Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64671
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王勝仕
dc.contributor.authorWen-Sing Wenen
dc.contributor.author溫文興zh_TW
dc.date.accessioned2021-06-16T22:57:10Z-
dc.date.available2017-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-09
dc.identifier.citation1. Surguchev, A. and Surguchov, A., 'Conformational diseases: looking into the eyes,' Brain. Res. Bull., 81, p. 12-24 (2010).
2. Zhang, J., Li, W. F., Wang, J., Qin, M., Wu, L., Yan, Z. Q., Xu, W. X., Zuo, G. H., and Wang, W., 'Protein folding simulations: from coarse-grained model to all-atom model,' IUBMB Life, 61, p. 627-643 (2009).
3. DeMarco, M. L., Alonso, D. O. V., and Daggett, V., 'Diffusing and colliding: the atomic level folding/unfolding pathway of a small helical protein,' J. Mol. Biol., 341, p. 1109-1124 (2004).
4. Markossian, K. A. and Kurganov, B. I., 'Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes,' Biochemistry Mosc., 69, p. 971-984 (2004).
5. Young, J. C., Agashe, V. R., Siegers, K., and Hartl, F. U., 'Pathways of chaperone-mediated protein folding in the cytosol,' Nat. Rev. Mol. Cell Biol., 5, p. 781-791 (2004).
6. Hartl, F. U., Bracher, A., and Hayer-Hartl, M., 'Molecular chaperones in protein folding and proteostasis,' Nature, 475, p. 324-332 (2011).
7. Ptitsyn, O. B., 'Structures of folding intermediates,' Curr. Opin. Struct. Biol., 5, p. 74-78 (1995).
8. Nilsson, M. R., 'Techniques to study amyloid fibril formation in vitro,' Methods, 34, p. 151-160 (2004).
9. Levintha.C, 'Are there pathways for protein folding?,' J. Chim. Phys.-Chim. Biol., 65, p. 44-45 (1968).
10. Haspel, N., Tsai, C. J., Wolfson, H., and Nussinov, R., 'Hierarchical protein folding pathways: a computational study of protein fragments,' Proteins., 51, p. 203-215 (2003).
11. Nolting, B. and Andert, K., 'Mechanism of protein folding,' Proteins., 41, p. 288-298 (2000).
12. Thompson, P. A., Eaton, W. A., and Hofrichter, J., 'Laser temperature jump study of the helix reversible arrow coil kinetics of an alanine peptide interpreted with a 'kinetic zipper' model,' Biochemistry, 36, p. 9200-9210 (1997).
13. Daggett, V. and Fersht, A. R., 'Is there a unifying mechanism for protein folding?,' Trends Biochem. Sci., 28, p. 18-25 (2003).
14. Baldwin, R. L. and Rose, G. D., 'Is protein folding hierarchic? I. Local structure and peptide folding,' Trends Biochem. Sci., 24, p. 26-33 (1999).
15. Gianni, S., Guydosh, N. R., Khan, F., Caldas, T. D., Mayor, U., White, G. W. N., DeMarco, M. L., Daggett, V., and Fersht, A. R., 'Unifying features in protein-folding mechanisms,' Proc. Natl. Acad. Sci. U.S.A., 100, p. 13286-13291 (2003).
16. Karplus, M. and Weaver, D. L., 'Protein folding dynamics: the diffusion-collision model and experimental data,' Protein Sci., 3, p. 650-668 (1994).
17. Dobson, C. M., 'Principles of protein folding, misfolding and aggregation,' Semin. Cell Dev. Biol., 15, p. 3-16 (2004).
18. Wolynes, P. G., Onuchic, J. N., and Thirumalai, D., 'Navigating the folding routes,' Science, 267, p. 1619-1620 (1995).
19. Vendruscolo, M., Paci, E., Dobson, C. M., and Karplus, M., 'Three key residues form a critical contact network in a protein folding transition state,' Nature, 409, p. 641-645 (2001).
20. MacPhee, C. E. and Dobson, C. M., 'Formation of mixed fibrils demonstrates the generic nature and potential utility of amyloid nanostructures,' J. Am. Chem. Soc., 122, p. 12707-12713 (2000).
21. Mesquida, P., Blanco, E. M., and McKendry, R. A., 'Patterning amyloid peptide fibrils by AFM charge writing,' Langmuir, 22, p. 9089-9091 (2006).
22. Pastor, M. T., Esteras-Chopo, A., and Lopez de la Paz, M., 'Design of model systems for amyloid formation: lessons for prediction and inhibition,' Curr. Opin. Struct. Biol., 15, p. 57-63 (2005).
23. Stefani, M., 'Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world,' Biochim. Biophys. Acta, 1739, p. 5-25 (2004).
24. Onuchic, J. N., Nymeyer, H., Garcia, A. E., Chahine, J., and Socci, N. D., 'The energy landscape theory of protein folding: Insights into folding mechanisms and scenarios,' Adv. Protein Chem., 53, p. 87-152 (2000).
25. Dobson, C. M., 'Protein folding and its links with human disease,' Biochem. Soc. Symp., p. 1-26 (2001).
26. Ohnishi, S. and Takano, K., 'Amyloid fibrils from the viewpoint of protein folding,' Cell. Mol. Life Sci., 61, p. 511-524 (2004).
27. Uversky, V. N. and Fink, A. L., 'Conformational constraints for amyloid fibrillation: the importance of being unfolded,' Biochim. Biophys. Acta, 1698, p. 131-153 (2004).
28. Oberg, K., Chrunyk, B. A., Wetzel, R., and Fink, A. L., 'Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR,' Biochemistry, 33, p. 2628-2634 (1994).
29. Soto, C., 'Unfolding the role of protein misfolding in neurodegenerative diseases,' Nat. Rev. Neurosci., 4, p. 49-60 (2003).
30. Stefani, M. and Dobson, C. M., 'Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution,' J. Mol. Med. (Berl.), 81, p. 678-699 (2003).
31. Xu, S. H., 'Aggregation drives 'misfolding' in protein amyloid fiber formation,' Amyloid, 14, p. 119-131 (2007).
32. Akkermans, C., Venema, P., Rogers, S. S., van der Goot, A. J., Boom, R. M., and van der Linden, E., 'Shear pulses nucleate fibril aggregation,' Food Biophys., 1, p. 144-150 (2006).
33. Giri, K., Bhattacharyya, N. P., and Basak, S., 'pH-dependent self-assembly of polyalanine peptides,' Biophys. J., 92, p. 293-302 (2007).
