請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64604
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭本垣(Ban-Yuan Kuo) | |
dc.contributor.author | Cheng-Chien Peng | en |
dc.contributor.author | 彭振謙 | zh_TW |
dc.date.accessioned | 2021-06-16T17:57:31Z | - |
dc.date.available | 2022-03-03 | |
dc.date.copyright | 2020-03-03 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-26 | |
dc.identifier.citation | Abt, D. L., Fischer, K. M., Abers, G.A., Protti, M., González, V., Strauch, W., 2010. Constraints on upper mantle anisotropy surrounding the Cocos slab from SK(K)S splitting. J. Geophys. Res., 115, B06316, doi:10.1029/2009JB006710
Argus, D.F., Gordon, R.G, DeMets, C., 2011. Geologically current motion of 56 plates relative to the no-net rotation reference frame. Geochem. Geophys. Geosys. 12, doi:10.1029/2011GC00375. Arroyo, I.G., Husen, S., Flueh, E.R., Gossler, J., Kissling, E., Alvarado, G.E., 2009. Three- dimensional P-wave velocity structure on the shallow part of the Central Costa Rica Pacific margin from local earthquake tomography using on- and offshore networks. Geophysical Journal International 179, 827–849. Auer, L., Boschi, L., Becker, T. W., Nissen-Meyer, T., Giardini, D., 2014. Savani: A variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets. Journal of Geophysical Research: Solid Earth, 119(4), 3006–3034.doi:10.1002/2013jb010773 Baccheschi, P., Margheriti, L., Steckler, M.S., 2007. Sesmic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy). Geophys. Res. Lett. 34, L05302. https://doi.org/10.1029/2006GL028899 Barruol, G., Bonnin, M., Pedersen, H., Bokelmann, G. H. R., Tiberi, C., 2011. Belt-parallel mantle flow beneath a halted continental collision: The Western Alps. Earth Planet. Sci. Lett. 302, 429–438. https://doi.org/10.1016/j.epsl.2010.12.040 Bernal-López, L.A., Garibaldi, B.R., León Soto, G., Valenzuela, R.W., Escudero, C.R., 2016. Seismic anisotropy and mantle flow driven by the Cocos slab under southern Mexico. Pure Appl. Geophys., 173, 3373-3393, doi:10.1007/s00024-015-1214-7. Bonnin, M., Barruol, G., Bokelmann, G. H. R., 2010. Upper mantle deformation beneath the North American– Pacific plate boundary in California from SKS splitting. J. Geophys. Res., 115, B04306, doi:10.1029/2009JB006438. Bowman, J. R., Ando, M., 1986. Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone. Geophys. J. R. Astron. Soc. 88, 25–41. https://doi.org/10.1111/j.1365-246X.1987.tb01367.x Burtman, V.S., Molnar, P., 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Spec. Pap., Geol. Soc. Am. 281, 1–76. https://doi.org/10.1130/SPE281-p1 Capitanio, F.A., Faccenda, M. 2012. Complex mantle flow around heterogeneous subducting oceanic plates. Earth Planet. Sci. Lett., 353, pp. 29-37. https://doi.org/10.1016/j.epsl.2012.07.042 Confal, J.M., Faccenda, M., Eken, T., Taymaz, T., 2018. Numerical simulation of 3-D mantle flow evolution in subduction zone environments in relation to seismic anisotropy beneath the eastern Mediterranean region. Earth Planet. Sci. Lett. 497,50-61. https://doi.org/10.1016/j.epsl.2018.06.005 Crotwell, H.P., Owens, T.J., Ritsema, J., 1999. The TauP Toolkit: Flexible seismic travel-time and ray-path utilities. Seismol. Res. Lett. 70, 154–160. doi:10.1785/gssrl.70.2.154. DeMets, C., Gordon, R. G., Argus, D.F., 2010. Geologically current plate motions. Geophys. J. Int., 181, 1–80, doi:10.1111/j.1365- 246X.2009.04491.x. Di Leo, J.F., Wookey, J., Hammond, J.O.S., Kendall, J.M., Kaneshima, S., Inoue, H., Yamashina, T., Harjadi, P., 2012. Deformation and mantle flow beneath the Sangihe subduction zone from seismic anisotropy. Phys. Earth Planet. Inter., 194–195, pp.38-54 Di Leo, J., Walker, A., Li, Z.