請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64622完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊曜宇 | |
| dc.contributor.author | Chia-Chuan Ho | en |
| dc.contributor.author | 何家全 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:58:44Z | - |
| dc.date.available | 2014-12-31 | |
| dc.date.copyright | 2012-08-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-10 | |
| dc.identifier.citation | 1. Eisen MB, Spellman PT, Brown PO, & Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 95(25):14863-14868.
2. Golub TR, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531-537. 3. Allison DB, Cui X, Page GP, & Sabripour M (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7(1):55-65. 4. Lau SK, et al. (2007) Three-Gene Prognostic Classifier for Early-Stage Non–Small-Cell Lung Cancer. Journal of Clinical Oncology 25(35):5562-5569. 5. Draghici S, et al. (2007) A systems biology approach for pathway level analysis. Genome Res 17(10):1537-1545. 6. Khatri P, Sirota M, & Butte AJ (2012) Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. PLoS Comput Biol 8(2):e1002375. 7. Mootha VK, et al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature genetics 34(3):267-273. 8. Subramanian A, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102(43):15545-15550. 9. Tian L, et al. (2005) Discovering statistically significant pathways in expression profiling studies. Proceedings of the National Academy of Sciences of the United States of America 102(38):13544-13549. 10. Pavlidis P, Lewis DP, & Noble WS (2002) Exploring gene expression data with class scores. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing:474-485. 11. Zhang B & Horvath S (2005) A general framework for weighted gene co-expression network analysis. Statistical applications in genetics and molecular biology 4:Article17. 12. Carlson MR, et al. (2006) Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC genomics 7:40. 13. Zhang X, et al. (2012) Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics 28(1):98-104. 14. Carlson M, et al. (2006) Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC genomics 7(1):40. 15. Yip AM & Horvath S (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC bioinformatics 8:22. 16. Luo F, et al. (2007) Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC bioinformatics 8:299. 17. Karlebach G & Shamir R (2008) Modelling and analysis of gene regulatory networks. Nature reviews. Molecular cell biology 9(10):770-780. 18. Langfelder P, Luo R, Oldham MC, & Horvath S (2011) Is My Network Module Preserved and Reproducible? PLoS Comput Biol 7(1):e1001057. 19. Ciriello G, Cerami E, Sander C, & Schultz N (2012) Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 22(2):398-406. 20. Li A & Horvath S (2007) Network neighborhood analysis with the multi-node topological overlap measure. Bioinformatics 23(2):222-231. 21. Schaub MA, Henzinger TA, & Fisher J (2007) Qualitative networks: a symbolic approach to analyze biological signaling networks. BMC systems biology 1:4. 22. Barabasi AL & Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509-512. 23. Barabasi A-L & Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5(2):101-113. 24. Wu Z, Zhao X, & Chen L (2009) Identifying responsive functional modules from protein-protein interaction network. Mol Cells 27(3):271-277. 25. Edgar R, Domrachev M, & Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207-210. 26. Wingender E, et al. (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28(1):316-319. 27. Wingender E, et al. (2001) The TRANSFAC system on gene expression regulation. Nucleic Acids Res 29(1):281-283. 