34. Kodaka, M., 'Requirements for generating sigmoidal time-course aggregation in nucleation-dependent polymerization model,' Biophys. Chem., 107, p. 243-253 (2004).
35. Wang, S. S. S., Chen, Y. T., Chen, P. H., and Liu, K. N., 'A kinetic study on the aggregation behavior of beta-amyloid peptides in different initial solvent environments,' Biochem. Eng. J., 29, p. 129-138 (2006).
36. Ji, S. R., Wu, Y., and Sui, S. F., 'Study of the correlation of secondary structure of beta-amyloid peptide (Abeta40) with the hydrophobic exposure under different conditions,' Gen. Physiol. Biophys., 21, p. 415-427 (2002).
37. Wang, S. S. S. and Good, T. A., 'An overview of Alzheimer's disease,' J. Chin. Inst. Chem. Eng., 36, p. 533-559 (2005).
38. Wang, W., 'Protein aggregation and its inhibition in biopharmaceutics,' Int. J. Pharm., 289, p. 1-30 (2005).
39. Wang, W., Nema, S., and Teagarden, D., 'Protein aggregation-pathways and influencing factors,' Int. J. Pharm., 390, p. 89-99 (2010).
40. Kikuchi, S., Shinpo, K., Takeuchi, M., Yamagishi, S., Makita, Z., Sasaki, N., and Tashiro, K., 'Glycation - a sweet tempter for neuronal death,' Brain Res. Rev., 41, p. 306-323 (2003).
41. Rahbar, S. and Figarola, J. L., 'Novel inhibitors of advanced glycation endproducts,' Arch. Biochem. Biophys., 419, p. 63-79 (2003).
42. Seidler, N. W., Yeargans, G. S., and Morgan, T. G., 'Carnosine disaggregates glycated alpha-crystallin: an in vitro study,' Arch. Biochem. Biophys., 427, p. 110-115 (2004).
43. Murphy, R. M. and Kendrick, B. S., 'Protein misfolding and aggregation,' Biotechnol. Prog., 23, p. 548-552 (2007).
44. Clark, E. D., 'Protein refolding for industrial processes,' Curr. Opin. Biotechnol., 12, p. 202-207 (2001).
45. Singh, S. M. and Panda, A. K., 'Solubilization and refolding of bacterial inclusion body proteins,' J. Biosci. Bioeng., 99, p. 303-310 (2005).
46. Vazquez-Rey, M. and Lang, D. A., 'Aggregates in monoclonal antibody manufacturing processes,' Biotechnol. Bioeng., 108, p. 1494-1508 (2011).
47. Sabate, R., de Groot, N. S., and Ventura, S., 'Protein folding and aggregation in bacteria,' Cell. Mol. Life Sci., 67, p. 2695-2715 (2010).
48. Jungbauer, A. and Kaar, W., 'Current status of technical protein refolding,' J. Biotechnol., 128, p. 587-596 (2007).
49. Jungbauer, A., Kaar, W., and Schlegl, R., 'Folding and refolding of proteins in chromatographic beds,' Curr. Opin. Biotechnol., 15, p. 487-494 (2004).
50. Hamodrakas, S. J., 'Protein aggregation and amyloid fibril formation prediction software from primary sequence: towards controlling the formation of bacterial inclusion bodies,' FEBS J., 278, p. 2428-2435 (2011).
51. Wang, S. S. S., Chang, C. K., and Liu, H. S., 'A study on the refolding of lysozyme using fed-batch and step-addition strategies,' J. Chin. Inst. Chem. Eng., 35, p. 389-398 (2004).
52. Wang, S. S. S., Chang, C. K., Peng, M. J., and Liu, H. S., 'Effect of glutathione redox system on lysozyme refolding in size exclusion chromatography,' Food Bioprod. Process., 84, p. 18-27 (2006).
53. Gao, Y. G., Guan, Y. X., Yao, S. J., and Cho, M. G., 'Refolding of lysozyme at high concentration in batch and fed-batch operation,' Korean J Chem Eng, 19, p. 871-875 (2002).
54. Wang, B. L., Xu, Y., Wu, C. Q., Xu, Y. M., and Wang, H. H., 'Cloning, expression, and refolding of a secretory protein ESAT-6 of Mycobacterium tuberculosis,' Protein Expr. Purif., 39, p. 184-188 (2005).
55. Peternel, S. and Komel, R., 'Active protein aggregates produced in Escherichia coli,' Int. J. Mol. Sci., 12, p. 8275-8287 (2011).
56. Herczenik, E. and Gebbink, M. F. B. G., 'Molecular and cellular aspects of protein misfolding and disease,' FASEB J., 22, p. 2115-2133 (2008).
57. Harrison, R. S., Sharpe, P. C., Singh, Y., and Fairlie, D. P., 'Amyloid peptides and proteins in review,' Rev. Physiol. Biochem. Pharmacol., 159, p. 1-77 (2007).
58. Wang, S. S. S., Chen, P. H., and Hung, Y. T., 'Effects of p-benzoquinone and melatonin on amyloid fibrillogenesis of hen egg-white lysozyme,' J. Mol. Catal. B-Enzym., 43, p. 49-57 (2006).
59. Hutchings, R. L. and Mallela, K. M. G., 'BIOT 487-Exploring the amyloid formation by cytochrome c,' Abstr. Pap. Am. Chem. Soc., 236, p. (2008).
60. Otte, J., Ipsen, R., Bauer, R., Bjerrum, M. J., and Waninge, R., 'Formation of amyloid-like fibrils upon limited proteolysis of bovine alpha-lactalbumin,' Int. Dairy J., 15, p. 219-229 (2005).
61. Bolisetty, S., Adamcik, J., and Mezzenga, R., 'Snapshots of fibrillation and aggregation kinetics in multistranded amyloid beta-lactoglobulin fibrils,' Soft Matter, 7, p. 493-499 (2011).
62. Friedman, R., 'Aggregation of amyloids in a cellular context: modelling and experiment,' Biochem. J., 438, p. 415-426 (2011).
63. Mills, I. A., Flaugh, S. L., Kosinski-Collins, M. S., and King, J. A., 'Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gamma D-crystallin and gamma S-crystallin,' Protein Sci., 16, p. 2427-2444 (2007).
64. Flaugh, S. L., Kosinski-Collins, M. S., and King, J., 'Interdomain side-chain interactions in human gamma D crystallin influencing folding and stability,' Protein Sci., 14, p. 2030-2043 (2005).
