Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64641
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李佳翰
dc.contributor.authorHung-Ying Yangen
dc.contributor.author楊弘穎zh_TW
dc.date.accessioned2021-06-16T22:56:50Z-
dc.date.available2017-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-10
dc.identifier.citation[1] K. R. Catchploe, and A. Polman, “Plasmonic solar cells,” Opt. Express. 16(26), 21793-21800 (2008).
[2] Y. Hamakawa, “Thin-Film Solar Cell: Next Generation Photovoltaics and Its Applications” Springer-Verlag Berlin Heidelberg, Germany, 2004.
[3] H. A. Atwater, and A. Polman, “Plamonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205-21(32010).
[4] A. J. Morfa, K. L. Rowlen, T. H. Reilly III, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[5] S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[6] Z. Sun, X. Zuo, and Y. Yang, “Role of surface metal nanoparticles on the absorption in solar cells,” Opt. Lett. 4(37), 641-643(2012).
[7] K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[8] Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
[9] P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical Impedance Matching Using Coupled Plasmonic Nanoparticle Arrays,” Nano Lett. 11(4), 1760-1765 (2011).
[10] S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys 109(7), 073105 (2011).
[11] W. Liu , X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95(4), 693–698 (2011).
[12] X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. E. Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(54), A888-A896(2011).
[13] P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[14] D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93(9), 091107 (2008).
[15] C. K. Huang, H. H. Lin, J. Y. Chen, K. W. Sun, W.-L.Chang, “Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles,” Sol. Energy Mater. Sol. Cells 95(8), 2540-2544(2011).
[16] C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[17] Z. Yu, A. Raman and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(53), A336-A380(2011).
[18] R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[19] Y.-C. Lee, C.-Fu Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969-7975(2008).
[20] S. Xiao, E. Stassen, and N. A. Mortensen, “Ultrathin silicon solar cells with enhanced photocurrents assisted by plasmonic nanostructures,” J. Nanophot. 6(1), 06150(2012).
[21] D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, and Y. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).
[22] Y. A. Akimov and W. S. Koh, “Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells,” Plasmonics 6(1), 155-161 (2011).
[23] Rui Xu, Xiaodong Wang_, Wen Liu, Liang Song, Xiaona Xu, An Ji, Fuhua Yang, and Jinmin Li, “Optimization of the Dielectric Layer Thickness for Surface-Plasmon-Induced Light Absorption for Silicon Solar Cells,” J. J. Appl. Phys 51(4), 042301(2012).
[24] S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012-1015 (2010).
[25] K.-Q. Peng and S.-T. Lee, “Silicon Nanowires for Photovoltaic Solar Energy Conversion,” Adv. Mater. 23(2), 198-215(2011).
[26] . Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111 (2010).
[27] Yung-Ming Yeh, Yu-Sheng Wang, and Jia-Han Li, “Enhancement of the optical transmission by mixing the metallic and dielectric nanoparticles atop the silicon substrate,” Opt. Express 19(52), A80-A94(2011).
[28] Lumerical FDTD Solution, http://www.lumerical.com/.
[29] 王昱勝, “利用奈米光學結構增加太陽能電池之光吸收效率,” 國立台灣大學工程科學及海洋工程學系碩士論文 (2009).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64641-
dc.description.abstract我們提出將介電質材料覆蓋於奈米金屬球粒子的奈米結構,以增加薄膜太陽能電池之光吸收率。將不同形狀之介電質材料覆蓋於金屬奈米粒子,進而探討光學性質,發現在特定的參數底下,可以增強光在可見光頻域下的吸收率。其中,奈米金屬粒子與介電質奈米粒子達一定比例時,可以得到好的光吸收率。以二氧化矽薄膜覆蓋於周期奈米銀粒子時,光吸收率的趨勢會被二氧化矽的厚度所主導,而光吸收率也可以高於普通的周期金屬奈米粒子。厚度達一百二十奈米時,我們可以得到較佳的光吸收率。若二氧化矽薄膜覆蓋較小的銀奈米粒子,其光能量的穿透與銀奈米粒子的周期無關。利用這些物理機制以及混和材料結構的設計概念,我們可以給予未來薄膜太陽能電池表面抗反射層的結構設計方針。zh_TW
dc.description.abstractWe propose the structure which the silica material with different shapes covers over the periodically silver nanoparticle to enhance the optical transmission in thin film solar cells. We study the optical properties and obtain the better transmission in the visible region with the particular parameters in the structure. When the ratio of the radius of silver nanoparticles and silica nanoparticles becomes a particular value, we can obtain the good performance for enhancing the optical transmission. It is found that the trend of the photon number is dominated by the thickness of silica thin film for the structure which silver nanoparticles mantled by silica thin film. Moreover, the photon number transmission is higher than the common structure which has the rectangular arrangements for silver nanoparticles. It is interesting that the smaller silver nanoparticles have no relationship with the period of silver nanoparticles in the mantled structure with proper thickness of silica thin film. These results can be useful in the further study of design for high optical transmission nanostructure as a guideline.en
dc.description.provenanceMade available in DSpace on 2021-06-16T22:56:50Z (GMT). No. of bitstreams: 1
ntu-101-R99525071-1.pdf: 7557347 bytes, checksum: f42083bd1458e903656590bb5f5e8b44 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
STATEMENT OF CONTRIBUTION iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Literature review 1
1.2 Motivations 3
1.3 Framework 4
Chapter 2 Nanophotonic Structures with Mixing the Metallic and Dielectric Materials 5
2.1 The wrapped structure 7
2.2 The interlaced structure 7
2.3 The mantled structure 8
Chapter 3 Simulation Results and Discussions 12
3.1 Optical transmission 13
3.2 Total photon number 15
3.3 Effect of the thickness of silica thin film 18
3.4 Electric field distribution 19
3.5 Average power densities 21
3.6 Summary 23
Chapter 4 Conclusion and Future Work 41
A Fabrication and Measurement 42
REFERENCE 52
VITA 46
dc.language.isoen
dc.title利用混合金屬與介電質材料之奈米光學結構增加太陽能電池之光吸收率zh_TW
dc.titleNanophotonic Structures with Mixing the Metallic and Dielectric Materials for Enhancing the Optical Transmission in Solar Cellsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許文翰,邱奕鵬,鄭琮達,余英松
dc.subject.keyword太陽能電池,奈米粒子,光吸收率,zh_TW
dc.subject.keywordsolar cells,nanoparticles,optical transmission,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2012-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
7.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved