請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64654完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊恩誠(En-Cheng Yang) | |
| dc.contributor.author | Pei-Ju Chen | en |
| dc.contributor.author | 陳姵如 | zh_TW |
| dc.date.accessioned | 2021-06-16T22:56:57Z | - |
| dc.date.available | 2015-08-28 | |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-09 | |
| dc.identifier.citation | Arikawa K. 2003. Spectral organization of the eye of a butterfly, Papilio. J Comp Physiol A 189: 791-800.
Arikawa K, Stavenga DG. 1997. Random array of colour filters in the eyes of butterflies. J Exp Biol 200: 2501-2506. Arikawa K, Inokuma K, Eguchi E. 1987. Pentachromatic visual system in a butterfly. Naturwissenschaften 74: 297-298. Arikawa K, Pirih P, Stavenga DG. 2009. Rhabdom constriction enhances filtering by the red screening pigment in the eye of the Eastern Pale Clouded yellow butterfly, Colias erate (Pieridae). J Exp Biol 212: 2057-2064. Arikawa K, Kinoshita M, Stavenga DG. 2004. Color vision and retinal organization in butterflies. pp 193-219. In: Prete FR (ed). Complex Worlds from Simpler Nervous Systems. The MIT Press, Cambridge. Arikawa K, Scholten DGW, Kinoshita M, Stavenga DG. 1999a. Tuning of photoreceptor spectral sensitivities by red and yellow pigments in the butterfly Papilio xuthus. Zool Sci 16: 17-24. Arikawa K, Mizuno S, Kinoshita M, Stavenga DG. 2003. Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of the butterfly Papilio xuthus. J Neurosci 23: 4527-4532. Arikawa K, Mizuno S, Scholten DGW, Kinoshita M, Seki T, Kitamoto J, Stavenga DG. 1999b. An ultraviolet absorbing pigment causes a narrow-band violet receptor and a single-peaked green receptor in the eye of the butterfly Papilio. Vision Res 39: 1-8. Autrum H, Zwehl V. 1964. Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z Vergl Physiol 48: 357-384. Bandai K, Arikawa K, Eguchi E. 1992. Localization of spectral receptors in the ommatidium of butterfly compound eye determined by polarization sensitivity. J Comp Physiol A 171: 289-297. Bennett RR, Tunstall J, Horridge GA. 1967. Spectral sensitivity of single retinula cells of the locust. Z Vergl Physiol 55: 195-206. Bernard GD, Miller WH. 1970. What does antenna engineering have to do with insect eyes? IEEE Student J 8: 2-8. Borst A. 2009. Drosophila’s view on insect vision. Curr Biol 19: R36-47. Briscoe AD. 2008. Reconstructing the ancestral butterfly eye: focus on the opsins. J Exp Biol 211: 1805-1813. Briscoe AD, Chittka L. 2001. The evolution of color vision insects. Annu Rev Entomol 46: 471-510. Briscoe AD, Bernard GD, Szeto AS, Nagy LM, White RH. 2003. Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification and localization of UV-, blue-, and green-sensitive rhodopsin encoding mRNA in the retina of Vanessa cardui. J Comp Neurol 458: 334-349. Burkhardt D. 1962. Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp Soc Exp Biol 16: 86-109. Carlson SD, Chi C. 1979. The functional morphology of the insect photoreceptor. Annu Rev Entomol 24: 379-416. Chittka L, Beier W, Hertel H, Steinmann E, Menzel R. 1992. Opponent color coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. J Physiol A 170: 545-563. D'Abrera B. 1975. Birdwing butterflies of the world. 