65. Kosinski-Collins, M. S. and King, J., 'In vitro unfolding, refolding, and polymerization of human gamma D crystallin, a protein involved in cataract formation,' Protein Sci., 12, p. 480-490 (2003).
66. Oyster, C. W., The human eye. New ed. 1999: Sinauer Associates Incorporated. 491-530.
67. Delaye, M. and Tardieu, A., 'Short-range order of crystallin proteins accounts for eye lens transparency,' Nature, 302, p. 415-417 (1983).
68. Harding, J. J., 'Viewing molecular mechanisms of ageing through a lens,' Ageing Res. Rev., 1, p. 465-479 (2002).
69. Li, J. P., Tripathi, R. C., and Tripathi, B. J., 'Drug-induced ocular disorders,' Drug Safety, 31, p. 127-141 (2008).
70. Sharma, K. K. and Santhoshkumar, P., 'Lens aging: effects of crystallins,' Biochim. Biophys. Acta, 1790, p. 1095-1108 (2009).
71. Donaldson, P., Kistler, J., and Mathias, R. T., 'Molecular solutions to mammalian lens transparency,' News Physiol. Sci., 16, p. 118-123 (2001).
72. Mathias, R. T., White, T. W., and Gong, X. H., 'Lens gap junctions in growth, differentiation, and homeostasis,' Physiol. Rev., 90, p. 179-206 (2010).
73. Fleschner, C. R., 'Connexin 46 and connexin 50 in selenite cataract,' Ophthalmic Res., 38, p. 24-28 (2006).
74. Martinez, G. and de Iongh, R. U., 'The lens epithelium in ocular health and disease,' Int. J. Biochem. Cell. Biol., 42, p. 1945-1963 (2010).
75. Gerido, D. A. and White, T. W., 'Connexin disorders of the ear, skin, and lens,' Biochim. Biophys. Acta, 1662, p. 159-170 (2004).
76. Gong, X., Cheng, C., and Xia, C. H., 'Connexins in lens development and cataractogenesis,' J. Membrane Biol., 218, p. 9-12 (2007).
77. Delamere, N. A., Manning, R. E., Jr., Liu, L., Moseley, A. E., and Dean, W. L., 'Na,K-ATPase polypeptide upregulation responses in lens epithelium,' Invest. Ophthalmol. Vis. Sci., 39, p. 763-768 (1998).
78. Pau, H., 'Cortical and subcapsular cataracts: significance of physical forces,' Ophthalmologica, 220, p. 1-5 (2006).
79. Santana, A. and Waiswol, M., 'The genetic and molecular basis of congenital cataract,' Arq. Bras. Oftalmol., 74, p. 136-142 (2011).
80. Macdonald, J. T., Purkiss, A. G., Smith, M. A., Evans, P., Goodfellow, J. M., and Slingsby, C., 'Unfolding crystallins: the destabilizing role of a beta-hairpin cysteine in beta B2-crystallin by simulation and experiment,' Protein Sci., 14, p. 1282-1292 (2005).
81. Andley, U. P., 'Crystallins in the eye: function and pathology,' Prog. Retin. Eye Res., 26, p. 78-98 (2007).
82. Bloemendal, H., de Jong, W., Jaenicke, R., Lubsen, N. H., Slingsby, C., and Tardieu, A., 'Ageing and vision: structure, stability and function of lens crystallins,' Prog. Biophys. Mol. Biol., 86, p. 407-485 (2004).
83. Ponce, A., Sorensen, C., and Takemoto, L., 'Role of short-range protein interactions in lens opacifications,' Mol. Vis., 12, p. 879-884 (2006).
84. Purkiss, A. G., Macdonald, J. T., Goodfellow, J. M., and Slingsby, C., 'Comparison of generalised born/surface area with periodic boundary simulations to study protein unfolding,' Mol Simulat, 30, p. 333-340 (2004).
85. Hawkins, J. W., Vankeuren, M. L., Piatigorsky, J., Law, M. L., Patterson, D., and Kao, F. T., 'Confirmation of assignment of the human alpha-1-crystallin gene(Crya1) to chromosome 21 with regional localization to Q22.3,' Hum. Genet., 76, p. 375-380 (1987).
86. Ngo, J. T., Klisak, I., Dubin, R. A., Piatigorsky, J., Mohandas, T., Sparkes, R. S., and Bateman, J. B., 'Assignment of the alpha-B-crystallin gene to human chromosome-11,' Genomics, 5, p. 665-669 (1989).
87. Srinivasan, A. N., Nagineni, C. N., and Bhat, S. P., 'Alpha-A-crystallin is expressed in nonocular tissues,' J. Biol. Chem., 267, p. 23337-23341 (1992).
88. Atomi, Y., Yamada, S., Strohman, R., and Nonomura, Y., 'Alpha-B-crystallin in skeletal-muscle - purification and localization,' J. Biochem., 110, p. 812-822 (1991).
89. Bhat, S. P. and Nagineni, C. N., 'Alpha-B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues,' Biochem. Biophys. Res. Commun., 158, p. 319-325 (1989).
90. Lamba, O. P., Borchman, D., Sinha, S. K., Shah, J., Renugopalakrishnan, V., and Yappert, M. C., 'Estimation of the secondary structure and conformation of bovine lens crystallins by infrared-spectroscopy - quantitative-analysis and resolution by fourier self-deconvolution and curve fit,' Biochim. Biophys. Acta, 1163, p. 113-123 (1993).
91. Horwitz, J., 'The function of alpha-crystallin in vision,' Semin. Cell Dev. Biol., 11, p. 53-60 (2000).
92. Farnsworth, P. and Singh, K., 'Structure function relationship among alpha-crystallin related small heat shock proteins,' Exp. Eye Res., 79, p. 787-794 (2004).
93. Sreelakshmi, Y. and Sharma, K. K., 'The interaction between alphaA- and alphaB-crystallin is sequence-specific,' Mol. Vis., 12, p. 581-587 (2006).
94. Srikanthan, D., Bateman, O. A., Purkiss, A. G., and Slingsby, C., 'Sulfur in human crystallins,' Exp. Eye Res., 79, p. 823-831 (2004).
95. Derham, B. K. and Harding, J. J., 'Alpha-crystallin as a molecular chaperone,' Prog. Retin. Eye Res., 18, p. 463-509 (1999).
