請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64667完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃榮山 | |
| dc.contributor.author | Kai-Fung Chang | en |
| dc.contributor.author | 張凱峯 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:57:07Z | - |
| dc.date.available | 2012-08-15 | |
| dc.date.copyright | 2012-08-15 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-09 | |
| dc.identifier.citation | [1] M. Veen, W. Norde, and M. C. Stuart, “Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme,” Colloids and Surface B, vol. 35, pp. 33-40, 2004.
[2] S. E. Moulton, J. N. Barisci, A. Bath, R. Stella, and G. G. Wallace, “Investigation of protein adsorption and electrochemical behavior at a gold electrode,” Journal of colloid and interface science, vol. 261, pp. 312-319, 2003. [3] Y. K. Yen, C. Y. Huang, C. H. Chen, C. M. Hung, K. C. Wu, C. K. Lee, J. S. Chang, S. Lin, and L. S. Huang, “A novel, electrically protein-manipulated microcantilever biosensor for enhancement of capture antibody immobilization,” Sensors and Actuators B: Chemical, vol. 141, pp. 498-505, 2009. [4] R. Raiteri, M. Grattarola, H. J. Butt, and P. Skladal, “Micromechanical cantilever-based biosensors,” Sensors and Actuators B, vol. 79, pp.115-126,2001. [5] M. E. Kassner, S. Nemat-Nasser, Z. Suo, G. Bao, J. C. Barbour, L. C. Brinson, H. Espinosa, H. Gao, S. Granick, P. Gumbsch, K.S. Kim, W. Knauss, L. Kubin, J. Langer, B. C. Larson, L. Mahadevan, A. Majumdar, S. Torquato, and F. Swol, “New directions in mechanics,” Mechanics of Materials, vol. 37, pp. 231-259, 2005. [6] 陳獻宗, 當代神經學, 橘井文化事業有限公司, 2003. [7] http://www.proshine.com.tw/10case/epilepsy/newpage1.htm [8] J. G. Hardman, L. E. Limbird, and A. G. Gilman, The pharmacological basis of therapeutics, 2001. [9] E. S. Gerald, and T. B. Judith, “Therapeutic Drug Monitoring,” Appleton & Lange, USA, (1995) [10] 賴沛均, 姚淑惠, 賴振榕, 謝右文, “Valproic acid 與Carbapenem 類藥品交互作用顯著影響藥物血中濃度案例報告,”Formosa Journal of Clinical Pharmacy, vol. 18. No. 3. pp. 67-77, 2010. [11] S. T. David, “ Drug Interaction Facts,” Facts and Comparisons, 2001. [12] G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Physical Review Letters,1986. 56(9): p.930. [13] J. K. Gimzewski, C. Gerber, E. Meyer, and R. R. Schlitter, “Observation of a chemical reaction using a micromechanical sensor,” Chemical Physics Letters, 1994. 217(5-6): p.589-594. [14] R. Berger, E. Delamarche, H. Lang, Cerber, J. Gimzewski, E. Meyer, and H. Guntherodt, “Surface stress in the self-assembly of alkanethiols on gold,” Science, vol. 276, pp.2021-2024, 1997. [15] J. Fritz, M. Baller, H. Lang, H. Rothuizen, P. Vettiger, and E. Meyer, “Translating biomolecular recognition into nanomechanics,” Science, vol. 288, pp. 316-318, 2000. [16] K. W. Wee, G. Y. Kang, J. Park, J. Y. Kang, D. S. Yoon and J.H. Park, “Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilever,” Biosensors and Bioelectronics, 2005. 20(10): p.1932-1938. [17] K. Park, J. Jang, D. Irimia, J. Strugis, J. P. Robinson, M. Toner, and R. Bashir, “Living Cantilever Arrays for Characterization of Mass of Single Live Cells in Fluids,” Lab on a Chip. vol.8, pp.1034-1041, 2008. [18] A. Loui, T.V. Ratto, T. S. Wilson, S. K. Mccall, E. V. Mukerjee, A. H. Love, and B. R. Hart, “Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers,” The Analyst, 2008. 