260 pp. Lansdowne Press, Melbourne. De Valois RL. 1973. Central mechanisms of color vision. pp 209-253. In: Jung R (ed). Central Processing of Visual Information A: Integrative Functions and Comparative Data. (Handbook of Sensory Physiology, Vol. VII/3A). Springer-Verlag Press, Berlin. Fukushi T. 1994. Colour perception of single and mixed monochromatic light in the blowfly Lucilia cuprina. J Physiol A 175: 15-22. Goldsmith TM, Bernard GD. 1974. The visual system of insect. In: Rockstein M (ed). pp 165-272. The Physiology of Insects. Academic Press, New York. Gribakin FG. 1979. Cellular mechanisms of insect photoreception. Int Rev Cytol 57: 127-184. Gribakin FG. 1988. Photoreceptor optics of the honeybee and its eye colour mutants: The effect of screening pigments in the long-wave subsystem of colour vision. J Comp Physiol A 164: 123-140. Horridge GA, Blest D. 1980. The compound eye. In: Locke M, Smith DS (eds). pp 705-733. Insect Biology in the Future. Academic Press, New York. Horridge GA, Marcelja L, Jahnke R. 1984 Colour vision in butterflies. J Comp Physiol 155: 529-542. Horridge GA, Marcelja L, Jahnke R, Matic T. 1983. Single electrode studies on the retina of the butterfly Papilio. J Comp Physiol 150: 271-294. Inada K, Kohsaka H, Takasu E, Matsunaga T, Nose A. 2011. Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. PLoS One 6: e29019. Kelber A. 1999. Ovipositing butterflies use a red receptor to see green. J Exp Biol 202: 2619-2630. Kelber A. 2006. Invertebrate colour vision. pp 250-290. In: Warrant E, Nilsson DE (eds). Invertebrate Vision. Cambridge University Press, New York. Kelber A, Pfaff M. 1999. True colour vision in the orchard butterfly, Papilio aegeus. Naturwissenschaften 86: 221-224. Kelber A, Vorobyev M, Osorio D. 2003. Animal colour vision - behavioural tests and physiological concepts. Biol Rev 78: 81-118. Kelly KM, Mote MI. 1990. Electrophysiology and anatomy of medulla interneurons in the optic lobe of the cockroach, Periplaneta americana. J Comp Physiol A 167: 745-756. Kien J, Menzel R. 1977a. Chromatic properties of interneurons in the optic lobes of the bee. Ⅰ. Broad band neurons. J Comp Physiol A 113: 17-34. Kien J, Menzel R. 1977b. Chromatic properties of interneurons in the optic lobes of the bee. Ⅱ. Narrow band and colour opponent neurons. J Comp Physiol A 113: 35-53. Kinoshita M, Arikawa K. 2000. Colour constancy of the swallowtail butterfly Papilio xuthus. J Exp Biol 203: 3521-3530. Kinoshita M, Shimada N, Arikawa K. 1999. Colour vision of the foraging yellow swallowtail butterfly Papilio xuthus. J Exp Biol 202: 95-102. Kinoshita M, Kurihara D, Tsutaya A, Arikawa K. 2006. Blue and double-peaked green receptors depend on ommatidial type in the eye of the Japanese yellow swallowtail Papilio xuthus. Zool Sci 23: 199-204. Kirschfeld K, Franceschini N. 1977. Photostable pigments within the membrane of photoreceptors. Biophys Struct Mech 3: 191-194. Kitamoto J, Ozaki K, Arikawa. 2000. Ultraviolet and violet receptors express identical mRNA encoding an ultraviolet-absorbing opsin: identification and histological localization of the butterfly Papilio xuthus. J Exp Biol 203: 2887-2894. Kitamoto J, Sakamoto K, Ozaki, Mishina Y, Arikawa K. 1998. Two visual pigments in a single photoreceptor cell: Identification and histological localization of three mRNAs encoding visual pigment opsins in the retina of the butterfly Papilio xuthus. J Exp Biol 201: 1255-1261. Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K. 2008. Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc Biol Sci 275: 947-954. Land MF, Nilsson DE. 2002. Animal Eyes. Oxford University Press, New York. 221 pp. Laughlin SB. 1975. Receptor function in the apposition eye: an electrophysiological approach. pp 479-498. In: Snyder AW, Menzel R (eds). Photoreceptor Optics. Springer-Verlag Press, Berlin-Heidelberg-New York. Laughlin SB. 1980. Neural principles in the peripheral visual systems of invertebrates. pp 113-280. In: Autrum H (ed). Comparative Physiology and Evolution of Vision in Invertebrates A: Invertebrate Photoreceptors. (Handbook of Sensory Physiology, Vol. VII/6B). Springer-Verlag