96. Acosta-Sampson, L. and King, J., 'Partially folded aggregation intermediates of human γD-, γC-, and γS-Crystallin are recognized and bound by human alpha B-crystallin chaperone,' J. Mol. Biol., 401, p. 134-152 (2010).
97. Acosta Sampson, L. I., Flaugh, S., Milis, I., and King, J., 'Human alpha-crystallin chaperone suppresses the aggregation of partially folded intermediates of human gamma D-crystallin and its deamidated forms.,' FASEB J., 21, p. A1025-A1025 (2007).
98. Sgarbossa, A., Youssef, T., and Lenci, F., 'Photosensitized structural modifications of the lens protein alpha-crystallin: do all modifications impair chaperone-like activity?,' Photochem. Photobiol., 77, p. 567-571 (2003).
99. Sun, Y. and MacRae, T. H., 'The small heat shock proteins and their role in human disease,' FEBS J., 272, p. 2613-2627 (2005).
100. Bagneris, C., Bateman, O. A., Naylor, C. E., Cronin, N., Boelens, W. C., Keep, N. H., and Slingsby, C., 'Crystal structures of alpha-crystallin domain dimers of alpha B-crystallin and Hsp20,' J. Mol. Biol., 392, p. 1242-1252 (2009).
101. Jehle, S., Rajagopal, P., Bardiaux, B., Markovic, S., Kuhne, R., Stout, J. R., Higman, V. A., Klevit, R. E., van Rossum, B. J., and Oschkinat, H., 'Solid-state NMR and SAXS studies provide a structural basis for the activation of alpha B-crystallin oligomers,' Nat. Struct. Mol. Biol., 17, p. 1037-U1031 (2010).
102. Braun, N., Zacharias, M., Peschek, J., Kastenmuller, A., Zou, J., Hanzlik, M., Haslbeck, M., Rappsilber, J., Buchner, J., and Weinkauf, S., 'Multiple molecular architectures of the eye lens chaperone alpha B-crystallin elucidated by a triple hybrid approach,' Proc. Natl. Acad. Sci. U.S.A., 108, p. 20491-20496 (2011).
103. Kumar, M. S., Kapoor, M., Sinha, S., and Reddy, G. B., 'Insights into hydrophobicity and the chaperone-like function of alphaA- and alphaB-crystallins: an isothermal titration calorimetric study,' J. Biol. Chem., 280, p. 21726-21730 (2005).
104. Liang, J. J., Sun, T. X., and Akhtar, N. J., 'Heat-induced conformational change of human lens recombinant alphaA- and alphaB-crystallins,' Mol. Vis., 6, p. 10-14 (2000).
105. Liao, J. H., Lee, J. S., and Chiou, S. H., 'Distinct roles of alphaA- and alphaB-crystallins under thermal and UV stresses,' Biochem. Biophys. Res. Commun., 295, p. 854-861 (2002).
106. Regini, J. W., Grossmann, J. G., Burgio, M. R., Malik, N. S., Koretz, J. F., Hodson, S. A., and Elliott, G. F., 'Structural changes in alpha-crystallin and whole eye lens during heating, observed by low-angle X-ray diffraction,' J. Mol. Biol., 336, p. 1185-1194 (2004).
107. Abgar, S., Backmann, J., Aerts, T., Vanhoudt, J., and Clauwaert, J., 'The structural differences between bovine lens alphaA- and alphaB-crystallin,' Eur. J. Biochem., 267, p. 5916-5925 (2000).
108. Liu, B. F. and Liang, J. J., 'Domain interaction sites of human lens betaB2-crystallin,' J. Biol. Chem., 281, p. 2624-2630 (2006).
109. Shroff, N. P., Cherian-Shaw, M., Bera, S., and Abraham, E. C., 'Mutation of R116C results in highly oligomerized alpha A-crystallin with modified structure and defective chaperone-like function,' Biochemistry, 39, p. 1420-1426 (2000).
110. Singh, D., Raman, B., Ramakrishna, T., and Rao Ch, M., 'The cataract-causing mutation G98R in human alphaA-crystallin leads to folding defects and loss of chaperone activity,' Mol. Vis., 12, p. 1372-1379 (2006).
111. Treweek, T. M., Rekas, A., Lindner, R. A., Walker, M. J., Aquilina, J. A., Robinson, C. V., Horwitz, J., Perng, M. D., Quinlan, R. A., and Carver, J. A., 'R120G alphaB-crystallin promotes the unfolding of reduced alpha-lactalbumin and is inherently unstable,' FEBS J., 272, p. 711-724 (2005).
112. Goishi, K., Shimizu, A., Najarro, G., Watanabe, S., Rogers, R., Zon, L. I., and Klagsbrun, M., 'Alpha A-crystallin expression prevents gamma-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens,' Development, 133, p. 2585-2593 (2006).
113. Boyle, D. L., Takemoto, L., Brady, J. P., and Wawrousek, E. F., 'Morphological characterization of the alpha A- and alpha B-crystallin double knockout mouse lens,' BMC Ophthalmol., 3, p. 3 (2003).
114. Brady, J. P., Garland, D. L., Green, D. E., Tamm, E. R., Giblin, F. J., and Wawrousek, E. F., 'Alpha B-crystallin in lens development and muscle integrity: a gene knockout approach,' Invest. Ophthalmol. Vis. Sci., 42, p. 2924-2934 (2001).
115. Horwitz, J., 'Alpha-crystallin,' Exp. Eye Res., 76, p. 145-153 (2003).
116. Kumar, M. S., Reddy, P. Y., Kumar, P. A., Surolia, I., and Reddy, G. B., 'Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays,' Biochem. J., 379, p. 273-282 (2004).
117. Andley, U. P., Song, Z., Wawrousek, E. F., Brady, J. P., Bassnett, S., and Fleming, T. P., 'Lens epithelial cells derived from alphaB-crystallin knockout mice demonstrate hyperproliferation and genomic instability,' FASEB J., 15, p. 221-229 (2001).
118. Wang, X., Garcia, C. M., Shui, Y. B., and Beebe, D. C., 'Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells,' Invest. Ophthalmol. Vis. Sci., 45, p. 3608-3619 (2004).
119. Xi, J. H., Bai, F., McGaha, R., and Andley, U. P., 'Alpha-crystallin expression affects microtubule assembly and prevents their aggregation,' FASEB J., 20, p. 846-857 (2006).
120. Morozov, V. and Wawrousek, E. F., 'Caspase-dependent secondary lens fiber cell disintegration in alphaA-/alphaB-crystallin double-knockout mice,' Development, 133, p. 813-821 (2006).
121. Yan, H., Lou, M. F., Fernando, M. R., and Harding, J. J., 'Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts,' Mol. Vis., 12, p. 1153-1159 (2006).
122. Alge, C. S., Priglinger, S. G., Neubauer, A. S., Kampik, A., Zillig, M., Bloemendal, H., and Welge-Lussen, U., 'Retinal pigment epithelium is protected against apoptosis by alphaB-crystallin,' Invest. Ophthalmol. Vis. Sci., 43, p. 3575-3582 (2002).
123. Kamradt, M. C., Lu, M., Werner, M. E., Kwan, T., Chen, F., Strohecker, A., Oshita, S., Wilkinson, J. C., Yu, C., Oliver, P. G., Duckett, C. S., Buchsbaum, D. J., LoBuglio, A. F., Jordan, V. C., and Cryns, V. L., 'The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3,' J. Biol. Chem., 280, p. 11059-11066 (2005).
124. Furuyoshi, N., Furuyoshi, M., May, C. A., Hayreh, S. S., Alm, A., and Lutjen-Drecoll, E., 'Vascular and glial changes in the retrolaminar optic nerve in glaucomatous monkey eyes,' Ophthalmologica, 214, p. 24-32 (2000).
125. den Engelsman, J., Gerrits, D., de Jong, W. W., Robbins, J., Kato, K., and Boelens, W. C., 'Nuclear import of {alpha}B-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G,' J. Biol. Chem., 280, p. 37139-37148 (2005).
126. Maloyan, A., Sanbe, A., Osinska, H., Westfall, M., Robinson, D., Imahashi, K., Murphy, E., and Robbins, J., 'Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy,' Circulation, 112, p. 3451-3461 (2005).
127. Crabb, J. W., Miyagi, M., Gu, X., Shadrach, K., West, K. A., Sakaguchi, H., Kamei, M., Hasan, A., Yan, L., Rayborn, M. E., Salomon, R. G., and Hollyfield, J. G., 'Drusen proteome analysis: an approach to the etiology of age-related macular degeneration,' Proc. Natl. Acad. Sci. U.S.A., 99, p. 14682-14687 (2002).
128. Maeda, A., Ohguro, H., Maeda, T., Nakagawa, T., and Kuroki, Y., 'Low expression of alphaA-crystallins and rhodopsin kinase of photoreceptors in retinal dystrophy rat,' Invest. Ophthalmol. Vis. Sci., 40, p. 2788-2794 (1999).
129. Nakata, K., Crabb, J. W., and Hollyfield, J. G., 'Crystallin distribution in Bruch's membrane-choroid complex from AMD and age-matched donor eyes,' Exp. Eye Res., 80, p. 821-826 (2005).
130. Umeda, S., Ayyagari, R., Allikmets, R., Suzuki, M. T., Karoukis, A. J., Ambasudhan, R., Zernant, J., Okamoto, H., Ono, F., Terao, K., Mizota, A., Yoshikawa, Y., Tanaka, Y., and Iwata, T., 'Early-onset macular degeneration with drusen in a cynomolgus monkey (Macaca fascicularis) pedigree: exclusion of 13 candidate genes and loci,' Invest. Ophthalmol. Vis. Sci., 46, p. 683-691 (2005).
131. Laudanski, K. and Wyczechowska, D., 'The distinctive role of small heat shock proteins in oncogenesis,' Arch. Immunol. Ther. Exp. (Warsz.), 54, p. 103-111 (2006).
132. Raman, B., Ban, T., Sakai, M., Pasta, S. Y., Ramakrishna, T., Naiki, H., Goto, Y., and Rao, C. M., 'Alpha B-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta 2-microglobulin,' Biochem. J., 392, p. 573-581 (2005).
133. Muchowski, P. J. and Wacker, J. L., 'Modulation of neurodegeneration by molecular chaperones,' Nat. Rev. Neurosci., 6, p. 11-22 (2005).
134. Sinclair, C., Mirakhur, M., Kirk, J., Farrell, M., and McQuaid, S., 'Up-regulation of osteopontin and alphaBeta-crystallin in the normal-appearing white matter of multiple sclerosis: an immunohistochemical study utilizing tissue microarrays,' Neuropathol. Appl. Neurobiol., 31, p. 292-303 (2005).
135. Wilhelmus, M. M., Otte-Holler, I., Wesseling, P., de Waal, R. M., Boelens, W. C., and Verbeek, M. M., 'Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer's disease brains,' Neuropathol. Appl. Neurobiol., 32, p. 119-130 (2006).
136. Nixon, R. A., 'The calpains in aging and aging-related diseases,' Ageing Res. Rev., 2, p. 407-418 (2003).
137. Jaenicke, R. and Slingsby, C., 'Lens crystallins and their microbial homologs: structure, stability, and function,' Crit. Rev. Biochem. Mol. Biol., 36, p. 435-499 (2001).
138. Berbers, G. A. M., Hoekman, W. A., Bloemendal, H., Dejong, W. W., Kleinschmidt, T., and Braunitzer, G., 'Homology between the primary structures of the major bovine beta-crystallin chains,' Eur. J. Biochem., 139, p. 467-479 (1984).
139. Takata, T., Woodbury, L. G., and Lampi, K. J., 'Deamidation alters interactions of beta-crystallins in hetero-oligomers,' Mol. Vis., 15, p. 241-249 (2009).
140. Slingsby, C. and Bateman, O. A., 'Quaternary interactions in eye lens beta-crystallins - basic and acidic subunits of beta-crystallins favor H
heterologous association,' Biochemistry, 29, p. 6592-6599 (1990).
141. Brakenhoff, R. H., Aarts, H. J. M., Reek, F. H., Lubsen, N. H., and Schoenmakers, J. G. G., 'Human gamma-crystallin genes - a gene family on its way to extinction,' J. Mol. Biol., 216, p. 519-532 (1990).
142. Meakin, S. O., Breitman, M. L., and Tsui, L. C., 'Structural and eolutionary relationships among 5 members of the human gamma-crystallin gene family,' Mol. Cell. Biol., 5, p. 1408-1414 (1985).
143. Flaugh, S. L., Kosinski-Collins, M. S., and King, J., 'Interdomain side-chain interactions in human gammaD crystallin influencing folding and stability,' Protein Sci., 14, p. 2030-2043 (2005).
