Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor舒貽忠(Yi-Chung Shu)
dc.contributor.authorHui-Chun Linen
dc.contributor.author林蕙君zh_TW
dc.date.accessioned2021-06-16T22:57:08Z-
dc.date.available2015-08-10
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-08-09
dc.identifier.citation[1] S. Cheng and D. P. Arnold, “A Study of a Multi-Pole Magnetic Generator for Low-Frequency Vibrational Energy Harvesting,” Journal of Michromechanics and Microengineering, 20:025015, 2010.
[2] L. Zuo, B. Scully, J. Shestani and Y. Zhou, “Design and Characterization of an Electromagnetic Energy Harvester for Vehicle Suspensions,” Smart Materials and Structures, 19:045003, 2010.
[3] P. Basset, D. Galayko, A. M. Paracha, F. Marty, A. Dudka and T. Bourouina, “A Batch-Fabricated and Electret-Free Silicon Electrostatic Vibration Energy Harvester,” Journal of Michromechanics and Microengineering, 19:115025, 2009.
[4] W. H. Liao, D. H. Wang and S. L. Huang, “Wireless Monitoring of Cable Tension of Cable-Stayed Bridges Using PVDF Piezoelectric Films,” Journal of Intelligent Material Systems and Structures, 12:331-339, 2001.
[5] Y. Qin, X. Wang and Z. L. Wang, “Microfiber-Nonawire Hybird Structure for Energy Scavenging,” Nature, 451:809-814, 2008.
[6] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen and Z. L. Wang, “Piezoelectric Nanogenerator Using P-Type ZnO Nanowire Arrays,” Nano Letters, 9:1223-1227, 2009.
[7] X. H. Xu and J. R. Chu, “Preparation of a High Quality PZT Thick Film with Performance Comparable to Those of Bulk Materials for Applications in MEMS,” Journal of Michromechanics and Microengineering, 18:065001, 2008.
[8] Y. B. Jeon, J. H. Jeong and S. G. Kim, “MEMS Power Generator with Transverse Mode Thin Film PZT,” Sensors and Actuators A, 122:16-22, 2005.
[9] J. Cho, M. Anderson, R. Richards, D. Bahr and C. Richards, “Optimization of Electromechanical Coupling for a Thin-Film PZT Membrane: I. Modeling,” Journal of Michromechanics and Microengineering, 15:1797-1803, 2005.
[10] J. Cho, M. Anderson, R. Richards, D. Bahr and C. Richards, “Optimization of Electromechanical Coupling for a Thin-Film PZT Membrane: II. Experiment,” Journal of Intelligent Material Systems and Structures, 15:1804-1809, 2005.
[11] B. S. Lee, S. C. Lin, W. J. Wu, X. Y. Wang, P. Z. Chang and C. K. Lee, “Piezoelectric MEMS Generators Fabircated with an Aerosol Deposition PZT Thin Film,” Journal of Intelligent Material Systems and Structures, 19:065014, 2009.
[12] B. S. Lee, S. C. Lin and W. J. Wu, “Fabrication and Evaluation of a MEMS Piezoelectric Bimorph Geneator for Vibration Energy Harvesting,” Journal of Mechanics, 26:493-499, 2010.
[13] J. Ajitsarial, S. Y. Choe, D. Shen and D. J. Kim, “Modeling and Analysis of a Bimorph Piezoelectric Cantilever Beam for Voltage Generation,” Smart Materials and Structures, 16:447-454, 2007.
[14] H. P. Hu, J. G. Cao and Z. J. Cui, “Performance of a Piezoelectric Bimorph Harvester with Variable Width,” Journal of Mechanics, 23:197-202, 2007.
[15] L. Mateu and F. Moll, “Optimum Piezoelectric Bending Beam Structures for Energy Harvesting Using Shoe Inserts,” Journal of Intelligent Material Systems and Structures, 16:835-845, 2005.
[16] S. Paquin and Y. St-Amant, “Improving the Performance of a Piezoelectric Energy Harvester Using a Variable Thickness Beam,” Smart Materials and Structures, 19:105020, 2010.
[17] A. Erturk, J. Hoffman and D. J. Inman, “A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting,” Applied Physics Letters, 94:254102, 2009.