Press, Berlin. Lillywhite PG. 1978. Coupling between locust photoreceptors revealed by a study of quantum bumps. J Comp Physiol 125:13-27. Marshall NJ, Jones PJ, Cronin TW. 1996. Behavioural evidence for colour vision in stomatopod crustaceans. J Comp Physiol A 179: 473-481. Matic T. 1983. Electrical inhibition in the retina of the butterfly Papilio I. Four spectral types of photoreceptors. J Comp Physiol 152: 169-182. Menzel R. 1975. Colour receptors in insects. pp 121-153. In: Horridge GA (ed). The Compound Eye and Vision of Insects. Oxford University Press, London. Menzel R. 1979. Spectral sensitivity and color vision in invertebrates. pp 503-580. In: Autrum H (ed). Comparative Physiology and Evolution of Vision in Invertebrates A: Invertebrate Photoreceptors. (Handbook of Sensory Physiology, Vol. VII/6A). Springer-Verlag Press, Berlin. Menzel R, Blakers M. 1976. Colour receptors in the bee eye – morphology and spectral sensitivity. J Comp Physiol 108: 11-33. Menzel R, Backhaus WGK. 1989. Color vision of honey bees: phenomena and physiological mechanisms. pp. 281-297. In: Stavenga DG, Hardie RC (eds). Facets of Vision. Springer-Verlag Press, Berlin. Mollon JD. 1989. 'Tho' she kneel'd in that place where they grew…' The uses and origins of primate color vision. J Exp Biol 146: 21-38. Naka KI, Rushton WAH. 1966. S-potentials from colour units in the retina of fish (cyprinidae). J Physiol 185: 536-556. Neumeyer C. 1991 Evolution of colour vision. pp 284-305. In: Cronly-Dillon JR, Gregory RL (eds). Evolution of the Eye and Visual System. (Vision and Visual Dysfunction, Vol. II). Macmillan press, London. Obara Y, Majerus MEN. 2000. Initial mate recognition in the British cabbage butterfly, Pierisrapae rapar. Zool Sci 17: 725-730. Osorio D. 1986. Ultraviolet sensitivity and spectral opponency in the locust. J Exp Biol 122: 193-208. Osorio D, Vorobyev M. 2008. A review of the evolution of animal colour vision and visual communication signals. Vision Res 48: 2042-2051. Pichaud F, Briscoe A, Desplan C. 1999. Evolution of color vision. Curr Opin Neurobiol 9: 622-627. Qiu X, Arikawa K. 2003. The photoreceptor localization confirms the spectral heterogeneity of ommatidia in the male small whit butterfly, Pieris rapae crucivora. J Comp Physiol A 189: 81-88. Qiu X, Vanhoutte KAJ, Stavenga DG, Arikawa K. 2002. Ommatidial heterogeneity in the compound eye of the male small white butterfly, Pieris rapae crucivora. Cell Tissue Res 307: 371-379. Sauman I, Briscoe AD, Zhu H, Shi D, Froy O, Stalleicken J, Yuan Q, Casselman A, Reppert SM. 2005. Connecting the navigational clock to sun compass input in the monarch butterfly brain. Neuron 46: 457-467. Seki T, Vogt K. 1998. Evolutionary aspects of the diversity of visual pigment chromophores in the class Insecta. J Comp Biochem Physiol B 119: 53-64. Seki T, Fujishita S, Ito M, Matsuoka N, Tsukida K. 1987. Retinoid composition in the compound eyes of insects. Exp Biol 47: 95-103. Shaw SR. 1969. Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res 9: 999-1029. Shaw SR. 1975. Retinal resistance barriers and electrical lateral inhibition. Nature 255: 480-483. Shaw SR. 1978. The extracellular space and blood-eye barrier in an insect retina: an ultrastructural study. Cell Tissue Res 188: 35-61. Shaw SR. 1981. Anatomy and physiology of identified non-spiking cells in the photoreceptor-lamina complex of the compound eye of insects, especially Diptera. pp 61-116. In: Roberts A, Bush BMH (eds). Neurons Without Impulses: their significance for vertebrate and invertebrate nervous systems. Cambridge University Press, Cambridge. Shichida Y, Imai H. 1998. Visual pigment: G-protein-coupled receptor for light signals. Cell