144. Kosinski-Collins, M. S., Flaugh, S. L., and King, J., 'Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins,' Protein Sci., 13, p. 2223-2235 (2004).
145. MacDonald, J. T., Purkiss, A. G., Smith, M. A., Evans, P., Goodfellow, J. M., and Slingsby, C., 'Unfolding crystallins: the destabilizing role of a beta-hairpin cysteine in betaB2-crystallin by simulation and experiment,' Protein Sci., 14, p. 1282-1292 (2005).
146. Pande, A., Pande, J., Asherie, N., Lomakin, A., Ogun, O., King, J. A., Lubsen, N. H., Walton, D., and Benedek, G. B., 'Molecular basis of a progressive juvenile-onset hereditary cataract,' Proc. Natl. Acad. Sci. U.S.A., 97, p. 1993-1998 (2000).
147. Sergeev, Y. V., Soustov, L. V., Chelnokov, E. V., Bityurin, N. M., Backlund, P. S., Wingfield, P. T., Ostrovsky, M. A., and Hejtmancik, J. F., 'Increased sensitivity of amino-arm truncated beta A3-crystallin to UV-light-induced photoaggregation,' Invest. Ophthalmol. Vis. Sci., 46, p. 3263-3273 (2005).
148. Bateman, O. A., Sarra, R., van Genesen, S. T., Kappe, G., Lubsen, N. H., and Slingsby, C., 'The stability of human acidic beta-crystallin oligomers and hetero-oligomers,' Exp. Eye Res., 77, p. 409-422 (2003).
149. Glick, B. R., 'Metabolic load and heterologous gene expression,' Biotechnol. Adv., 13, p. 247-261 (1995).
150. Hejtmancik, J. F., Wingfield, P. T., and Sergeev, Y. V., 'Beta-crystallin association,' Exp. Eye Res., 79, p. 377-383 (2004).
151. Marin-Vinader, L., Onnekink, C., van Genesen, S. T., Slingsby, C., and Lubsen, N. H., 'In vivo heteromer formation. Expression of soluble betaA4-crystallin requires coexpression of a heteromeric partner,' FEBS J., 273, p. 3172-3182 (2006).
152. Van Montfort, R. L., Bateman, O. A., Lubsen, N. H., and Slingsby, C., 'Crystal structure of truncated human betaB1-crystallin,' Protein Sci., 12, p. 2606-2612 (2003).
153. Liu, B. F. and Liang, J. J. N., 'Protein-protein interactions among human lens acidic and basic beta-crystallins,' FEBS Lett., 581, p. 3936-3942 (2007).
154. Tardieu, A., Veretout, F., Krop, B., and Slingsby, C., 'Protein interactions in the calf eye lens - interactions between beta-crystallins are repulsive whereas in gamma-crystallins. They are attractive,' Eur. Biophys. J., 21, p. 1-12 (1992).
155. Basak, A., Bateman, O., Slingsby, C., Pande, A., Asherie, N., Ogun, O., Benedek, G. B., and Pande, J., 'High-resolution X-ray crystal structures of human gammaD crystallin (1.25 A) and the R58H mutant (1.15 A) associated with aculeiform cataract,' J. Mol. Biol., 328, p. 1137-1147 (2003).
156. Evans, P., Wyatt, K., Wistow, G. J., Bateman, O. A., Wallace, B. A., and Slingsby, C., 'The P23T cataract mutation causes loss of solubility of folded gamma D-crystallin,' J. Mol. Biol., 343, p. 435-444 (2004).
157. Ferrini, W., Schorderet, D. F., Othenin-Girard, P., Uffer, S., Heon, E., and Munier, F. L., 'CRYBA3/A1 gene mutation associated with suture-sparing autosomal dominant congenital nuclear cataract: a novel phenotype,' Invest. Ophthalmol. Vis. Sci., 45, p. 1436-1441 (2004).
158. Liu, B. F. and Liang, J. J., 'Interaction and biophysical properties of human lens Q155* betaB2-crystallin mutant,' Mol. Vis., 11, p. 321-327 (2005).
159. Mackay, D. S., Boskovska, O. B., Knopf, H. L., Lampi, K. J., and Shiels, A., 'A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q,' Am. J. Hum. Genet., 71, p. 1216-1221 (2002).
160. Pande, A., Pande, J., Asherie, N., Lomakin, A., Ogun, O., King, J., and Benedek, G. B., 'Crystal cataracts: human genetic cataract caused by protein crystallization,' Proc. Natl. Acad. Sci. U.S.A., 98, p. 6116-6120 (2001).
161. Pigaga, V. and Quinlan, R. A., 'Lenticular chaperones suppress the aggregation of the cataract-causing mutant T5P gamma C-crystallin,' Exp. Cell Res., 312, p. 51-62 (2006).
162. Fu, L. and Liang, J. J. N., 'Alteration of protein-protein interactions of congenital cataract crystallin mutants,' Invest. Ophthalmol. Vis. Sci., 44, p. 1155-1159 (2003).
163. Liang, J. J., 'Interactions and chaperone function of alphaA-crystallin with T5P gammaC-crystallin mutant,' Protein Sci., 13, p. 2476-2482 (2004).
164. Sathish, H. A., Koteiche, H. A., and McHaourab, H. S., 'Binding of destabilized betaB2-crystallin mutants to alpha-crystallin: the role of a folding intermediate,' J. Biol. Chem., 279, p. 16425-16432 (2004).
165. Udupa, P. E. and Sharma, K. K., 'Effect of oxidized betaB3-crystallin peptide (152-166) on thermal aggregation of bovine lens gamma-crystallins: identification of peptide interacting sites,' Exp. Eye Res., 80, p. 185-196 (2005).