28. Matys V, et al. (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31(1):374-378. 29. Wingender E, Dietze P, Karas H, & Knuppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24(1):238-241. 30. Inc. P (2012) Partek® Genomics SuiteTM. (Partek Inc., St. Louis). 31. Shannon P, et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research 13(11):2498-2504. 32. Hu Z, et al. (2009) VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Research 37(suppl 2):W115-W121. 33. Hu Z, Mellor J, Wu J, & DeLisi C (2004) VisANT: an online visualization and analysis tool for biological interaction data. BMC bioinformatics 5(1):17. 34. Barsky A, Gardy JL, Hancock REW, & Munzner T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23(8):1040-1042. 35. Langfelder P & Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics 9:559. 36. Ficklin SP, Luo F, & Feltus FA (2010) The Association of Multiple Interacting Genes with Specific Phenotypes in Rice Using Gene Coexpression Networks. Plant Physiology 154(1):13-24. 37. Langfelder P, Zhang B, & Horvath S (2008) Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24(5):719-720. 38. Lezon TR, Banavar JR, Cieplak M, Maritan A, & Fedoroff NV (2006) Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns. Proceedings of the National Academy of Sciences 103(50):19033-19038. 39. Seno F, Trovato A, Banavar JR, & Maritan A (2008) Maximum entropy approach for deducing amino Acid interactions in proteins. Physical review letters 100(7):078102. 40. Dhadialla PS, Ohiorhenuan IE, Cohen A, & Strickland S (2009) Maximum-entropy network analysis reveals a role for tumor necrosis factor in peripheral nerve development and function. Proceedings of the National Academy of Sciences 106(30):12494-12499. 41. Huang da W, et al. (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome biology 8(9):R183. 42. Byrt T, Bishop J, & Carlin JB (1993) Bias, prevalence and kappa. Journal of clinical epidemiology 46(5):423-429. 43. Hoehler FK (2000) Bias and prevalence effects on kappa viewed in terms of sensitivity and specificity. Journal of clinical epidemiology 53(5):499-503. 44. Mak HK, Yau KK, & Chan BP (2004) Prevalence-adjusted bias-adjusted kappa values as additional indicators to measure observer agreement. Radiology 232(1):302-303. 45. Kim J, Bates DG, Postlethwaite I, Heslop-Harrison P, & Cho KH (2007) Least-squares methods for identifying biochemical regulatory networks from noisy measurements. BMC bioinformatics 8:8. 46. Shedden K, et al. (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nature medicine 14(8):822-827. 47. Carlson JM, Chakravarty A, DeZiel CE, & Gross RH (2007) SCOPE: a web server for practical de novo motif discovery. Nucleic Acids Res 35(Web Server issue):W259-264. 48. Chakravarty A, Carlson JM, Khetani RS, & Gross RH (2007) A novel ensemble learning method for de novo computational identification of DNA binding sites. BMC bioinformatics 8:249. 49. Carlson JM, Chakravarty A, Khetani RS, & Gross RH (2006) Bounded search for de novo identification of degenerate cis-regulatory elements. BMC bioinformatics 7:254. 50. Chakravarty A, Carlson JM, Khetani RS, DeZiel CE, & Gross RH (2007) SPACER: identification of cis-regulatory elements with non-contiguous critical residues. Bioinformatics 23(8):1029-1031. 51. Bingle CD & Gowan S (1996) Oct-1 interacts with conserved motifs in the human thyroid transcription factor 1 gene minimal promoter. The Biochemical journal 319 ( Pt 3):669-674. 52. Zhang H, et al. (1999) Retinoblastoma protein expression leads to reduced Oct-1 DNA binding activity and enhances interleukin-8 expression. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 10(7):457-465. 53. Osborne A, Zhang H, Yang WM, Seto E, & Blanck G (2001) Histone deacetylase activity represses gamma interferon-inducible HLA-DR gene expression following the establishment of a DNase I-hypersensitive chromatin conformation. Molecular and cellular biology 21(19):6495-6506. 54. Osborne AR, et al. (2004) Oct-1 maintains an intermediate, stable state of HLA-DRA promoter repression in Rb-defective cells: an Oct-1-containing repressosome that prevents NF-Y binding to the HLA-DRA promoter. The Journal of biological chemistry 279(28):28911-28919. 55. Osborne AR, Zhang H, & Blanck G (2006) Oct-1 DNA binding activity unresponsive to retinoblastoma protein expression prevents MHC class II induction in a non-small cell lung carcinoma cell line. Molecular immunology 43(6):710-716. 56. Shakya A, et al. (2009) Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity. Nat Cell Biol 11(3):320-327. 57. Sherman PA, et al. (1989) The octamer motif is a B-lymphocyte-specific regulatory element of the HLA-DR alpha gene promoter. Proceedings of the National Academy of Sciences 86(17):6739-6743. 58. Gerstung M, Eriksson N, Lin J, Vogelstein B, & Beerenwinkel N (2011) The Temporal Order of Genetic and Pathway Alterations in Tumorigenesis. PLoS ONE 6(11):e27136. 59. Kanehisa M & Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27-30. 60. LLC B (2000) (BioCarta LLC ). 61. Harvard BIoMa (MSigDB: Molecular Signatures Database. 62. Harris MA, et al. (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database issue):D258-261. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64622 | - |
| dc.description.abstract | 為了瞭解基因調控機制,我們選擇微陣列生物晶片技術來偵測基因表現並且將得到的資料加以分析。傳統上,統計方法可以幫助我們選出在實驗資料中有差異表現的基因。然而,針對相同的研究主題,不同研究團隊的實驗資料常常會找到幾乎不相同的基因。這些結果再再顯示,此統計分析方法所找出的基因無法應用於不同資料組間,造成分析結果的穩定性不佳,無法幫助研究學者建構出通用的調控模型。
要解決統計方法的不穩定性,目前有關微陣列的資料分析已經逐步轉向基因群(gene set)的概念,而應用此想法的主要分析有兩大類:路徑分析(pathway analysis)以及網絡分析(network analysis)。路徑分析主要大量利用過去文獻紀錄以及預先定義好的與失調(dysregulation)相關基因群來解釋基因轉錄資料(transcriptomic data)。另一方法網絡分析則不需要利用過去知識,利用數學計算找出基因與基因間的連接關係,並藉此定義出與表現型相關的表現基因群。本研究的目標,在於找出穩定的調控基因群以及其內部未被詳加研究的基因;因此,我們將利用網絡分析方法來更進一步分析生物晶片的資料。 在本研究當中,我們利用權重型基因共同表現網絡分析(Weighted Gene Co-expression Network Analysis, WGCNA)來幫助我們建立非關尺度網路(scale-free network),進而找出高度相關的基因群。在我們使用的肺腺癌資料中,網絡分析的確可以有效找出具有調控功能的基因群模組。這些被選中的模組,功能上可以分為幾大類:細胞骨架建構(cytoskeletal construction)、細胞週期(cell cycle)與免疫缺失(immunodeficiency)。而與免疫相關模組當中,有一個基因群之功能與B細胞受體調控(B-Cell Receptor signaling)高度相關,並且和肺癌病患存活也有高度相關。此B細胞受體調控相關模組的核心表現基因,被預測可能同時受到相同的轉錄因子Oct-1的調控。 總而言之,研究的結果證實,網絡分析的確可以幫助我們在不利用過往已知生物知識的情況下,有效建立出在不同資料間穩定的調控模型,而這些調控模組在生物上的確具有功能性。基於本研究證明,這樣穩定的分析可以提供生物研究學者另外找到可靠的研究基因的方法。 | zh_TW |
| dc.description.abstract | To understand the mechanisms of gene regulations, we usually use microarray technology to detect levels of gene expressions and analyze these microarray data. Traditionally, statistical approaches are implemented to select genes differentially expressed in the experimental data. However, for the same research topic, researchers discover almost different genes through different datasets. These results indicate no stability across datasets to construct a general regulatory model. To overcome this difficulty, currently the analysis has been turned into the gene set based solutions: pathway analysis and network analysis. Pathway analysis interprets transcriptomic data based on prior knowledge and pre-defined gene sets with dysregulations. On the other hand, network analysis identifies the gene-gene interactions without prior knowledge and searches for modules associated with phenotypes under research.