Mol Life Sci 54: 1299-1315. Stavenga DG. 1992. Eye regionalization and spectral tuning of retinal pigments in insects. Trends Neurosci 15: 213-218. Stavenga DG. 2002a. Colour in the eyes of insect. J Comp Physiol A 188: 337-348. Stavenga DG. 2002b. Reflections on colourful ommatidia of butterfly eye. J Exp Biol 205: 1077-1085. Stavenga DG, Arikawa K. 2006. Evolution of color and vision of butterflies. Arthropod Struct Dev 35: 307-318. Stavenga DG, Smits RP, Hoenders BJ. 1993. Simple exponential function describing the absorbance bands of visual pigment spectra. Vision Res 33: 1011-1017. Stavenga DG, Kinoshita M, Yang EC, Arikawa K. 2001. Retinal regionalization and heterogeneity of butterfly eyes. Naturwissenschaften 88: 477-481. Swihart SL. 1970. The neural basis of colour vision in the butterfly, Papilio troilus. J Insect Physiol 16: 1623-1636. Troje N. 1993. Spectral categories in the learning behavior of blowflies. Z Naturforsch C 48: 96-104. von Frisch K. 1914. Der farbensinn und formensinn der biene. Zool Jb Abt Allg Zool Physiol 35: 1-188. Wakakuwa M, Stavenga DG, Arikawa K. 2007. Spectral organization of ommatidia in flower-visiting insects. Photochem Photobiol 83: 27-34. Wakakuwa M, Stavenga DG, Kurasawa M, Arikawa K. 2004. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J Exp Biol 207: 2803-2810. Wehner R. 1981. Spatial vision in arthropods. pp 287-616. In: Autrum H (ed). Comparative Physiology and Evolution of Vision in Invertebrates A: Invertebrate Photoreceptors. (Handbook of Sensory Physiology, Vol. VII/6C). Springer-Verlag Press, Berlin. White RH, Wu H, Munch T, Bennett RR, Grable EA. 2003. The retina of Manduca sexta: rhodopsin-expression, the mosaic of green- blue- and UV-sensitive photoreceptors and regional specialization. J Exp Biol 206: 3337-3348. Yang EC, Lin HC, Hung YS. 2004. Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol 50: 913-925. Zaccardi F, Kelber A, Sison-Mangus MP, Briscoe AD. 2006. Color discrimination in the red range with only one long-wavelength sensitive opsin. J Exp Biol 209: 1944-1955. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K. 2007. Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8: 577-581. Zhang S, Srinivasan MV. 1993. Behavioral evidence for parallel information processing in the visual system of insects. Jap J Physiol 43: 247-258. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64654 | - |
| dc.description.abstract | 視覺是大部分動物用以感知外界環境的重要生理機能,分辨環境中的顏色訊號對於動物的生存扮演不可或缺的角色。為提升色彩辨識能力,蝴蝶的視覺系統已發展出不同策略以增加光譜解析力,例如窄化光感受器的光譜感度、改變光譜感度峰值或增加光感受器的種類。黃裳鳳蝶透過光感受器光譜感度的修飾,應有助於種間辨識。為瞭解黃裳鳳蝶的彩色視覺,本研究以神經電生理之細胞內記錄技術量測黃裳鳳蝶複眼光譜感度。結果顯示黃裳鳳蝶具有九種光感受器,分別是對波長 360 nm、390 nm、440 nm、510 nm、540 nm、550 nm、580 nm、600 nm 和 620 nm 最敏感的光感受器。與視色素光譜吸收理論值比對後,顯示部分光感受器的光譜感度與預測值並不完全相符,光譜感度曲線的推移及光感受器種類的多樣化應與色素的過濾作用有關。已知位在小眼頂端的螢光色素和圍繞在視官柱體周圍的屏蔽色素可修飾蝴蝶光感受器的光譜感度,扮演光譜過濾的角色。除了光學的過濾作用,光譜感度量測的同時亦發現 negative-going 的反應,顯示在黃裳鳳蝶複眼光感受器中對不同波長的刺激有拮抗電位的交互作用。為瞭解 negative-going 反應的來源,本研究分別以產生不同反應極性的波長進行光刺激,以比較刺激後光感受器產生反應所需的時間差異。結果顯示 negative-going 反應所需時間較短,推測此抑制電位可能源自光感受器本身的細胞反應,而非間接地來自胞外電流的回饋。黃裳鳳蝶在初階視覺系統的光感受器即存在光譜拮抗作用,可能有助於強化彩色視覺,但此課題仍有待更深入的研究。 | zh_TW |
| dc.description.abstract | Vision is one of the important physiological functions to perceive surrounding information for most animals, and discriminating colors is essential for a visual system to seeing color. For a better discrimination, several strategies have been developed to enhance spectral resolution in the visual system of butterfly, such as narrowing spectral sensitivity, shifting the peak sensitivity, or diversifying spectral types of photoreceptor. Troides butterflies are presumably tuned the properties of the photoreceptor sensitivity spectra for intra-species