166. Weinreb, O., van Rijk, A. F., Dovrat, A., and Bloemendal, H., 'In vitro filament-like formation upon interaction between lens alpha-crystallin and betaL-crystallin promoted by stress,' Invest. Ophthalmol. Vis. Sci., 41, p.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64671-
dc.description.abstract人類γD型水晶體蛋白(Human γD crystallin,HγDC)具有173個胺基酸,為人類水晶體中的主要成分之一。HγDC由兩個相似且富含β-sheet結構的區域(domain)所構成,與少年性白內障和老年性白分障的發生息息相關。在基因重組HγDC表現與純化的部分,藉由比較不同的起動子、Escherichia coli菌種、培養溫度、isopropyl β-D-thiolgalactorpyranoside(IPTG)的濃度、誘導時的OD600nm與後誘導時間,以找出表現重組蛋白質的E. coli最適系統。於本研究中,成功地純化具有6×Histidine親和性標籤之HγDC;而且由實驗結顯示,最佳表現系統為BL21(DE3)/pEHisHγDC,且其最佳條件為培養溫度為30°C、IPTG為0.5mM、誘導時的OD600nm為2.5與後誘導時間為8小時。藉由圓二色光譜與色胺酸螢光光譜的比較,所獲得的6×His-HγDC蛋白質與文獻值相符合,並且實驗結果亦顯示了具有親和性標籤與不具親和性標籤的HγDC在結構上並無明顯的差異。在BL21(DE3)/pEHisHγDC表現組合中,經過最適合化的培養與純化後,可得的蛋白質產量為~23.3mg/100mL培養液,為文獻值的5~20倍。
在UV-C紫外線照射對HγDC結構影響的部分,利用濁度的量測可發現濁度的增加量和蛋白質的濃度、UV-C照射強度與時間具有正向增加之關係。在照射過程中,明顯地經由肉眼觀察到HγDC形成聚集與產生大量的沉澱。利用胍鹽酸將經UV-C照射後所形成的聚集體進行回溶。比較未經照射之原態HγDC(non-irradiated HγDC)、照射後HγDC之上清液(the supernatant fraction of irradiated HγDC,S)與照射後HγDC沉澱物之回溶液(the re-dissolved precipitated fraction of irradiated HγDC,R)在圓二色光譜、丙烯醯胺螢光淬息與色胺酸螢光光譜量測的結果,發現到三者的HγDC結構特性均有所差異。另外,在實驗的溶液中添加L-cysteine、量測蛋白質硫醇基含量、添加還原劑和不添加還原劑蛋白質電泳之實驗結果,顯示了HγDC照射UV-C過程,雙硫鍵的生成或斷裂在其形成聚集與產生大量沉澱上扮演著重要角色。
在HγDC形成類澱粉纖維的研究部分,利用鹽溶液與酸性條件成功將HγDC誘導生成類澱粉纖維。藉由濁度的量測結果,可知道HγDC在溶液中形成大量聚集體。ANS螢光光譜、色胺酸螢光光譜、丙烯醯胺螢光淬息與圓二色光譜的分析,說明所形成的聚集體呈現結構開展、疏水性區域與色氨酸的裸露、β-sheet結構含量比例下降。藉由ThT螢光光譜的量測,顯示了聚集體具有類澱粉纖維結構的特性,並且利用TEM的觀察與證明聚集體為類澱粉纖維。此外,利用熱誘導開展法的分析,可知HγDC在酸性鹽溶液中,其結構上容易傾向開展、未摺疊之狀態。
zh_TW
dc.description.abstractHuman γD crystallin (HγDC), a 173 amino acid protein, is a primary protein component of the human eye lens. It consists of two highly homologous β-sheet domains and is associated with the development of juvenile and adult-onset cataracts. In the first part of this dissertation, we describe the expression, purification, and characterization of 6×His-HγDC. We optimized recombinant protein expression in an Escherichia coli ex-pression system by investigating factors such as the type of promoter, E. coli strain, culture temperature, isopropyl β-D-thiolgalactorpyranoside (IPTG) concentration, optical density of induction (OD600nm), and duration of IPTG induction. We then purified recombinant HγDC coupled to a six-histidine tag (6×His-HγDC). Our results showed that the optimal system for 6×His-HγDC protein expression was culture of E. coli strain BL21(DE3) bearing the pEHisHγDC plasmid at 30°C and induction with 0.5 mM IPTG once the culture reached an optical density of 2.5 for a period of 8 hr. Circular dichroism spectroscopy and tryptophan fluorescence spectroscopy demonstrated that the structural integrity of the purified 6×His-HγDC protein was identical to that of the previous inves-tigations. We further showed that almost no structural difference was detected between HγDC with and without His-tags. The expression and purification procedure was opti-mized and the resultant final yield (~23.3mg/100mL of culture medium; i.e., ~23.3mg protein produced in 100mL of culture medium) was considerably (~5–20-fold) higher than those reported from previous studies.
In the section part of this dissertation, we examined the influence of ultraviolet C irradiation on recombinant human γD crystallin. The turbidity of the HγDC sample so-lution was found to be positively correlated with the concentration of HγDC, UV-C ir-radiance, and UV-C irradiation duration. The HγDC sample solutions became visibly turbid and a noticeable amount of larger protein particles was observed upon prolonged exposure to UV-C irradiation. Circular dichroism spectroscopy, acrylamide fluorescence quenching, and tryptophan fluorescence spectroscopy revealed differences in structures among the non-irradiated HγDC, the supernatant fraction of irradiated HγDC, and the guanidine hydrochloride-re-dissolved precipitated fraction of irradiated HγDC. Our data further suggested that disulfide bond formation and/or cleavage probably play an important role in aggregation and/or precipitation of HγDC induced by UV-C irradiation.