-H., Wookey, J., Ribe, N., Kendall, J.-M., Tommasi, A., 2014. Development of texture and seismic anisotropy dur- ing the onset of subduction. Geochem. Geophys. Geosyst., 15, 192–212, doi:10.1002/2013GC005032. Dougherty, S. L., Clayton, R. W., Helmberger, D.V., 2012. Seismic structure in central Mexico: Implications for fragmentation of the subducted Cocos plate. J. Geophys. Res., 117, B09316, doi:10.1029/2012JB009528. Duretz, T., Schmalholz, S.M., Gerya, T.V., 2012. Dynamics of slab detachment. Geochem. Geophys. Geosyst 13(3), Q03020. http://dx.doi.org/10.1029/2011GC004024 Duretz, T., Gerya, T.V., 2013. Slab detachment during continental collision: Influence of crustal rheology and interaction with lithospheric delamination. Tectonophysics 602, 124–140. https://doi.org/10.1016/j.tecto.2012.12.024 Eakin, C. M., Long, M.D., 2013. Complex anisotropy beneath the Peruvian flat slab from frequency- dependent, multiple-phase shear wave splitting analysis. J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50349. Eakin, C. M., Rychert, C. A., Harmon, N., 2018. The role of oceanic transform faults in seafloor spreading: A global perspective from seismic anisotropy. J. Geophys. Res.: Solid Earth, 123, 1736 1751. https://doi.org/ 10.1002/2017JB015176 Ekström, G., Nettles, M., Dziewonski, A. M., 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200-201, 1-9. doi:10.1016/j.pepi.2012.04.002 Faccenda, M., Capitanio, F.A., 2012. Development of mantle seismic anisotropy during subduction-induced 3-D flow. Geophys. Res. Lett. 39, 11. doi:10.1029/2012GL051988 Faccenda, M., Capitanio, F.A., 2013. Seismic anisotropy around subduction zones: insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochem. Geophys. Geosyst. 14. http://dx.doi.org/10.1029/2012GC004451 Ferrari, L., 2004. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology, 32, 77-80. Ferrari, L., Orozco-Esquivel, T., Manea, V., Manea, M., 2012. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone Tectonophysics, 522–523, pp. 122-149. Ferreira, A.M.G., Faccenda, M., Sturgeon, W., Chang, S.-J., Schardong, L. 2019. Ubiquitous lower-mantle anisotropy beneath subduction zones. Nat. Geosci. 12, 301-306. https://doi.org/10.1038/s41561-019-0325-7 Foley, B.J., Long, M.D., 2011. Upper and mid‐mantle anisotropy beneath the Tonga slab. Geophys. Res. Lett., 38, L02303. doi:10.1029/2010GL046021 Fontaine, F.R., Barruol, G., Tommasi, A., Bokelmann, G.H.R., 2007. Upper-mantle flow beneath French Polynesia from shear wave splitting. Geophys. J. Int., 170, pp. 1262-1288, 10.1111/j.1365-246X.2007.03475.x Gripp, A. E., Gordon, R.G., 2002. Young tracks of hotspots and current plate velocities. Geophys. J. Int., 150, 321–361. Hoernle, K., Abt, D.L., Fischer, K.M., Nichols, H., Hauff, F., Abers, G.A., van der Bogaard, P., Heydolph, K., Alvarado, G., Protti, M., Strauch, W., 2008. Geochemical and geophysical evidence for arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature, 451, pp. 1094-1098 Husker, A., Davis, P. M., 2009. Tomography and thermal state of the Cocos plate subduction beneath Mexico City. J. Geophys. Res., 114, B04306, doi:10.1029/2008JB006039. Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S., 2006. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421, 1-22. doi:10.1016/j.tecto.2006.02.011. Jung, H., Mo, W., Green, H.E., 2009. Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nat. Geosci. 2, 73–77. https://doi.org/10.1038/ngeo389 Kaneshima, S. and Silver, P.G., 1992. A search for source side mantle anisotropy. Geophys. Res. Lett., 19 (10), pp. 1049-1052 Karato, S., 1992. On the Lehmann discontinuity. Geophys. Res. Lett. 19 (22), 2255–2258. Karato, S.-I., Jung, H., Katayama, I., Skemer, P., 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annu. Rev. Earth Planet. Sci. 36, 59–95. doi:10.1146/annurev.earth.36.031207.124120 Kawakatsu, H., Utada, H. 2017. Seismic and electrical signatures of the lithosphere-asthenosphere system of the normal oceanic mantle. Annu. Rev. Earth Planet. Sci. 45, 139-67. https://doi.org/10.1146/annurev-earth-063016-020319 Keith, C.M., Crampin, S., 1977a. Seismic body waves in anisotropic media: reflection and refraction at a plane interface. Geophys. J. R. Astr. Soc. 49, 181-208. Keith, C.M., Crampin, S., 1977b. Seismic body waves in anisotropic media: propagation through a layer. Geophys. J. R. Astr. Soc. 49, 209-233. Keith, C.M., Crampin, S., 1977c. Seismic body waves in anisotropic media: synthetic seismograms. Geophys. J. R. Astr. Soc. 49, 225-243. Kennett, B.L.N., Engdahl, E.R., 1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105, 429–465. doi:10.1111/j.1365-246X.1991.tb06724.x. Kissling, E., Schlunegger, F., 2018. Rollback Orogeny Model for the Evolution of the Swiss Alps. Tectonics 37, 1097-1115.https://doi.org/10.1002/2017TC004762 Koulakov, I., 2011. High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of worldwide traveltime data. J. Geophys. Res. 116(B4), 1–22. doi:10.1029/2010JB007938 Krystopowicz, N. J., Currie, C.A., 2013. Crustal eclogitization and lithosphere delamination in orogens. Earth Planet. Sci. Lett. 361, 195-207.https://doi.org/10.1016/j.epsl.2012.09.056 Kufner, S.-K., Schurr, B., Sippl, C., Yuan, X., Ratschbacher, L., Mohammad Akbar, A., et al., 2016. Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia). Earth Planet. Sci. Lett.435, 171–184. https://doi.org/10.1016/j.epsl.2015.11.046 Kufner, S.-K., Schurr, B., Haberland, C., Zhang, Y., Saul, J., Ischuk, A., & Oimahmadov, I., 2017. Zooming into the Hindu Kush slab break-off: A rare glimpse on the terminal stage of subduction. Earth Planet. Sci. Lett. 461, 127–140. https://doi.org/10.1016/j.epsl.2016.12.043 Kufner, S.-K., Eken, T., Tilmann, F., Schurr, B., Yuan, X., Mechie, J., et al., 2018. Seismic anisotropy beneath the Pamir and the Hindu Kush: Evidence for contributions from crust, mantle lithosphere, and asthenosphere. J. Geophys. Res., Solid Earth 123. https://doi.org/10.1029/2018JB015926 Kuo B.-Y., Forsyth, D.W., Wysession, M., 1987. Lateral heterogeneity and azimuthal anisotropy in the North Atlantic determined from SS-S differential traveltimes. J. geophys. Res. , 92, 6421–6436. Kuo, B.-Y., Wang, C.-C., Lin, S.-C., Lin, C.-R., Chen, P.-C., Jang, J.-P., Chang, H.-K., 2012, Shear-wave splitting at the edge of the Ryukyu subduction zone, Earth Planet. Sci. Lett., 355-356, 262-270, doi:10.1016/j.epsl.2012.08.005. Kuo, B.-Y., Lin, S.-C., Lin, Y.-W., 2018. SKS splitting and the scale of vertical coherence of the Taiwan mountain belt. J. Geophys. Res., Solid Earth 123, 1366–1380. https://doi.org/10.1002/2017JB014803 Kustowski, B., Ekstrom, G., Dziewonski, A.M., 2008. Anisotropic shear-wave velocity structure of the Earth's mantle: a global model. J. Geophys. Res. 113, (B06306). doi:10.1029/2007JB005169. Lee, J., Jung, H., 2015. Lattice-preferred orientation of olivine found in diamond-bearing garnet peridotites in Finsch, South Africa and implications for seismic anisotropy. J. Struct. Geol. 70, 12-22. https://doi.org/10.1016/j.jsg.2014.10.015 León-Soto, G., Ni, J.F., Grand, S.P., Sandvol, E., Valenzuela, R.W., Speziale, M.G., González, J.M.G., Reyes, T.D., 2009. Mantle flow in the Rivera–Cocos subduction zone. Geophys. J. Int., 179, pp. 1004-1012 Li, W., Chen, Y., Yuan, X., Schurr, B., Mechie, J., Oimahmadov, I., Fu, B., 2018. Continental lithospheric subduction and intermediate-depth seismicity: Constraints from S-wave velocity structures in the Pamir and Hindu Kush. Earth Planet. Sci. Lett. 482, 478–489. https://doi.org/10.1016/j.epsl.2017.11.031 Liao, J., Gerya, T., Thielmann, M., Webb, A., Kufner, S.K., Yin, A., 2017. 3D geodynamic models for the development of opposing continental subduction zones: The Hindu Kush-Pamir example. Earth Planet. Sci. Lett. 480, 133-146. https://doi.org/10.1016/j.epsl.2017.10.005 Lin, S.-C., Kuo, B.-Y., 2016. Dynamics of the opposite-verging subduction zones in the Taiwan region: Insights from numerical models. J. Geophys. Res., Solid Earth 121, 2174–2192. https://doi.org/10.1002/2015JB012784 Long, M. D., Becker, T.W., 2010. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett., 297, 341–354. Long, M. D., 2013. Constraints on subduction geodynamics from seismic anisotropy. Rev. Geophys. 51, 76-112. https://doi.org/10.1002/rog.20008 Lynner, C., Long, M.D., 2013. Sub-slab seismic anisotropy and mantle flow beneath the Caribbean and Scotia subduction zones: Effects of slab morphology and kinematics. Earth Plant. Sci. Lett., 361, 367-378. https://doi.org/10.1016/j.epsl.2012.11.007 Lynner, C., Long, M.D., 2014. Sub-slab anisotropy beneath the Sumatra and circum-Pacific subduction zones from source-side shear wave splitting observations. Geochem. Geophys. Geosyst. 15, 2262–2281. https://doi.org/10.1002/2014GC005239 Lynner, C., Long, M.D., Thissen, C.J., Paczkowski, K., Montesi, L.G.J., 2017. Evaluating geodynamic models for sub-slab anisotropy: Effects of olivine fabric type. Geosphere. 13,247-259. https://doi.org/10.1130/GES01395.1 MacDougall, J. G., Jadamec, M. A., Fischer, K. M., 2017. The zone of influence of the subducting slab in the asthenospheric mantle. J. Geophys. Res., Solid Earth 122, 6599–6624. https://doi.org/10.1002/2017JB014445 Mainprice, D., Barruol G., Ben Ismail W., 2000. The Seismic Anisotropy of the Earth's Mantle: from Single Crystal to Polycrystal. Earth's Deep Interior; Mineral Physics and Tomography from the Atomic to the Global Scale, Geophys. Monogr., 117, pp. 237-264 Mainprice, D., 2007. Seismic anisotropy of the deep earth from a mineral and rock physics perspective. In Treatise on Geophysics, 2, 437-491. Mainprice, D., Hielscher, R., Schaeben, H., 2011. Calculating anisotropic physical properties from texture data using the MTEX open source package. In: Prior, D.J., Rutter, E.H., Tatham, D.J. (Eds.), Deformation Mechanisms: Rheology and Tectonics: Microstructures. Mechanics and Anisotropy, Geological Society, London, pp. 175–192. Martin-Short, R., Allen, R.M., Bastow, I.D., Totten, E., Richards, M.A.,2015. Mantle flow geometry from ridge to trench beneath the Gorda-Juan de Fuca plate system. Nat. Geosci., 8, 965–968, doi:10.1038/ngeo2569. Maruyama, G., Hiraga, T., 2017. Grain to multiple-grain scale deformation processes during diffusion creep of forsterite + diopside aggregate II: Grain boundary sliding induced grain rotation and its role in crystallographic preferred orientation in rocks. Journal of Geophysical Research: Solid Earth, 122, 5916–5934. https://doi.org/10.1002/2017JB0142 Miyazaki, T., Sueyoshi, K., Hiraga, T., 2013. Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature 502 (7471), 321–326. Mohiuddin, A., Long, M.D., Lynner, C., 2015. Mid-mantle seismic anisotropy beneath southwestern Pacific subduction systems and implications for mid-mantle deformation. Phys. Earth Planet. Inter. 245, 1–14. Muller, R. D., Sdrolias, M., Gaina, C., Roest, W.R., 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophys. Geosyst., 9, Q04006, doi:10.1029/2007GC001743. Nábelek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., Jiang, M., Su, H.,Chen, J., Huang, B.-S., 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325, 1371–1374. doi:10.1126/science.1167719 Naif, S., Key, K., Constable, S., Evans, R.L., 2013. Melt-rich channel observed at the lithosphere-asthenosphere boundary. Nature, 495(7441), 356–359, doi:10.1038/nature11939. Negredo, A. M., Replumaz, A., Willaseñor, A., Guillot, S., 2007. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region. Earth and Planet. Sci. Lett. 259, 202-225. Doi:10.1016/j.epsl.2007.04.043 Nowacki, A., Wookey, J., Kendall, J.M., 2011. New advances in using seismic anisotropy, mineral physics and geodynamics to understand deformation in the lowermost mantle. J. Geodyn., 52, 205– 228. Nowacki, A., Kendall, J.-M., Wookey, J., 2012. Mantle anisotropy beneath the Earth’s mid-ocean ridges. Earth Planet. Sci. Lett., 317–318, pp. 56-67, 10.1016/j.epsl.2011.11.044 Nowacki, A., Kendall, J.-M., Wookey, J., Pemberton, A., 2015. Mid-mantle anisotropy in subduction zones and deep water transport. Geochem. Geophys. Geosyst. 16(3), 764–784. doi:10.1002/2014GC005667 Ohuchi, T., Irifune, T., 2014. Crystallographic preferred orientation of olivine in the Earth’s deep upper mantle. Phy. Earth Planet. Inter. 228, 220-231. http://dx.doi.org/10.1016/j.pepi.2013.11.013 Ohuchi, T., Kawazoe, T., Nishihara, Y., Nishiyama, N., Irifune, T., 2011. High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy. Earth Planet. Sci. Lett. 304, 55-63, doi:10.1016/j.epsl.2011.01.015 Ozalaybey, S., Savage, M.K., 1994. Double-layer anisotropy resolved from S phases. Geophys. J. Int., 117, 653–664, doi:10.1111/j.1365-246X.1994.tb02460.x. Pardo, M., Suárez, G., 1995. Shape of the subducted Rivera and Cocos plates in southern Mexico: seismic and tectonic implications. J. Geophys. Res., Solid Earth, 100 (B7), pp. 12357-12373 Pavlis, G. L., Das, S., 2000. The Pamir-Hindu Kush seismic zone as a strain marker for flow in the upper mantle. Tectonics 19(1), 103–115. https://doi.org/10.1029/1999tc900062 Peng, C.C., Kuo, B.Y., Faccenda, M., Chiao, L.Y., 2020. Mantle flow entrained by the Hindu Kush continental subduction inferred from source-side seismic anisotropy. Earth Planet. Sci. Lett., 530 (2020) 115905. Perez-Campos, X., Kim, Y., Husker, A., Davis, P.M., Clayton, R.W., Iglesias, A., Pacheco, J.F., Singh, S.K., Manea, V.C., Gurnis, M., 2008. Horizontal subduction and truncation of the Cocos Plate beneath central Mexico. Geophys. Res. Lett., 35, p. L18303, 10.1029/2008GL035127 Polet, J., Kanamori, H., 2002. Anisotropy beneath California: Shear wave splitting measurements using a dense broadband array. Geophys. J. Int., 149, 313–327, doi:10.1046/j.1365-246X.2002.01630.x. Replumaz, A., Tapponnier, P., 2003. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. J. Geophys. Res. 108(B6), 2285, doi:10.1029/2001JB000661. Restivo A., Helffrich G. 2006. Core–mantle boundary structure investigated using SKS and SKKS polarization anomalies Geophys. J. Int., 165, pp. 288-302 Rogers, R.D., Karason, H., van der Hilst, R.D., 2002. Epeirogenic uplift above a detached slab in northern Central America Geology, 30, pp. 1031-1034 Roy, S. K., Kumar, M. R., Davuluri, S., 2017. Anisotropy in subduction zones: Insights from new source side S wave splitting measurements from India. J. Geophys. Res. Solid Earth, 122, doi:10.1002/2017JB014314. Russo, R.M., Silver, P.G., 1994. Trench-Parallel Flow Beneath the Nazca Plate from Seismic Anisotropy. Science 263(5150), 1105-1111. DOI:10.1126/science.263.5150.1105 Russo, R.M, 2009. Subducted oceanic asthenosphere and upper mantle flow beneath the Juan de Fuca slab Lithosphere, 1, pp. 195-205. Russo, R.M., Mocanu, V.I., 2009. Source-side shear wave splitting and upper mantle flow in the Romanian Carpathians and surroundings. Earth Planet. Sci. Lett. 287, 205-216. https://doi.org/10.1016/j.epsl.2009.08.028 Russo, R.M., Gallego, A., Comte, D., Moncau, V.I., Murdie, R.E., VanDecar, J.C., 2010. Source-side shear wave splitting and upper mantle flow in the Chile Ridge subduction zone. Geology, 38, pp. 707-710 Schmerr, N., 2012. The Gutenberg discontinuity: melt at the lithosphere–asthenosphere boundary. Science 335 (6075), 1480–1483. http://dx.doi.org/10.1126/science.1215433. Schneider, F., Yuan, X., Schurr, B., Mechie, J., Sippl, C., Haberland, C., et al., GIPP, 2013. Seismic imaging of subducting continental lower crust beneath the Pamir. Earth Planet. Sci. Lett. 375(1), 101–112. https://doi.org/10.1016/j.epsl.2013.05.015 Schoenecker, S.C., Russo, R.M., Silver, P.G., 1997. Source-side splitting of S waves from Hindu Kush-Pamir earthquakes. Tectonophysics 279, 149–159. https://doi.org/10.1016/S0040-1951(97)00130-3 Schulte-Pelkum, V., Monsalve, G., Sheehan, A., Pandey, M. R., Saptota, S., Bilham, R., and Wu, F., 2005. Imaging the Indian subcontinent beneath the Himalaya. Nature 435, 1222-1225, doi:10.1038/nature03678. Sieminski, A., Liu, Q., Trampert, J., Tromp, J., 2007. Finite-frequency sensitivity of body waves to anisotropy based upon adjoint methods, Geophys. J. Int., 171, 368–389. https://doi.org/10.1111/j.1365-246X.2007.03528.x Silver, P. G., Chan, W. W., 1991. Shear wave splitting and subcontinental mantle deformation. J. of Geophys. Res. 96(B10), 16,429–16,454. https://doi.org/10.1029/91JB00899 Silver, P.G., Savage, M.K., 1994. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophys. J. Int., 119, pp. 949-963 Silver, P. G., 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu. Rev. Earth Planet. Sci. 24(1), 385–432. https://doi.org/10.1146/annurev.earth.24.1.385 Silver, P.G., Long, M.D., 2011. The non-commutivity of shear wave splitting operators at low frequencies and implications for anisotropy tomography. Geophys. J. Int., 184, pp. 1415-1427 Sippl, C., Schurr, B., Yuan, X., Mechie, J., Schneider, F. M., Gadoev, M., et al., 2013. Geometry of the Pamir-Hindu Kush intermediate-depth earthquake zone from local seismic data. J. Geophys. Res., Solid Earth 118(4), 1438–1457. https://doi.org/10.1002/jgrb.50128 Sobel, E., Chen, J., Schoenbohm, L., Thiede, R., Stockli, D., Sudo, M., Strecker, M., 2013. Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogeny. Earth Planet. Sci. Lett. 363, 204–218. doi:10.1016/j.epsl.2012.12.009 Song, T.-R. A., Kawakatsu, H., 2012. Subduction of oceanic asthenosphere: evidence from sub-slab seismic anisotropy. Geophys. Res. Lett., 39, L17301. https://doi.org/10.1029/2012GL052639 Song, T.-R. A., Kawakatsu, H., 2013. Subduction of oceanic asthenosphere: a critical appraisal in central Alaska. Earth Planet. Sci. Lett. 367, 82-94. https://doi.org/10.1016/j.epsl.2013.02.010 Stubailo, I., Beghein, C., Davis, P.M., 2012. Structure and anisotropy of the Mexico subduction zone based on Rayleigh-wave analysis and implications for the geometry of the Trans-Mexican Volcanic Belt. J. Geophys. Res., 117, B05303, doi:10.1029/2011JB008631 Stubailo I., 2015. Seismic anisotropy below Mexico and its implications for mantle dynamics, Ph. D. thesis, 119 pp., University of California, Los Angeles, CA, USA. van Benthem, S.A.C., Valenzuela, R.W., Ponce, G.J., 2013. Measurements of shear wave anisotropy from a permanent network in southern Mexico. Geofís. Int., 52, 385–402, doi:10.1016/S0016 7169(13)71485-5. van der Voo, R., Spakman, W., Bijwaard, H., 1999. Mesozoic subducted slabs under Siberia. Nature 397, 246–249. https://doi.org/10.1038/1668693 Walpole, J., Wookey, J., Kendall, J.-M., Masters, T.-G., 2017. Seismic anisotropy and mantle flow below subducting slabs. Earth Plant. Sci. Lett., 465, 155-167 https://doi.org/10.1016/j.epsl.2017.02.023 West, J.M., Fischer, K.M., MacDougall, J., 2013. Seismic Anisotropy and Mantle Deformation beneath the Hindu Kush-Pamir Mountains and the Tadjik Basin. American Geophysical Union, Fall Meeting 2013, abstract id. DI11A-2168. Wüstefeld, A., Bokelmann, G., 2007. Null detection in shear wave splitting measurements. Bull. Seismol. Soc. Am. 97, 1204–1211. https://doi.org/10.1785/0120060190 Zhang, J. S., Bass, J.D., Schmandt, B., 2018. The Elastic Anisotropy Change Near the 410 km Discontinuity: Predictions From Single‐Crystal Elasticity Measurements of Olivine and Wadsleyite. J. Geophys. Res., Solid Earth 123, 2674-2684.https://doi.org/10.1002/2017JB015339 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64604 | - |
dc.description.abstract | 上部地幔中的非均向性礦物會因外在應力而有其傾向的排列位態(Lattice preferred orientation, LPO),其中非均向性礦物之快軸排列方向在地震學觀 測上多假設為平行地幔流場的方向,此論文是利用 S 波反應近地震震源震波非均向性(source-side seismic anisotropy)來推測其 LPO 之位態,並探討隱沒板塊下方或周遭地幔的流場與其動力學上的意義。論文第一部份為探討興都庫什(Hundu Kush)隱沒帶地幔的震波非均向性,我們的觀測結果顯示此區域的震波非均向性,其快方向以隱沒的興都庫什板塊為中心呈現環形的排列。此環形分布情況看似是由隱沒板塊回滾(rollback)擾動周遭上部的地幔所造成。但經由合成波模型顯示,此環形排列所顯示為視方向(Aparent direction)而不是非均向性礦物之實際位態(orientation),而是徑向震波非均向性(radial anisotropy)與近垂直拖曳的地幔流場的綜合。實際 LPO 仍為平行向地幔深部隱沒的垂直方向。而此現象與逕向非均向相關,也暗示低含水量的 A 型橄欖石或是 AG 型橄欖石此地的地幔主要組成。論文第二部份是探討科科斯(Cocos)隱沒板塊下方地幔的震波非均向性。過去對於此區域近地震震源震波非均向性的研究指出,地幔中 LPO 多依照絕對板塊運動模型所描述的隱沒方向,而我們的量測結果顯示其快方向比隱沒方向順時鐘旋轉約 50 度。近一步的分析震波的振動極化方向顯示我們用來探查非均向性之震波極化方向與 APM 平行,此觀測結果對平行 APM 排列之 LPO 極不敏感,並指示板塊下方地幔存在另一層與 APM 非平行之 LPO。經由逆推發現,板塊下方地幔如果包含一層淺部與APM 平行之 LPO,以及另一層 N70E 方向排列之LPO,即 可以解釋觀測資料上快方向的順時鐘轉向。此模型可作為支持回滾(rollback)的隱沒板塊下方地幔同時在極流(poloidal flow)與環流(toroidal flow)的證據。 | zh_TW |
dc.description.abstract | In this thesis, we investigate how the subducting slab shapes the mantle flow structure by exploring the seismic anisotropy which caused by the stress induced alignment of the lattice preferred orientation of anisotropic mineral in the upper mantle. We retrieve the anisotropy in the ambient mantle of the subducting slab, the source-side anisotropy, by analyzing shear wave splitting (SWS) of the direct S phase after correcting the receiver-side anisotropy with the SKS splitting parameters. First, we present the source-side SWS from Hindu Kush intraslab events to sample the surrounding mantle and the observed fast directions exhibit a circular pattern around the slab. We propose that the observed pattern is produced by the sub-vertical shear flow entrained by the steep descent of the slab and the ongoing breakoff. This scenario requires the existence of A-type or AG-type olivine fabrics with strong orthorhombic anisotropy in mid- to lower upper mantle. This interpretation circumvents the debate on the cause of trench-parallel anisotropy in some oceanic subduction zones where slab entrainment and rollback may coexist, and supports the notion that orthorhombic anisotropy of olivine may play an important role in shaping mantle anisotropy. Then we present the source-side anisotropy in the subslab mantle of the Cocos subduction zone, our results show that fast directions predominantly align at N85oE, or 50o clockwise from the direction of the absolute plate motion (~35o), and analysis of the fast directions and the initial polarization of the shear wave leads us to model the layered structure in the subslab mantle. Our model shows that the upper and lower layers are characterized by a fast direction of 38o and 76o, respectively. The upper layer of the structure immediately entrained by the slab is descending normally and the lower layer is oblique in subduction, and the layered structure which may present the coexist of the entrained flow and the toroidal flow in the subslab mantle. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:57:31Z (GMT). No. of bitstreams: 1 ntu-109-D01241004-1.pdf: 9928146 bytes, checksum: c07a10a8c28edd53299c6a2497542f32 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審訂書 ...i
中文摘要 ...ii 英文摘要 ...iii Chapter 1 Introduction ...1 Chapter 2 Mantle flow entrained by the Hindu Kush continental subduction inferred from source-side seismic anisotropy ...4 Abstract ...4 2.1 Introduction ...5 2.1.1 The Hindu Kush-Pamir mountain belt ...5 2.1.2 Shear wave splitting and sub-slab dynamics ...8 2.2 Data and method ...10 2.3 Pattern of source-side splitting ...18 2.4 Interpretations ...24 2.4.1 Slab rollback ...24 2.4.2 Subduction entrainment ...26 2.5 Preferred mechanism ...33 2.6 Discussion ...36 2.6.1 The role of B-type olivine ...36 2.6.2 Orogenic processes vs. mantle dynamics ...40 2.7 Conclusions ...42 Appendix A ...43 A.1. Possible slab contribution ...43 A.2. Synthetic experiment and the pole figures ...46 Chapter 3 The source-side anisotropy and the layered structure of the mantle flow in the Cocos Subduction zone ...49 3.1 Introduction to the Cocos subduction zone ...49 3.2 Data and method ...53 3.3 Results ...54 3.3.1 Splittting pattern ...54 3.3.2 Null measurements ...56 3.3.3 Polarization ...57 3.3.4 π/2 periodocity pattern ...59 3.4 Modeling of 2 anisotropic layers ...61 3.5 Discussion ...67 3.6 Conclusion ...70 Appendix B ...71 B.1 Correction method of the receiver-side anisotropy ...71 B.2 Estimation of the receiver-side anisotropy ...71 B.2.1 Estimation of the receiver-side anisotropy as a simple layer ...72 B.2.2 Estimation of the orthorhombic anisotropy ...73 B.2.3 Error propagation ...74 B.3 The measurement results and comparison of the 2 correction methods ...77 Chapter 4 Conclusion ...80 References ...83 | |
dc.language.iso | en | |
dc.title | 板塊下方地幔震波非均向性與其動力學之意含:
科科斯與興都庫什隱沒帶 | zh_TW |
dc.title | Seismic anisotropy in the subslab mantle and its dynamic
implications of the Cocos oceanic and Hindu-Kush continental subduction zones | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 喬凌雲(Ling-Yun Chiao) | |
dc.contributor.oralexamcommittee | 洪淑蕙(Shu-Huei Hung),龔源成(Yuan-Cheng Gung),曾泰琳(Tai-Lin Tseng),柯彥廷(Yen-Ting Ko) | |
dc.subject.keyword | 震波非均向性,隱沒板塊下方地幔,拖曳流場,環形流,科科斯隱沒帶,興都庫什隱沒帶, | zh_TW |
dc.subject.keyword | seismic anisotropy,subslab mantle,entrained flow,toroidal flow,slab beakoff,Cocos plate,Hindu Kush, | en |
dc.relation.page | 94 | |
dc.identifier.doi | 10.6342/NTU202000622 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-02-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 9.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。