recognition. Electrophysiological recording in the compound eye of Troides aeacus formosanus showed that there are 9 spectral types of photoreceptor with peak sensitivities at 360 nm, 390 nm, 440 nm, 510 nm, 540 nm, 550 nm, 580 nm, 600 nm, and 620 nm. The spectral sensitivities of some photoreceptors do not match to those predicted spectra of visual pigments, when fitting the theoretical pigment absorption curves to the recorded spectral sensitivities. The spectral tuning and diversification appear to the optical interaction of the fluorescing and perirhabdomal pigments, which are known to function as spectral filters in the compound eyes of some butterfly species. In addition to the optical filtering effects, negative-going responses were observed when gave light stimulation with the specific wavelengths, indicating that there are strong antagonistic interactions in the Troides retina. To explore the origin of the negative-going responses, the time-to-peaks of temporal impulse responses elicited by brief flashes with the specific wavelengths were compared. The result indicates that the inhibitory current could not be attributed to the extracellular field current but the direct current flow within the photoreceptor itself. The spectral opponency at the level of photoreceptor could subserve the Troides color vision, however further study on this issue is needed. The variety of spectral receptor types caused by the pigments filtering effects and electrical interactions in the Troides eye suggest that the Troides butterfly has a good ability on color discrimination. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T22:56:57Z (GMT). No. of bitstreams: 1 ntu-101-R99632004-1.pdf: 3462346 bytes, checksum: 79387078b7f6a312c1b6525c2a242bdb (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Acknowledgements i
Abstract (in Chinese) ii Abstract iii Contents v Introduction 1 Background and Literature Reviews of Butterfly Color Vision 3 Color vision 3 Anatomy of butterfly compound eyes 4 Spectral receptor types in butterfly eyes 6 Ommatidial heterogeneity of butterfly eyes 8 Spectral tuning and modification 9 Materials and Methods 12 Animals 12 Measurement of spectral sensitivity 12 Analysis of negative-going response 17 Histology of ommatidial heterogeneity 17 Results 19 Discussion 28 The significance of the variety of spectral types 28 The diversification and spectral tuning of photoreceptors 29 The origin of negative-going responses 34 Spectral opponency in the retina 37 References 39 Tables 47 Figures 50 Supplementary Information 71 Appendixes 73 | |
| dc.language.iso | en | |
| dc.subject | 蝴蝶 | zh_TW |
| dc.subject | 光譜拮抗作用 | zh_TW |
| dc.subject | 過濾作用 | zh_TW |
| dc.subject | 光感受器 | zh_TW |
| dc.subject | 光譜感度 | zh_TW |
| dc.subject | 黃裳鳳蝶 | zh_TW |
| dc.subject | 彩色視覺 | zh_TW |
| dc.subject | spectral sensitivity | en |
| dc.subject | Troides aeacus formosanus | en |
| dc.subject | butterfly | en |
| dc.subject | spectral opponency | en |
| dc.subject | filtering effect | en |
| dc.subject | photoreceptor | en |
| dc.subject | color vision | en |
| dc.title | 黃裳鳳蝶複眼光感受器的多樣化與光譜拮抗作用 | zh_TW |
| dc.title | Diversity of photoreceptors and spectral opponency in the compound eye of the butterfly, Troides aeacus formosanus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 焦傳金(Chuan-Chin Chiao),嚴宏洋(Hong-Young Yan) | |
| dc.subject.keyword | 彩色視覺,光譜感度,光感受器,過濾作用,光譜拮抗作用,蝴蝶,黃裳鳳蝶, | zh_TW |
| dc.subject.keyword | color vision,spectral sensitivity,photoreceptor,filtering effect,spectral opponency,butterfly,Troides aeacus formosanus, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-10 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