In this study, we utilize the Weighted Gene Co-expression Network Analysis (WGCNA) to construct scale-free network for exploring highly correlated gene sets. From our lung adenocarcinoma training datasets, network analysis actually identifies regulatory modules. These selected modules could be categorized to be several functions: cytoskeletal construction, cell cycle regulation and immunodeficiency. Speaking of immune related modules, one module has been proved to be specific to lung cancer survival prediction, and it is annotated as B-cell receptor (BCR) signaling related module. The hub genes of BCR signaling related module has been predicted to be commonly regulated by transcription factor Oct-1. Based on our results and previous studies, we tried to propose a regulatory model concerning to lung carcinogenesis. In conclusion, these data indicate network analysis could help us construct stable regulatory network across datasets without prior knowledge, and the selected gene sets are biologically functional to suggest reliable research targets. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:58:44Z (GMT). No. of bitstreams: 1 ntu-101-R99945005-1.pdf: 1729349 bytes, checksum: 4b08d46a1ddf35b8ef76b31c1ee3e4bf (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 x 第1章 文獻探討 1 1.1 微陣列生物晶片(Microarray) 1 1.2 利用統計方法的單一基因分析 2 1.3 途徑分析(Pathway analysis) 3 1.3.1 生物知識資料庫 3 1.3.2 現存常用的途徑分析 3 1.4 網絡分析(Network analysis) 5 1.5 基因共同表現網路 6 1.6 研究目標(Specific Aims) 7 第2章 實驗材料 8 2.1 樣本收集 8 2.1.1 用來訓練的資料組(Datasets for Training) 8 2.1.2 存活預測的測驗資料組(Datasets for Survival Prediction) 9 2.2 資料庫 10 2.2.1 探針對應基因資料庫 10 2.2.2 基因別名資料庫 10 2.2.3 途徑分析(pathway analysis)所需資料庫 11 2.2.4 轉錄因子預測資料庫 12 2.3 使用程式語言及公用/商業軟體 13 2.3.1 Partek Genomics Suite 6.6 13 2.3.2 Cytoscape 與VisANT 13 第3章 方法 14 3.1 資料收集與網絡建構分析 14 3.2 核心模組篩選及合併 16 3.3 功能性富集(enrichment)與分群 18 3.4 利用log-rank方法及Kaplan-Meier曲線進行存活預測 19 第4章 結果 20 4.1 網絡方法所得模組及其功能 20 4.2 網絡分析所得模組與現有資料庫比較 21 4.3 不同癌症間連結度拓樸差異 22 4.4 模組的存活預測結果 23 4.5 轉錄因子預測結果 24 第5章 討論 26 5.1 網絡方法所得模組及其功能 26 5.2 基於B-Cell受體調控相關模組中的核心基因進行存活預測分析 27 5.3 基於B-Cell存活預測核心模組學習訓練分析 28 5.4 模組數目選擇最佳化 29 5.5 Oct-1與肺癌相關調控模型 30 第6章 結論 32 參考文獻 33 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非關尺度網絡分析 | zh_TW |
| dc.subject | 微陣列生物晶片 | zh_TW |
| dc.subject | 路徑分析 | zh_TW |
| dc.subject | 網絡分析 | zh_TW |
| dc.subject | 基因轉錄資料 | zh_TW |
| dc.subject | microarray | en |
| dc.subject | pathway analysis | en |
| dc.subject | network analysis | en |
| dc.subject | transcriptomic data | en |
| dc.subject | scale-free network | en |
| dc.title | 利用基因共同表現網路找出穩定的調控基因群 | zh_TW |
| dc.title | Identification of Stable Regulatory Modules Using Gene Co-expression Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴亮全,蔡孟勳,高成炎,陳佩君 | |
| dc.subject.keyword | 微陣列生物晶片,路徑分析,網絡分析,基因轉錄資料,非關尺度網絡分析, | zh_TW |
| dc.subject.keyword | microarray,pathway analysis,network analysis,transcriptomic data,scale-free network, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