[18] Y. Tadesse, S. Zhang and S. Priya, “Multimodal Energy Harvesting System: Piezoelectric and Electromagnetic,” Journal of Intelligent Material Systems and Structures, 20:625-632, 2009.
[19] J. T. Lin and B. Alphenaar, “Enhancement of Energy Harvested from a Random Vibration Source by Magnetic Coupling of a Piezoelectric Cantilever,” Journal of Intelligent Material Systems and Structures, 21:1337-1341, 2010.
[20] J. T. Lin, B. Lee and B. Alphenaar, “The Magnetic Coupling of a Piezoelctric Cantilever for Enhanced Energy Harvesting Efficiency,” Smart Materials and Structures, 19:045012, 2010.
[21] V. R. Challa, M. G. Prasad, Y. Shi and F. T. Fisher, “A Vibration Energy Harvesting Device with Bidirectional Resonance Frequency Tunability,” Smart Materials and Structures, 17:015035, 2008.
[22] M. G. Muriuki and W. W. Clark, “Analysis of a Technique for Tuning a Cantilever Beam Resonator Using Shunt Switching,” Smart Materials and Structures, 16:1527-1533, 2007.
[23] E. S. Leland and P. K. Wright, “Resonance Tuning of Piezoelectric Vibration Energy Scanvenging Generators Using Compressive Axial Preload,” Smart Materials and Structures, 15:1413-1420, 2006.
[24] Y. T. Hu, H. Xue and H. P. Hu, “A Piezoelectric Power Harvester with Adjustable Frequency through Axial Preloads,” Smart Materials and Structures, 16:0961-1966, 2007.
[25] N. E. duToit, B. L. Wardle and S. G. Kim, “Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters,” Integrated Ferroelectrics, 71:121-160, 2005.
[26] G. H. Feng, “A Piezoelectric Dome-Shaped-Diaphragm Transducer for Microgenerator Applications,” Smart Materials and Structures, 16:2636-2644, 2007.
[27] H. W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. E. Newnham and H. F. Hofmann, “Energy Harvesting Using a Piezoelectric 'Cymbal' Transducer in Dynamic Environment,” Japanese Journal of Applied Physics, 43:6178-6183, 2004.
[28] J. Yuan, T. Xie, W. Chen, X. Shan and S. Jiang, “Performance of a Drum Transducer for Scanvenging Vibration Energy,” Journal of Intelligent Material Systems and Structures, 20:1771-1777, 2009.
[29] S. Kim, W. W. Clark and Q. M. Wang, “Piezoelectric Energy Harvesting with a Clamped Circular Plate: Analysis,” Journal of Intelligent Material Systems and Structures, 16:847-854, 2005.
[30] S. Kim, W. W. Clark and Q. M. Wang, “Piezoelectric Energy Harvesting with a Clamped Circular Plate: Experiment Study,” Journal of Intelligent Material Systems and Structures, 16:855-863, 2005.
[31] S. Wang, K. H. Lam, C. L. Sun, K. W. Kwok, H. L. W. Chan, M. S. Guo and X. Z. Zhao, “Energy Harvesting with Piezoelectric Drum Transducer,” Applied Physics Letters, 90:113506, 2007.
[32] R. Paradies and B. Schlapfer, “Finite Element Modeling of Piezoelectric Elements with Complex Electrode Configuration,” Smart Materials and Structures, 18:025015, 2009.
[33] C. D. M. Junior, A. Erturk and D. J. Inman, “An Electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates,” Journal of Sound and Vibration, 327:9-25, 2009.
[34] N. G. Elvin and A. A. Elvin, “A Coupled Finite Element Circuit Simulation Model for Analyzing Piezoelectric Energy Generators,” Journal of Intelligent Material Systems and Structures, 20:587-595, 2009.
[35] N. G. Elvin, A. A. Elvain and M. Spector, “A Self-Powered Mechanical Strain Energy Sensor,” Smart Materials and Structures, 10:293-299, 2001.
[36] A. Erturk and D. J. Inman, “On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters,” Journal of Intelligent Material Systems and Structures 19:1311-1325, 2008.