The amyloid fibril-forming propensity of recombinant human γD crystallin was explored in the last part of the dissertation. We successfully induced HγDC into amyloid fibrils in the acidic condition (pH 2.0). We verified the formation of aggregated species in the solutions by observing the increased turbidity. Analyses of ANS fluorescence spectroscopy, circular dichroism spectroscopy, acrylamide fluorescence quenching, and tryptophan fluorescence spectroscopy indicated that the aggregates exhibit features including greater structure unfloding, higher solvent accessibility and reduced β-sheet secondary structure content. Amyloid fibrillogenesis of human γD crystallin in the acidic pH was confirmed by ThT binding assay and transmission electron microscopy analysis. In addition, thermally-induced unfolding analysis allowed us to conclude that the structure of human γD crystallin tends to unfold in acidic condition (pH 2.0).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:57:10Z (GMT). No. of bitstreams: 1
ntu-101-D94524014-1.pdf: 10950481 bytes, checksum: a867b1eafe5660f8e61187e60b2960ec (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 2
2-1 蛋白質摺疊與聚集 2
2-2 與蛋白質聚集相關之疾病 11
2-3 水晶體(Lens) 15
2-4 水晶體蛋白(crystallin)的分類 17
2-4-1 α型態水晶體蛋白(α-crystallin) 19
2-4-2 βγ型態水晶體蛋白(βγ-crystallin) 22
2-5 白內障 24
2-6 Human γD crystallin 31
2-7 蛋白質的生產表現與純化 43
2-8 蛋白質聚集的分析檢測與蛋白質濃度定量 45
2-8-1 蛋白質聚集的分析檢測 45
2-8-2 蛋白質濃度定量 48
第三章 研究動機 50
第四章 實驗儀器、藥品與步驟 52
4-1 實驗儀器 52
4-2 實驗菌株、質體、核酸引子、酵素、純化套組與藥品 53
4-2-1 大腸桿菌(E. coli)菌株 53
4-2-2 質體 54
4-2-3 核酸引子 54
4-2-4 酵素 55
4-2-5 純化套組 55
4-2-6 藥品 55
4-3 藥品配製 58
4-4 實驗步驟 61
4-4-1 基因重組HγDC的表現與純化 61
4-4-1-1 質體pEHisHγDC建立流程圖 61
4-4-1-2 質體純化 62
4-4-1-3 DNA片段萃取純化 62
4-4-1-4 聚合酶鏈鎖反應(PCR) 63
4-4-1-5 限制酵素反應(以BamHI為例) 64
4-4-1-6 接合反應 64
4-4-1-7 化學(CaCl2)轉殖法 65
4-4-1-8 試管測試培養 65
4-4-1-9 菌體培養(最佳化)與親和性純化 66
4-4-1-10 蛋白質濃度定量(BCA assay) 67
4-4-1-11 6×His-HγDC電泳標準品備製 67
4-4-1-12 以酵素DAPase-I切除6×Histidine親和性標籤 67
4-4-1-13 聚丙烯醯胺膠體電泳(SDS-PAGE) 68
4-4-1-14 Tryptophan螢光光譜量測 69
4-4-1-15 圓二色(Circular Dichroism,CD)光譜量測 69
4-4-2 UV-C紫外線照射對HγDC結構的影響 69
4-4-2-1 菌體培養與親和性純化 69
4-4-2-2 UV-C照射方式與濁度量測 70
4-4-2-3 回溶液備製 70
4-4-2-4 Tryptophan螢光光譜量測 70
4-4-2-5 圓二色(Circular Dichroism,CD)光譜量測 71
4-4-2-6 丙烯醯胺淬熄(Acrylamide Quenching)量測 71
4-4-2-7 大小排除層析法(Size exclusion chromatorgraphy,SEC)分析 71
4-4-2-8 硫醇基濃度定量 72
4-4-2-9 聚丙烯醯胺膠體電泳(SDS-PAGE) 72
4-4-3 HγDC類澱粉纖維生成 73
4-4-3-1 菌體培養與親和性純化 73
4-4-3-2 類澱粉纖維生成 73
4-4-3-3 濁度(Turbidity)量測 73
4-4-3-4 Tryptophan螢光光譜量測 73
4-4-3-5 Thioflavin T(ThT)螢光光譜量測 74
4-4-3-6 1-Anilinonaphthalene-8-sulfonic acid(ANS)螢光光譜量測 74
4-4-3-7 圓二色(Circular Dichroism,CD)光譜量測 75
4-4-3-8 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 75
4-4-3-9 丙烯醯胺淬熄(Acrylamide Quenching)量測 75
4-4-3-10 聚丙烯醯胺膠體電泳(SDS-PAGE) 76
4-4-3-11 平衡狀態下之熱誘導開展法(Equilibrium Thermal Unfiolding) 76
第五章 實驗結果與討論 78
5-1 基因重組HγDC的表現與純化 78
5-1-1 質體pEHisHγDC建立 78
5-1-2 試管測試培養 80
5-1-3 最佳後誘導時間(optimal post-induction time) 83
5-1-4 6×His-HγDC的親和性純化分析 84
5-1-5 6×His-HγDC與以酵素DAPase-I切除6×Histidine親和性標籤的比較 87
5-1-6 討論 89
5-2 UV-C紫外線照射對HγDC結構的影響 92
5-2-1 UV-C紫外線照射對HγDC聚集體的生成 92
5-2-2 SDS-PAGE蛋白質電泳分析 95
5-2-3 利用胍鹽酸(GdnHCl)回溶已形成的聚集體 98
5-2-4 UVC對HγDC二級與三級結構的影響 99
5-2-5 丙烯醯胺(acyrlamide)螢光淬熄(quenching)分析 102
5-2-6 半胱胺酸(cysteine)對HγDC聚集體形成的影響 102
5-2-7 討論 106
5-3 HγDC形成類澱粉纖維的研究 112
5-3-1 濁度變化 112
5-3-2 Thioflavin T(ThT)與1-anilinonaphthalene-8-sulfonate(ANS)螢光光譜分析 113
5-3-3 色胺酸螢光光譜與遠紫外光圓二色光譜分析 116
5-3-4 穿透式電子顯微鏡(TEM)分析 119
5-3-5 SDS-PAGE蛋白質電泳分析 119
5-3-6 熱誘導開展法 (Thermal Unfiolding)分析 122
5-3-7 討論 123
第六章 結論 127
第七章 建議與未來展望 129
Reference 132
附錄 170
附錄 A. 質體pQE1 170
附錄 B. 質體pET30b(+) 172
附錄 C. 質體pQE1(6×His-HγDC)與pEHisHγDC 174
附錄 D. HγDC基因序列與蛋白質序列 175
附錄 E. 6×His-HγDC基因序列與蛋白質序列 176
附錄 F. 在37℃的培養溫度下,利用試管培養測試所獲得各種表現組合(系統)的蛋白質產量。 177
附錄 G. 在30℃的培養溫度下,利用試管培養測試所獲得各種表現組合(系統)的蛋白質產量。 178
附錄 H. Mutant R36P與W42R核酸引子 179
dc.language.isozh-TW
dc.title人類γD型水晶體蛋白表現、純化與聚集行為之研究zh_TW
dc.titleA study of expression, purification and aggregation behaviors of Human γD crystallinen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee張嘉修,李文乾,林達顯,侯劭毅,胡朝榮
dc.subject.keyword白內障,人類γD型水晶體蛋白,蛋白質表現與純化,紫外光,蛋白質聚集,類澱粉纖維,zh_TW
dc.subject.keywordcataract,human γD crystallin,protein expression and purification,UV-C,protein aggregation,amyloid fibril,en
dc.relation.page179
dc.rights.note有償授權
dc.date.accepted2012-08-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
10.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved