subject | Artificial Neural Networks | en |
| dc.subject | Thiessen polygons method | en |
| dc.title | 以類神經網路建構濁水溪流域地下水位推估模式 | zh_TW |
| dc.title | Modelling groundwater level variation at the Zhuoshui River basin by artificial neural network techniques | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張麗秋(Li-Chiou Chang),黃文政(Wen-Cheng Huang),劉振宇(Jen-Yu Liu),曾鈞敏(Chun-Min Tseng) | |
| dc.subject.keyword | 雨量,流量,地下水位,類神經網路,徐昇氏多邊形法, | zh_TW |
| dc.subject.keyword | Rainfall,Streamflow,Groundwater Level,Artificial Neural Networks,Thiessen polygons method, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-09 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