133(5): p608-615. [19] J. W. Ndieyira, M. Wteri, A. D. Barrera, D. Zhou, M. Voqtli, M. Batchelor, M. A. Cooper, T. Strunz, M. A. Horton, C. Abell, T. Rayment, G. Aeppli, and R. A. Mckendry, “Nanomechanical detection of antibiotic mucopeptide binding in a model for superbug drug resistance,” Nature Nanotech.vol. 3, pp. 691–696, 2008. [20] C. Vancura, M. Rueqq, Y. Li, C. Haqleitner, and A. Hierlemann, “Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems,” Analytical chemistry, 2005. 77(9): p.2690. [21] M. Zimmermann, T. Volden, K .U. Kirstein, S. Hafizovic, J. Lichtenberg, O. Brand, and A. Hierlemann, “A CMOS-based integrated-system architecture for a static cantilever array,” Sensors and Actuators B: Chemical, 2008. 131(1): p. 254-264. [22] R. Ivan, B. Jonathan, M. David原著,陳豪勇鑑修,王聖予、陳建和編譯,免疫學,第五版,藝軒圖書出版社,2002。 [23] http://en.wikipedia.org/wiki/Antibody. [24] 洪維廷, 應用壓阻式微懸臂梁生物感測器偵測巴斯德桿菌之研究.國立台灣大學工學院應用力學研究所碩士論文, 2009. [25] 辜煜夫, 壓阻式微懸臂梁生化感測系統溫度效應之量測、消除與應用, 國立台灣大學工學院應用力學研究所碩士論文, 2009. [26] http://www.chemedu.ch.ntu.edu.tw/lecture/molecular/2.htm. [27] 林世明, 應用生化學課堂講義: Protein-protein interaction kinetics on the sensing chip, 2008. [28] Y. K. Yen, “A Study on an Integrated Miniature Piezoresistive Microcantilever Biosensor and its Applications,” Graduate Institute of Applied Mechanics College of Engineering National Taiwan University Doctoral Dissertation, 2009. [29] 林世明, 應用生化學課堂講義: 晶片蛋白質薄膜製造技術, 2008. [30] M. Tortonese, R. Barrett, and C. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Applied Physics Letters, vol. 62, pp. 834, 1993. [31] N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Review of Scientific Instruments, 2004. 75(7): p. 2229-2253. [32] M. J. Tudor, M. V. Andres, K. W. H. Foulds, and J. M. Naden, “Silicon resonator sensors: interrogation techniques and characteristics,” IEE Proceeding, vol. 135, pp. 364-368, 1988. [33] H. Long, M. Hegner, and C. Gerber, ”Cantilever array sensors,” Materials today, 2005. 8(4): p. 30-36. [34] J. Thaysen, A. Boisen, O. Hansen, and S. Bouwstra, “Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement,” Sensors & Actuators: A Physical, vol. 83, pp. 47-53, 2000. [35] L. Eckertova, “Physics of thin films.” 1986: Plenum press New York. [36] H. F. Ji, Y. Zhang, V. V. Purushotham, S. Kondu, B. Ramachandran, T. Thundat, and D. T. Haynie, ”6-Hexanedithiol monolayer as a receptor for specific recognition of alkylmercury,” The Analyst, 2005. 130(12): p. 1577-1579. [37] A. M. Moulin, S. J. O’Shea, R. A. Badley, P. Doyle, and M. E. Welland, “Measuring surface-induced conformational changes in proteins,” Langmuir, 1999. 15(26): p. 8776-8779. [38] F. Zhou, W. Shu, M. E. Welland, and W. T. S. Huck, “Highly reversible and multi-stage cantilever actuation driven by polyelectrolyte brushes,” J. Am. Chem. Soc, 2006. 128(16): p. 5326-5327. [39] C. Smith, “Piezoresistance effect in germanium and silicon,” Physical Review, vol. 94, pp. 42-49, 1954. [40] 林隆翊, 壓阻式微懸臂梁生物感測元件於抗癲癇藥物之研究, 國立台灣大學工學院應用力學研究所碩士論文, 2011. [41] C. Ziegler, “Cantilever-based biosensor,” Analytical and bioanalytical chemistry, 2004. 379(7): p. 946-959. [42] 莊達人, VLSI製造技術. 高力圖書有限公司, 2002. [43] P. J. French, “Polysilicon: a versatile material for Microsystems,” Sensors and Actuators A: Physical, 2002. 99(1-2): p. 3-12. [44] X. Liu, Y. Wu, R. Chuai, C. Shi, W. Chen, and J. Li, “Temperature characteristics of polysilicon piezoresistive nanofilm depending on film structure,” in 2008 2nd IEEE International Nanoelectronics Conference, INEC 2008, March 24 - 27, 2008. Shanghai, China: Inst. of Elec. and Elec. Eng. Computer Society. [45] L. Xiaowei, W. Yajing, C. Rongyan, S. Changzhi, C. Weiping, and L. Jinfeng, “Temperature characteristics of polysilicon piezoresistive nanofilm depending on film structure,” in Nanoelectronics Conference, 2008. INEC 2008. 