[37] Y. S. Cho, Y. E. Pak, C. S. Han and S. K. Ha, “Five-Port Equivalent Electric Circuit of Piezoelectric Bimorph Beam,” Sensors and Actuators A, 84:140-148, 2000.
[38] S. Roundy and P. K. Wright, “A Piezoelectric Vibration Based Generator for Wireless Electronics,” Smart Materials and Structures, 13:1131-1142, 2004.
[39] Y. Yang and L. Tang, “Equivalent Circuit Modeling of Piezoelectric Energy Harvesters,” Journal of Intelligent Material Systems and Structures, 20:2223-2235, 2009.
[40] J. M. Renno, M. F. Daqaq and D. J. Inman, “On the Optimal Energy Harvesting from a Vibration Source,” Journal of Sound and Vibration, 320:386-405, 2009.
[41] C. Richard, D. Guyomar, D. Audigier and G. Ching, “Semi Passive Damping Using Continuous Switching of a Piezoelectric Device,” in Proc. SPIE, 3672:104-111, 1999.
[42] D. Guyomar, A. Badel, E. Lefeuvre and C. Richard, “Toward Energy Harvesting Using Active Materials and Conversion Improvment by Nonlinear Processing,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 52:584-595, 2005.
[43] E. Lefeuvre, A. Badel, C. Richard and D. Guyomar, “Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction,” Journal of Intelligent Material Systems and Structures, 16:865-876, 2005.
[44] Y. C. Shu, I. C. Lien and W. J. Wu, “An Improved Analysis of the SSHI Interface in Piezoelectric Energy Harvesting,” Smart Materials and Structures, 16:2253-2264, 2007.
[45] Y. C. Shu and I. C. Lien, “A Comparison between the Standard and SSHI Interface Used in Piezoelectric Power Harvesting,” in Proceedings of SPIE: Active and Passive Smart Structures and Integrated Systems, 6525:652509, 2007.
[46] Y. C. Shu, I. C. Lien, W. J. Wu and S. M. Shiu, “Comparison between Parallel- and Series-SSHI Interfaces Adopted by Piezoelectric Energy Harvesting Systems,” in Proceedings of SPIE: Active and Passive Smart Structures and Integrated Systems, 7288:728808, 2009.
[47] G. K. Ottman, H. F. Hofman, A. C. Bhatt and G. A. Lesieutre, “Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply,” IEEE Transactions on Power Electronics, 17:669-676, 2002.
[48] G. K. Ottman, H. F. Hofman, A. C. Bhatt and G. A. Lesieutre, “Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode,” IEEE Transactions on Power Electronics, 18:696-703, 2003.
[49] A. Badel, D. Guyomar, E. Lefeuvre and C. Richard, “Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion,” Journal of Intelligent Material Systems and Structures, 16:889-901, 2005.
[50] A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard and D. Guyomar, “Single Crystal and Nonlinear Process for Outstanding Vibration-Powered Electrical Generators,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 53:673-684, 2006.
[51] A. Badel, D. Guyomar, E. Lefeuvre and C. Richard, “Piezoelectric Energy Harvesting Using a Synchronized Switch Technique,” Journal of Intelligent Material Systems and Structures, 17:831-839, 2006.
[52] E. Lefeuvre, A. Badel, A. Benayad, L. Lebrun, C. Richard and D. Guyomar, “A Comparison between Several Approaches of Piezoelectric Energy Harvesting,” Journal de Physique IV. France, 128:177-186, 2005.
[53] E. Lefeuvre, A. Badel, C. Richard, L. Petit and D. Guyomar, “A Comparison between Serveral Vibation-Powered Piezoelectric Generators for Standalone Systems,” Sensors and Actuators A, 126:405-416, 2006.
[54] Y. C. Shu and I. C. Lien, “Analysis of Power Output for Piezoelectric Energy Harvesting System,” Smart Materials and Structures, 15:1499-1512, 2006.
[55] Y. C. Shu and I. C. Lien, “Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System,” Journal of Intelligent Material Systems and Structures, 16:2429-2438, 2006.
