請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64629
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹穎雯(Yin-Wen Chan) | |
dc.contributor.author | Chun-Hsuan Tai | en |
dc.contributor.author | 戴群軒 | zh_TW |
dc.date.accessioned | 2021-06-16T22:56:43Z | - |
dc.date.available | 2012-08-16 | |
dc.date.copyright | 2012-08-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-10 | |
dc.identifier.citation | [1] 施漢章,「濕性腐蝕的一般形態及其有關原理」,材料科學,第12卷,第54~63頁,民國六十九年六月。
[2] M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions”, Pergamon Press, N.Y., 1966. [3] 謝吉昌(吳志興指導),「電化學法檢測混凝土中鋼筋腐蝕之研究」,國立屏東科技大學土木工程研究所,碩士論文,民國九十三年七月。 [4] 林賢正(張奇偉指導),「鋼筋混凝土腐蝕行為探討」,中華大學土木工程研究所,碩士論文,民國九十二年七月。 [5] Rasheeduzzafar, S. Ehtesham Hussain, S.S. Al-Saadoun, “Effect of cement composition on corrosion of reinforcing steel in concrete”, Cement and Concrete Research, No.21, pp.777-794, 1991. [6] BRE Digest, “The durability of steel in concrete part 2”, Building Research Establishment, England, 1982. [7] C. Alonso, C. Andrade, M. Castellote, P. Castro, “Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar”, Cement and Concrete Research, Vol. 33, Iss.7 , pp.1487-1490, 2000. [8] K.H. Pettersson, “Factors influencing chloride induced corrosion of reinforcement in concrete”, in: C. Sjostrom (Ed.), Durability of Building Materials and Components, Vol. 1, Chapman & Hall, London, pp. 334-341, 1996. [9] P. Lambert, C. L. Page, P. R. W. Vassie, “Investigation of reinforcement corrosion. Electrochemical monitoring of steel in chloride contaminated concrete”, Mater Struct, Vol. 24, pp.351-358, 1991. [10] V. K. Gouda and W. Y. Halaka, “Corrosion and corrosion inhibition of reinforced steel”, Br Corros J., Vol. 5, pp. 204-208, 1970. [11] O. A. Kayyali and M. N. Haque, “The ratio of Cl-/OH- in chloride con- taminated concrete. A most important criterion”, Mag Concr Res, Vol. 47, pp. 235-242, 1995. [12] P. Schiessl and W. Breit, “Local repair measures at concrete structures damaged by reinforcement corrosion”, Proceedings of the 4th International Symposium on Corrosion of Reinforcement in Concrete Construction, SCI, Cambridge, pp.525- 234, 1996. [13] M. D .A. Thomas, J. D. Matthews, C. A. Haynes, “Chloride diffusion and reinforce- ment corrosion in marine exposed concretes containing PFA”, Corrosion of Reinforcement in Concrete, Elsevier, Warwickshire, pp. 198-212, 1990. [14] M. Thomas, “Chloride thresholds in marine concrete”, Cement and Concrete Research, Vol. 26, Iss. 4, pp. 513-519, 1996. [15] B. B. Hope and A.K.C. Ip, “Chloride corrosion threshold in concrete”, ACI Material Journal, pp. 306-314, 1987. [16] C. Alonso, C. Andrade, M. Castellote, P. Castro, “Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar”, Cement and Concrete Research, Vol. 33, Iss.7 , pp.1487-1490, 2000. [17] 黃兆龍,「混凝土中氯離子含量檢測技術及試驗」,訓練班教材,民國九十三年。 [18] ACI 318-08, “Building code requirements for structural concrete and commentary”, 2008. [19] ACI 222R-01, “Protection of metals in concrete against corrosion”, 2001. [20] EN 206-1, “Concrete - Part 1: Specification, performance, production and conformity”, 2000. [21] Dura Crete, “General guidelines for durability design and redesign,” The European Union – Brite. EuRam III, Project No. BE95-1347, 2000. [22] J. M. Frederikren, “Chloride threshold values for service life design”, Second International RILEM Workshop on Testing and Modeling the Chloride Ingress into Concrete, pp.397-414, 2000. [23] 中華人民共和國交通部,「水運工程混凝土施工規範(JTJ268-96)」,1996。 [24] 廣州四航工程技術研究院,「海工高性能混凝土結構壽命預測和評估」,中港集團重點技術開發項目,2004。 [25] Mehta, P., P. J. M. Monteiro, “Concrete Structure, Properties and Materials”, Prentice-Hall inc., Englewood-Cliffs, N.J., 1986. [26] Mehta and P. K., “Pozzolanic and Cementitious by Products as Mineral Admixtures for Concrete-A Critical Review”, ACI SP-79, pp. 1-46, 1983. [27] Hausmann D. A., “Steel Corrosion in Concrete”, Material Protection, pp. 19-23, 1967. [28] ACI Committee 226, “Silica Fume in Concrete”, ACI Materials Journal, Vol. 84, No. 6, pp. 158-166, 1987. [29] 李修齊(詹穎雯指導),「高強度混凝土水中磨耗性質之機理探討」,碩士論文,國立台灣大學土木工程研究所,民國八十六年七月。 [30] 宋佩瑄,「矽灰在混凝土工程上之發展與應用」,結構工程,第113-120頁,民國七十七年。 [31] 賴正義,「高飛灰量混凝土性質」,台電工程月刊,第551期,民國八十三年。 [32] 詹穎雯(陳振川指導),「環境溫、濕度對含高爐石、飛灰與普通波特蘭水泥混凝土強度之影響與變形之研究」,碩士論文,國立台灣大學土木工程研究所,民國七十五年七月。 [33] 陳振川,「飛灰與爐石混凝土性質與其工程應用」,結構工程,第二卷,第四期,第87-94頁,民國七十六年。 [34] Li, J., P. Tian, “Effect of slag and silica fume on mechanical properties of high strength concrete”, Cement and Concrete Research, Vol. 27, No. 6, pp. 833-837, 1997. [35] Khatib, J. M., and J. J. Hibbert, “Selected engineering properties of concrete incorporating slag and metakaolin”, Construction and Building Materials, Vol. 19, pp. 460–472, 2005. [36] Shannag and M. J., “High strength concrete containing natural pozzolan and silica fume”, Cement and Concrete Composites, Vol. 22, pp. 399-406, 2000. [37] Young and J. F., “A Review of the Pore Structure of Cement Paste and Concrete and Its Influence on Permeability”, ACI SP-108, 1988. [38] Helmuth and R.A.,“Water-Reducing Properties of Fly Ash in Cement Pastes, Mortars, and Concrete:Causes and Test Methods,” ACI SP-91, PP.723-740, 1986. [39] 中國鋼鐵公司,「爐石利用推廣手冊」,三版,民國八十九年。 [40] 行政院公共工程委員會,「公共工程高爐石混凝土使用手冊」,民國九十年。 [41] 洪文方(黃兆龍指導),「普通水泥中添加高爐熟料之影響」,碩士論文,國立台灣工業技術學院營建工程技術研究所,民國七十四年七月。 [42] 日本土木學會,「高爐石粉末應用於混凝土施工指針」,平成8年。 [43] 陳清泉、陳振川,「爐石為水泥熟料與添加料對混凝土特性影響之文獻及國外現況調查研究」,台灣營建研究中心報告,民國七十六年。 [44] 林建宏(詹穎雯指導),「爐石混凝土水中磨耗性質研究」,碩士論文,國立台灣大學土木工程研究所,民國九十三年七月。 [45] ACI Committee 233, “Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete”, American Concrete Institute, Detroit, 1996. [46] Lim, S. N., T. H. Wee, “Autogenous Shrinkage of Ground-Granulated Blast-Furnace Slag Concrete,” ACI Materials Journal, Vol. 97, No. 5, pp. 587-593, 2000. [47] David and N. R., “Strength and Durability of a 70% Ground Granulated Blast Furnace Slag Concrete Mix”, Missouri Department of Transportation Organizational Results, 2006. [48] Hogan, F. J., J. W. Meusel, “Evaluation for Durability and Strength Development of a Ground Granulated Blast-Furnace Slag”, Cement Concrete and Aggregates, Vol. 3, No. 1, pp. 40-52, 1981. [49] 詹穎雯,「飛灰爐石混凝土之原理、性質與應用」,飛灰爐石於混凝土工程之合理運用研討會論文集,台灣營建研究院,第1-16頁,民國八十八年。 [50] Aiticin, P. C., A. Neville, “High Performance Concrete Demystified,” Concrete International, Vol. 15, No. 1, pp. 21-26, 1989. [51] 財團法人中興工程顧問社,「鋼筋混凝土橋樑腐蝕及使用年限之研究」,民國八十六年。 [52] 林仁益、沈永年、黃兆龍,「Si NMR 解析水灰比、養護溫度與水泥漿體水化行為之相關性」,中國土木水利工程學刊第三卷第三期,第255-265頁,民國八十年。 [53] W. H. Price, Journal of the ACI, Vol. 47, No. 6, P.417-432, 1951. [54] 陳振川、詹穎雯,「飛灰與無飛灰混凝土之強度與變形」,中國土木水利工程學刊,第一卷,第一期,第43-57頁,民國七十八年。 [55] Nicholas J. Carino, “The Maturity Method”, CRC Handbook on Nondestructive Testing of Concrete, P101-143, 2004. [56] Stern, M., Geary, A. L., “Electrochemical Polarisation. I. A Theoretical Analysis of the Shape of Polarisation Curves”, J. Electrochem. Soc., Vol. 104, pp. 56-63, 1957. [57] ASTM G3-89, “Standard Practice for Convention Applicable to Electrochemical Measurement in Corrosion Testing”, 1994. [58] Andrade, J. A. et al., “The Determination of the Corrosion Rate of Steel Embedded in Concrete: The Polarization Resistance and AC Impendance Methods”, ASTM STP 906, pp. 43- 63, 1984. [59] Gonzalez, J. A. et al., “Corrosion of Concrete”, British Corrosion Journal, Vol. 15, No. 3, pp. 135-139, 1980. [60] Berke, N. S. et al., “Corrosion of Steel in Cracked Concrete”, Corrosion Engineering, Vol. 49, No. 11, pp. 934- 943, 1993. [61] Dhir, R. K. et al., “Quantifying Chloride Induced Corrosion from Half- Cell Potential”, Cement and Concrete Research, Vol. 23, pp. 1443-1454, 1993. [62] 柯賢文,「腐蝕及其防制」,全華科技圖書有限公司,民國八十四年。 [63] Liu, Y., Weyers, R. E., “Comparison of Guarded and Unguarded Linear Polarization CCD Devices with Weight Loss Measurements”, Elsevier Science Ltd, Cement and Concrete Research Vol. 33, pp. 1093-1101, 2003. [64] Broomfield, J. P., Rodriguez, J., L.M. Ortega, “Corrosion Rate and Life Prediction for Reinforced Concrete Structures”, Structure Faults and Repairs Symposium, Historic University of Edinburgh, Scotland, 1993. [65] ASTM C-876, “Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete”, 1999. [66] John P. Broomfielf, “Corrosion of Steel in Concrete”, 1st Ed., E & FN Spon, 1997. [67] J.H. Bungey and S.G. Millard, “Testing of Concrete in Structures”, 3rd. Ed., Blackie Academic & Professional, Champman & Hall, New York, 1996. [68] Rodriguez, J., Ortega, L. M., Garcia A. M., “Corrosion Rate Measurements in Concrete Bridges by Means of the Linear Polarization Technique Implemented in a Field Device”, ACI Fall Convention, Minneapolis, Minnesota, 1993. [69] Rodriguez, J., Andrade, C., “Load-Bearing Capacity Loss in Corrosion Structure”, ACI Spring Convention, Toronto Ontario Canada, 1990. [70] Morris, W., Vico, A., Vazquez, M., Sanchez, S. R., “Corrosion of Reinforcing Steel Evaluated by Means of Concrete Resistivity Measurements”, Elsevier Science Ltd, Corrosion Science, Vol. 44, pp. 81-99, 2002. [71] R.B. Polder, “Test Methods for on Site Measurement of Resistivity of Concrete - a RILEM TC-154 Technique Recommendation”, Elsevier Science Ltd, Construction and Building Materials, Vol. 15, pp. 125-131, 2001. [72] T. Fukushima, Y. Yoshizaki, F. Tomosawa, K. Takahashi, “Relationship between neutralization depth and concentration distribution of CaCO3–Ca(OH)2 in carbonated concrete”, V. M. Malhotra (Ed.), Advances in Concrete Technology, ACI SP-179, Tokushima, Japan, pp. 347-363, 1998. [73] 郭同杉(黃然指導),「添加飛灰對混凝土抗壓強度及耐久性影響之探討」,碩士論文,國立台灣海洋大學河海工程研究所,民國九十五年七月。 [74] 劉彥志(楊仲家指導),「飛灰混凝土傳輸行為之研究」,碩士論文,國立台灣海洋大學材料工程研究所,民國一百年六月。 [75] 陳韋嘉(黃然指導),「添加爐石粉對混凝土抗壓強度及滲透行為之探討」,碩士論文,國立台灣海洋大學河海工程研究所,民國九十五年七月。 [76] 林致緯(楊仲家指導),「以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中氯離子擴散行為」,碩士論文,國立台灣海洋大學材料工程研究所,民國九十五年六月。 [77] 詹穎雯、楊仲家、陳育聖、張永昌,「台灣苗栗以北地區大氣中氯鹽環境與橋梁腐蝕劣化之研究」,交通部公路總局,民國九十九年。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64629 | - |
dc.description.abstract | 本研究係透過調整水膠比(0.35、0.45、0.55、0.65),及數種卜作嵐材料添加率(飛灰取代水泥10%、20%、30%;爐石取代水泥15%、30%、50%),以探討不同的配比對混凝土耐久性之影響;利用Salt Ponding Test模擬試體曝露於氯鹽環境的情況,藉以觀察混凝土抵抗氯離子入侵,進而使鋼筋免受腐蝕危害的能力。而判斷混凝土內鋼筋的腐蝕狀況是使用美國James儀器公司製作的 Gecor 8 腐蝕電流儀進行試驗;量測鋼筋的腐蝕電流密度、腐蝕電位與混凝土電阻係數,作鋼筋腐蝕趨勢的一直接指標;並對試體進行抗壓強度試驗、氯離子含量滴定試驗及酸鹼滴定試驗,以作為混凝土對鋼筋保護程度之參考。 | zh_TW |
dc.description.abstract | The subject of the thesis is to study the effect of different mix proportion on the durability of concrete through setting several w/b ratio (0.35, 0.45, 0.55, 0.65) and pozzolanic material substitution (fly ash replaces cement for 10%, 20%, 30%; slag replaces cement for 15%, 30%, 50%). Salt ponding test was conducted to simulate the situation of exposure to chloride of specimen, and to judge the ability of concrete of resisting chloride permeation and the capability of protecting reinforcing steel from corrosion. Besides, Gecor 8, made by James Instruments, was used to determine the corrosion trend of the reinforceing steel in concrete by measuring the corrosion rate, corrosion potential and electrical resistance. Furthermore, concrete compressive strength test, chloride ion content titration and acid-base titration were conducted to judge the degree of reinforcing steel protection by concrete. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T22:56:43Z (GMT). No. of bitstreams: 1 ntu-101-R99521228-1.pdf: 5261421 bytes, checksum: 32ca367e4aa999f155957b6385e76c6e (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 論文口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目錄 v 表目錄 ix 圖目錄 xi 照片目錄 xiii Chapter 1 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與內容 1 Chapter 2 文獻回顧 2 2.1 鋼筋腐蝕 2 2.1.1 鋼筋腐蝕之定義 2 2.1.2 鋼筋腐蝕之原因及形態 2 2.1.3 電化學腐蝕 4 2.1.4 混凝土內鋼筋受氯離子腐蝕之機制 4 2.2 臨界氯離子濃度 9 2.2.1 引發鋼筋開始腐蝕的氯離子濃度 9 2.2.2 混凝土內氯鹽含量之相關規範 10 2.2.3 氯離子臨界值之相關規定 11 2.3 影響混凝土對鋼筋保護程度之因素 12 2.3.1 卜作嵐材料的添加 12 2.3.1.1 混凝土微觀孔隙 14 2.3.1.2 飛灰之成分與性質 16 2.3.1.3 飛灰主要水化反應機理 18 2.3.1.4 添加飛灰對混凝土之影響 18 2.3.1.5 爐石之成分與性質 19 2.3.1.6 爐石主要水化反應機理 20 2.3.1.7 添加爐石對混凝土之影響 22 2.3.2 水灰比 24 2.3.3 骨材 25 2.3.4 養護溫度 25 2.4 混凝土內鋼筋腐蝕之檢測 26 2.4.1 鋼筋腐蝕速率(Corrosion Rate) 26 2.4.2 腐蝕勢能(Corrosion Potential) 29 2.4.3 混凝土電阻係數(Electrical Resistance) 30 Chapter 3 實驗計畫 33 3.1 實驗內容 33 3.2 基本試驗材料 34 3.3 基本試驗儀器 35 3.4 混凝土拌和流程 36 3.5 混凝土抗壓強度試驗 37 3.6 Salt Ponding Test 37 3.7 氯離子含量滴定試驗 38 3.8 酸鹼滴定試驗 39 3.9 鋼筋腐蝕電流量測試驗 40 Chapter 4 試驗結果與討論 41 4.1 混凝土抗壓強度試驗與結果分析 41 4.1.1 水膠比對混凝土抗壓強度之影響分析 41 4.1.2 飛灰取代量對混凝土抗壓強度之影響分析 42 4.1.3 爐石取代量對混凝土抗壓強度之影響分析 44 4.1.4 小結 45 4.2 Salt Ponding Test與結果分析 45 4.2.1 飛灰取代量對氯離子含量之影響分析 45 4.2.2 爐石取代量對氯離子含量之影響分析 46 4.2.3 小結 47 4.3 鋼筋腐蝕電流量測試驗與結果分析 48 4.3.1 飛灰取代量對鋼筋腐蝕之影響分析 48 4.3.2 爐石取代量對鋼筋腐蝕之影響分析 49 4.3.3 小結 50 Chapter 5 結論與建議 52 5.1 結論 52 5.2 建議 53 參考文獻 54 | |
dc.language.iso | zh-TW | |
dc.title | 混凝土內鋼筋腐蝕與氯離子濃度之研究 | zh_TW |
dc.title | A Study on Chloride Content for Corrosion of Reinforcing Steel in Concrete | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖文正(Wen-Cheng Liao),劉楨業(Chen-Yeh Liu),楊仲家(Chung-Chia Yang) | |
dc.subject.keyword | 耐久性,氯離子濃度,Salt Ponding Test,鋼筋腐蝕,腐蝕電流量測, | zh_TW |
dc.subject.keyword | durability,chloride content,salt ponding test,rebar corrosion,measurement of corrosion current, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 5.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。