2nd IEEE International, pp. 909-913, 2008. [46] P. French, and A. Evans, “Piezoresistance in polysilicon and its applications to strain gauges,” Solid-State Electronics, 1989. 32(1): p. 1-10. [47] F. Goericke, “Simulation, fabrication and characterization of piezoresistive bio-/ chemical sensing microcantilever,” 2007. [48] J. Harley and T. Kenny, “1/f noise considerations for the design and process optimization of piezoresistive cantilevers,” Joural of Microelectromechanical Systems, 2000. 9(2): p. 226-235. [49] J. Thaysen, “Cantilever for bio-chemical sensing integrated in a microliquid handling system,” Technical University of Denmark, Department of Micro and Nanotechnolgy. [50] K. Anderson, M. Hamalainen, and M. Malmqvist, “Identification and optimization of regeneration conditions for affinity-based biosensors assays-a multivariate cocktail approach,” Analytical chemistry, vol. 71, pp. 2475-2481, 1999. [51] A. N. Asanov, W. W. Wilson, and P. B. Oldham, “Regenerable Biosensor Platform: A Total Internal Reflection Fluorescence Cell with Electrochemical Control,” Analytical Chemistry, vol. 70, pp. 1156-1163, 1998. [52] http://www.cleanroom.byu.edu/KOH.phtml [53] R. Sandberg, K. Mølhave, A. Boisen, and W. Svendsen, “Effect of gold coating on the Q-factor of a resonant cantilever,” Journal of Microengineering, vol. 15, pp.2249–2253, 2005. [54] 賴英煌, 邱雯藝, 洪偉修, 同步輻射X-ray光電子能譜在表面化學之研究, CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) vol. 60, pp.381~390, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64667 | - |
| dc.description.abstract | 隨著近年來社會走向高齡化的趨勢下,對於生醫檢測晶片的需求也日漸增大,對此,本研究建立於微奈米機電系統技術平台下發展生醫感測晶片,並以一個跨領域的整合式系統,具有可攜式、微型化、低成本、高靈敏度、少量檢體、免螢光標記、快速檢測的優勢,以改善傳統大型且高成本的量測設備,研究探討電場操控蛋白質佈植之壓阻微懸臂梁感測系統,對於抗癲癇藥物丙戊酸(Valproic acid)的藥物監測,由於此為常用的藥物,且藥物在血液內濃度過高會導致不良反應(ADR),因此可見藥物監測之重要性。
以壓阻式微懸臂梁發展免螢光標定之生物感測器,生物訊號以力學基礎轉換成電阻訊號做為量測生物濃度的辨識,測量前與自組裝分子(SAM)鍵結後,再與辨識元蛋白(Probing protein)接合固定後,便可量測藥物的反應量。而生物感測器由於在固定辨識元蛋白不良時,造成測量藥物的反應量較小而不易辨認。本研究利用控制不同酸鹼值的溶液環境使辨識元蛋白帶正電性,以電場操控之技術提升辨識元蛋白於壓阻式微懸臂梁感測表面的固定效率,藉此提升藥物測量的反應量。並在上流道設計增加銦錫氧化物(ITO)導電薄膜,結合微懸臂梁內的壓阻作為一對電極成為具有電場操控之微懸臂梁生物感測器。運用電場操控辨識元蛋白質高效率佈植,討論不同電壓下對辨識元蛋白固定後量測丙戊酸(Valproic acid)之影響,實驗成功在電壓60 V下提升辨識元蛋白固定效率後提高測量丙戊酸(Valproic acid)反應3倍之多,而在藥物濃度監測中,在電壓30 V與60 V下成功的定性與定量分析出丙戊酸(Valproic acid)濃度50 ~ 500 μg/mL。 本研究利用電場操控辨識元蛋白之技術,增加辨識元蛋白之固定效率,在此情況下可提升測量的反應量,換個角度看,在同樣的反應量下可減少辨識元蛋白檢體的濃度,以降低生物樣品浪費,對於壓阻式微懸臂梁生物感測器上發展策略性之規劃。 | zh_TW |
| dc.description.abstract | Therapeutic drug monitoring is a growing issue to measure specific drugs at timed intervals in order to maintain a relatively constant concentration of the medication in the bloodstream. Recognition and quantification of bio-molecules are irreplaceable in biomedical tests and disease diagnosis. This study focus on the piezoresistive microcantilever biosensor embedded with electrodes for manipulation and enhancement of probing protein immobilization onto sensing surfaces. The electrically protein-manipulated, nanomechanics-based biosensor is featured with significant reduction of usage in probing biomaterials, low production cost and high sensistivity; in addition, real-time detection provide immediate and efficient cares for patients at home or bedside point of care.
Connecting ITO conductive film and piezoresisitive film in microcantilever, to fabricate a biosensor that is capable of manipulating electric field. Based on changes in electrical charges of the protein in different solution environments, the approach in this study enhanced the immobilization efficiency of probing protein onto the surfaces of microcantilever by applying electric field. As expected, most charged proteins distributed in solution are effectively attracted onto the sensing gold within electric field in high voltage. Under the influence of electric field, the experiment successfully increased the effectiveness of probing protein immobilization by 3 times in which the microcantilever was used in real-time measurement of Valproic acid drug, and its deflection indicates a proportional concentration amount of antigen-antibody interaction. The Valproic acid drug concentration of 50~500 μg/mL has been demonstrated by using this microcantilever biosensor with manipulating electric field. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:57:07Z (GMT). No. of bitstreams: 1 ntu-101-R99543057-1.pdf: 6373425 bytes, checksum: b246ca2fbbfaed3845c91e077a77b214 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 圖目錄 vii 表目錄 xiii 符號對照表 xiv 第一章 緒論 1 1.1前言 1 1.2研究動機及目的 2 1.3文獻回顧 3 1.3.1蛋白質特性與其吸附應用之研究 3 1.3.2微懸臂梁生物感測器用於生化檢測 5 1.3.3癲癇症與抗癲癇藥物 12 1.4論文大綱 18 第二章 生物感測器 20 2.1 生物的免疫反應 20 2.1.1抗體 21 2.1.2抗體-抗原辨識 23 2.1.3分子間作用力 24 2.1.4 分子間的親和力與結合常數 25 2.2生物感測器之基本原理 27 2.3.辨識分子層之固定技術 29 2.4螢光免疫分析法 31 2.5 微懸臂梁生物感測器 33 2.6 微懸臂梁的應力變化定義 37 第三章 電場操控壓阻式微懸臂梁之理論分析 40 3.1壓阻材料特性分析 40 3.1.1壓阻因子 41 3.1.2壓阻效應與應力分析 42 3.1.3 多晶矽材料特性與製程分析 49 3.2 微懸臂梁尺寸分析 54 3.3雜訊分析 56 3.4蛋白質操控 58 3.4.1 蛋白質之表面電性 58 3.4.2 電場操控蛋白質之電泳應用 58 3.4.2 電場操控蛋白質之生物感測應用 59 第四章 電場操控型壓阻式微懸臂梁感測器 61 4.1壓阻與中性軸位置之討論 61 4.2壓阻與導線之形狀與尺寸設計 62 4.3陣列壓阻式微懸臂梁感測器之製作 63 4.3.1微懸臂梁薄膜成長與離子佈值 64 4.3.2定義壓阻位置 65 4.3.3定義導線位置與沉積上保護層 66 4.3.4電極區開孔與微懸臂梁厚度校正 67 4.3.5定義微懸臂梁形狀、背蝕刻與感測層金的位置 68 4.3.6 KOH背蝕刻 69 4.3.7 晶圓切割 71 4.4 電場型微流道系統之設計與製作 73 4.4.1 微流道基板製作 73 4.4.2 具電極的流道上蓋製作 74 4.5電路板之設計與製作 79 4.6電場操控壓阻式微懸臂梁感測晶片之封裝 79 4.7壓阻因子之量測 81 4.7.1中性軸計算 81 4.7.2壓阻因子實驗與計算 82 第五章 實驗架構與結果討論 85 5.1溫度補償架構與方法 85 5.2未加電場於丙戊酸之反應量測 87 5.2.1實驗架構與方法 87 5.2.2實驗結果 91 5.3電場操控辨識元蛋白質之研究與實驗結果 94 5.3.1電場操控辨識元蛋白質之操作與實驗設置 94 5.3.2電場操控辨識元蛋白質之元素分析量測 97 5.3.3電場操控辨識元蛋白質之定性照片分析 99 5.3.4 電場操控對於相異濃度丙戊酸之量測反應比較 100 第六章 結論與未來展望 105 6.1結論 105 6.2未來展望 106 參考文獻 107 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微懸臂梁 | zh_TW |
| dc.subject | 電場操控 | zh_TW |
| dc.subject | 壓阻 | zh_TW |
| dc.subject | 辨識元蛋白 | zh_TW |
| dc.subject | 丙戊酸 | zh_TW |
| dc.subject | protein | en |
| dc.subject | microcantilever | en |
| dc.subject | valproic acid | en |
| dc.subject | piezoresistive | en |
| dc.subject | electric field | en |
| dc.title | 利用電場操控蛋白質佈植於壓阻式生物感測器之藥物治療監測應用 | zh_TW |
| dc.title | Detection of Anti-epileptic Drug Valproic Acid by Piezoresistive Microcantilever Biosensor with Electric Field Enhanced Probing Protein Immobilization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 沈弘俊,王安邦 | |
| dc.subject.keyword | 壓阻,微懸臂梁,丙戊酸,辨識元蛋白,電場操控, | zh_TW |
| dc.subject.keyword | piezoresistive,microcantilever,protein,electric field,valproic acid, | en |
| dc.relation.page | 112 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 6.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