[56] I. C. Lien, Y. C. Shu, W. J. Wu, S. M. Shiu and H. C. Lin, “Revisit of Series-SSHI with Comparisons to Other Interfacing Circuits in Piezoelectric Energy Harvesting,” Smart Materials and Structures, 19:125009, 2010.
[57] P. D. Mitcheson, T. C. Green and E. M. Yeatman, “Power Processing Circuits for Electromagnetic, Electrostatic and Piezoelectric Internal Energy Scanvengers,” Microsystem Technologies, 13:1629-1635, 2007.
[58] S. M. Shahruz, “Design of Mechanical Band-Pass Filter with Large Frequency Bands for Energy Scanveging,” Mechatronics, 16:449-461, 2006.
[59] N. E. duToit and B. L. Wardle, “Performance of Microfabricated Piezoelectric Vibration Energy Harvesters,” Integrated Ferroelectrics, 83:13-32, 2006.
[60] M. Ferrari, V. Ferrari, D. Marioli and A. Taroni, “Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems,” Sensors and Actuators A, 142:329-335, 2008.
[61] I. H. Kim, H. J. Jung, B. M. Lee and S. J. Jang, “Broadband Energy-Harvesting Using a Two Degree-of-Freedom Vibrating Body,” Applied Physics Letters, 98:214102, 2011.
[62] I. C. Lien and Y. C. Shu, “Array of Piezoelectric Energy Harvesting by Equivalent Impedance Approach,” Smart Materials and Structures, 21:082001, 2012.
[63] 連益慶, “陣列式壓電振動能量擷取系統在不同介面電路下之動態特性分析研究,” 國立臺灣大學應用力學研究所博士論文, 2012.
[64] I. C. Lien and Y. C. Shu, “Array of Piezoelectric Energy Harvesters,” in Proceedings of SPIE: Active and Passive Smart Structures and Integrated Systems, 7977:79770K, 2011.
[65] I. C. Lien and Y. C. Shu, “Multiple Piezoelectric Energy Harvesters Connected to Different Interface Circuits,” in Proceedings of SPIE: Active and Passive Smart Structures and Integrated Systems, 8341:83410X, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64668-
dc.description.abstract本研究之目的為探討串聯壓電振子陣列,在標準與電感同步切換整流介面電路架構下全頻域之輸出功率,並透過 PSpice 電路模擬軟體,驗證推導之理論解析公式的正確性。最後,以中力電耦合振子陣列為例,運用本團隊先前導出之並聯陣列解析公式與本研究中之串聯陣列解析方程式,描繪出各種架構之頻率響應關係,並比較其性能之優劣。
壓電振子以雙壓電層懸臂梁為例,運用壓電力學與特徵模態分析,可將振子化為一個電壓源與一個靜態電容串聯而成之電壓型等效電路模型。運用直接積分法或等效阻抗法以及電荷守恆與能量守恆的概念,即可導出各陣列架構在穩態下之系統輸出功率方程式。在推導的過程中,我們發現將振子的外力向量與位移向量各別乘上特定常數後,即可類比為電荷向量與電壓向量,因此可以電容矩陣描述外力與位移之關係。
運用串聯陣列之輸出功率公式,我們繪製出中力電耦合振子在串聯架構下輸出功率之頻率響應關係,比較結果顯示:串聯S-SSHI 架構的寬頻效果最佳,但峰值較低;串聯P-SSHI 架構同時具有寬頻與峰值提升的效果,綜合性能最佳。若將串聯陣列與並聯陣列相比,則可發現串聯S-SSHI與並聯P-SSHI同屬寬頻型,串聯P-SSHI 與並聯S-SSHI 主要為峰值提升型。
zh_TW
dc.description.abstractThe thesis is to study the electrical response of a series connection of multiple piezoelectric oscillators endowed with different energy harvesting circuits, including the
standard and parallel-/series-SSHI (Synchronized Switch Harvesting on Inductor) interface electronics. The proposed analytic estimates are validated numerically by PSpice circuit simulation. In addition, we make comparisons with the case of piezoelectric array connected in parallel, and make conclusions by performance evaluation of the frequency response of oscillators arranged in different kinds of
configurations.
Based on piezoelectric mechanics and modal analysis, the bimorph piezoelectric energy harvester is modeled as a voltage type equivalent circuit model. Using this model
together with the concept of charge and energy conservation, we derive the DC output power of each configuration by either direct integration method or equivalent impedance method. Besides, it is found that the force and the displacement vectors of a series array are analogous to the charge and the voltage vectors. It is further shown that they are related by a generalized capacitive matrix.
From the frequency response of multiple piezoelectric oscillators connected in different ways, it is observed that a series array with series-SSHI circuit has the better broadband effect but with lower peak power. On the other hand, a series array with parallel-SSHI circuit enjoys both the wideband effect and higher peak power response. Furthermore, the electrical response of a series array with series-SSHI interface is similar to that of a parallel array with parallel-SSHI interface: both exhibit broadband modes. In contrast to the previous case, a series array with parallel-SSHI interface and a parallel array with series-SSHI interface show similar performance in power boosting.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:57:08Z (GMT). No. of bitstreams: 1
ntu-101-R99543005-1.pdf: 1460135 bytes, checksum: d94b287a4f0b3e3818e650be46b87cf5 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要 ..................................................... i
Abstract ............................................... ii
目錄 ................................................... iii
圖目錄 ................................................... v
表目錄 ................................................. viii
第一章 導論 ............................................... 1
1.1 研究動機 ............................................. 1
1.2 文獻回顧 ............................................. 2
1.2.1 壓電振子 ........................................... 3
1.2.2 能量擷取介面電路 ..................................... 6
1.2.3 阻抗匹配及電壓調控電路 ................................ 8
1.2.4 陣列式壓電能量擷取系統 ................................ 9
1.3 論文架構 ............................................. 10
第二章 壓電振子理論 ........................................ 11
2.1 壓電效應 ............................................. 11
2.2 壓電材料之本構方程式 ................................... 12
2.3 壓電振子之數學模型 ..................................... 14
2.4 壓電振子之等效電路模型 .................................. 21
第三章 串聯陣列式壓電振子系統之模型理論與分析 ................... 23
3.1 串聯陣列式壓電振子搭載標準介面電路之分析 ................... 23
3.2 串聯陣列式壓電振子搭載P-SSHI 介面電路之分析 ............... 30
3.3 串聯陣列式壓電振子搭載S-SSHI 介面電路之分析 ............... 39
3.4 等效阻抗分析法 ........................................ 47
3.5 小結 ................................................ 50
3.6 範例 ................................................ 53
第四章 模型驗證 ........................................... 54
4.1 串聯壓電振子陣列於PSPICE 中之模型 ....................... 54
4.2 串聯壓電振子陣列搭載標準介面電路之模型驗證 ................. 57
4.3 串聯壓電振子陣列搭載P-SSHI 介面電路之模型驗證 .............. 59
4.4 串聯壓電振子陣列搭載S-SSHI 介面電路之模型驗證 .............. 62
第五章 各種陣列架構之性能比較 ................................ 64
5.1 串聯壓電振子陣列搭載不同介面電路之性能比較 ................. 64
5.2 並聯與串聯壓電振子陣列之性能比較 ......................... 71
第六章 結論與未來展望 ...................................... 78
6.1 結論 ................................................ 78
6.2 未來展望 ............................................. 80
參考文獻 ................................................. 81
附錄一 ................................................... 88
附錄二 ................................................... 89
附錄三 ................................................... 90
dc.language.isozh-TW
dc.subject串聯陣列式壓電振動能量擷取zh_TW
dc.subject寬頻效果zh_TW
dc.subject能量擷取介面電路zh_TW
dc.subjectarray of piezoelectric energy harvesters connected in seriesen
dc.subjectenergy harvesting circuitsen
dc.subjectbroadband effecten
dc.title串聯陣列式壓電振動子能量擷取系統之分析研究zh_TW
dc.titleA Study of an Array of Piezoelectric Energy Harvesters Connected in Seriesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林憲陽(Hsien-Yang Lin),黃育熙(Yu-Hsi Huang)
dc.subject.keyword串聯陣列式壓電振動能量擷取,能量擷取介面電路,寬頻效果,zh_TW
dc.subject.keywordarray of piezoelectric energy harvesters connected in series,energy harvesting circuits,broadband effect,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2012-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved