Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64546
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范正成
dc.contributor.authorPo-Chou Laien
dc.contributor.author賴柏舟zh_TW
dc.date.accessioned2021-06-16T17:53:44Z-
dc.date.available2014-09-01
dc.date.copyright2012-08-19
dc.date.issued2012
dc.date.submitted2012-08-12
dc.identifier.citation1. 米倉亮三、廖洪鈞、林英堂 (2002),“恆久性灌漿材料與其灌漿砂土之動態行為”,地工技術,第93期5-12頁。
2. 鄧乃楊等(2004),“數據挖掘的新方法-支持向量機',科學出版社,中國。
3. 地基處理手冊編寫委員會 (1988),“地基礎理手冊”,中國建築工業出版社。
4. 倪至寬、林任峰 (2006),“超細水泥漿液滲透灌漿之研究”,臺北科技大學學報,95年09號。
5. 林柏維(2010),“以羅吉斯迴歸探討累積水平地震加速度對崩塌潛勢影響之研究”,碩士論文,國立臺灣大學生物環境系統工程研究所。
6. 廖洪鈞 (1994),“土壤灌漿於水位下管幕地下道工程之應用”,地工技術,第47期:35-54頁。
7. 連琮勛(2010),“應用禁忌演算法於超微粒水泥漿體滲透灌漿之可灌性研究”,碩士論文,國立臺灣大學生物環境系統工程研究所。
8. 林任峰 (2005),“超細水泥漿液滲透灌漿模式之研究”,碩士論文,台北科技大學土木與防災研究所。
9. 李文通(2008),“深開挖壁體變形預測-應用演化式支持向量機推論模式(ESIM)”,碩士論文,國立台灣技大學營建工程研究所。
10. 黃建霖(2012),“利用啟發式演算法建立可灌性預測公式”,博士論文,國立臺灣大學生物環境系統工程研究所。
11. 黃建霖、范正成、楊文仁 (2007),”超微細水泥灌漿材料於砂性粉土層之應用“,地工技術,第111期,頁71-82。
12. 黃兆龍 (2003),“高性能混凝土理論與實務”,台北:詹氏書局。
13. 黃聖修 (2009),”超微粒水泥漿體滲透灌漿於砂性粉土層之可灌性研究”,碩士論文,國立台灣大學生物環境系統工程學研究所。
14. 黃室毓 (2008),“地下水資源永續利用規劃與管理模式”,碩士論文,國立台灣大學生物環境系統工程學研究所。
15. 黃亦敏、李維峰、林平全、張東源 (2002),“高細度地質改良材料研發與案例應用分析”,地工技術,第93期13-22頁。
16. 簡璿宸 (2002),“低壓灌漿工法之研究”,碩士論文,國立臺北科技大學土木與防災研究所。
17. 徐名顯 (2007),“爐石添加量對超微粒水泥漿體基礎物理性質影響之研究”,碩士論文,國立臺灣大學生物環境系統工程研究所。
18. 徐至鈞 (2005),“新編建築地基處理工程手冊”,中國建材工業出版社。
19. 張綸纖(2011),“利用羅吉斯迴歸法分析崩塌對土石流降雨警戒基準值之影響-以南投神木村為例”,碩士論文,國立臺灣大學生物環境系統工程研究所。
20. 張永佳 (2009),“應用混合式禁忌搜尋法於整合生產與配送之排程問題”,碩士論文,國立交通大學工業工程與管理研究所。
21. 陳界文 (2002),“細粒料特性對土壤抗液化強度之影響”,碩士論文,國立台灣大學土木工程研究所。
22. 陳嘉裕 (1999),“細粒料含量對砂土液化潛能之影響研究”,碩士論文,國立成功大學土木工程研究所。
23. 陳信州 (1994),“水泥混凝土添加爐石提高早期強度策略之研究”,碩士論文,國立中央大學土木工程研究所。
24. 陳正勳、楊式昌、周功台、陳福勝(2001),“既有跨越橋梁基礎之耐震補強工法探討”,中華技術雜誌,第52期。
25. 施國琅(2008),“超微粒水泥漿體滲透灌漿與灌注量之研究”,碩士論文,國立臺灣大學生物環境系統工程研究所。
26. 游啟亨、廖瑞堂 (1980),“最小及最大乾土單位重之試驗規範研究比較”,碩士論文,國立成功大學土木工程研究所。
27. 吳泰熙 (1997),”以禁忌演算法則求解推銷員旅行問題”,大葉學報,第六卷,第一期:87-99。
28. 吳育偉、鄭明淵(2007),“支持向量機最佳化模式-應用於營建管理決策”,第11營建工程與管理學術研討會。
29. Akbulut, S. and Saglamer, A. (2002), “Estimating the Groutability of Granular Soil: A New Approach”, Tunnelling and Underground Space Technology, Vol. 17, No. 4, pp. 371-380.
30. Axelsson, M., Gustafson G. and Fransson, A. (2009), “Stop Mechanism for Cementitious Grouts at Different Water-to-cement Ratio”, Tunnelling and Underground Space Technology, 24, pp.390-397.
31. Burwell, E.B. (1958), “Cement and Clay Grouting of Foundations”, Practice of the corps of engineering, J. Soil Mech. Foundation Div., ASCE 84, 1551/1-1551/22.
32. BS EN 12715 (2000), “Execution of Special Geotechnical Work”, Grouting. British-Adopted European Standard, pp. 1-56.
33. Cattell, R.B. (1966), “The Scree Test for the Number of Factors”, Multivariate Behavioral Research, Vol. 1, pp. 629-637.
34. Chengzhi, Z., Aiqin, W. and Mingshu, T. (1996), “The Filling Role of Pozzolanic Material”, Cement and Concrete Research, Vol. 26, No. 6, pp. 943-947.
35. Clarke, W.J., Billard, M.D. and Maan Helal, A.M. (1992), “Ultrafine cement Tests and Dam Test Grouting”, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication No. 30, pp. 626-637.
36. Cortes and Vapnik, V., (1995), “Support-vector network,” Machine Learning, vol.20, No.3, pp.273-297.
37. Du, D.Z., and Pardalos, P.M. (1998), “Handbook of Combinational Optimization”, Volume 3.
38. Efron, B., (1979), “Bootstrap methods:Another look at the Jackknife”, Annals of Statistics, 7, 1-26.
39. Engineer Manual (1995), “Engineering and Design-Chemical Grouting”, Washington, DC: U.S. Army Corps of Engineers.
40. Glover, F. (1986), “Future Paths for Integer Programming and Links to Artificial Intelligence”, Computers and Operations Research, Vol. 13, pp. 533-549.
41. Glover, F., (1990), “Tabu Search: A Tutorial”, Interfaces, 20, pp.74-94.
42. Glover, F. and Laguna, M. (1997), “Tabu Search”, Kluwer Academic Publishers, Boston, MA.
43. Maan Helal, A.M., and Krizek, R.J. (1992), “Preferred Orientation of Pore Structure in Cement-grouted Sand”, Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication. No. 30, pp. 526-540.
44. Henn, R.W. (1996), “Practical Guide to Grouting of Underground Structures,” New York: ASCE Press, pp. 6-49.
45. Herndon, J. and Lenahan, T. (1976), “Grouting in Soils”, Vol. 2: Design and Operations Manual, Federal Highway Administration, Halliburton Services, Duncan, Oklahoma, Technical Report.
46. Hotelling, H. (1933), “Analysis of a Complex of Statistical Variables into Principal Components”, Journal of Educational Psychology 24 417 441, 498 520. Z.
47. Hsu, C.W., Chang, C.C., and Lin, C.J., (2007), “A Practical Guide to Support Vector Classification”, Department of Computer Science National Taiwan University, Taipei, Taiwan. http://www.csie.ntu.edu.tw/~cjlin last updated: July 18, 2007.
48. Hu, S., Guan, X. and Ding, Q. (2002), “Research on Optimizing Components of Microfine High-performance Composite Cementitious Materals”, Cement and Concrete Research, Vol 32, pp. 1871-1875.
49. Huang, C.L., Fan, J.C., Liao, K.W., Huang, S.H. and Lien, T.H. (2010), “Predicting the Groutability of Sandy Silt Soils for Microfine Cement Grouts via BPNN”, Tunnelling and Underground Space Technology. (Under review)
50. Incecik, M., and I. Ceren. (1995), “Cement Grouting Model Tests”, Bulletin of The technical University of Istanbul, Vol.:48, No.2, pp. 305-317.
51. Kaiser, H. F. (1960), “The Application of Electronic Computers to Factor Analysis”, Educational and Psychological Measurement, Vol. 20, pp. 141-151.
52. Khaled S. and Al-Sultan (1995), “Tabu Search Approach to the Clustering Problem”, Pattern Recognition, Vol. 28, No. 9, pp. 1443-1451.
53. Khayat, K.H. and Gaudreault, M. (1997), “High-performance Cement Grout for Underwater Crack Injection”, Can. J. Civ. Eng., Vol. 24:405-418.
54. Krizek, R.J., Liao, H.J. and Borden, R.H. (1992), “Mechanical Properties of Microfine Cement/Sodium Silicate Grouted sand”, Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication No. 30, pp. 688-699.
55. Kruskal, W.H. and Wallis, W.A. (1952), “Use of Ranks in One-criterion Variance Analysis”, J. Amer. Statist. Assoc. Vol. 47, pp. 583-621.
56. Kutzner, C. (1996). “Grouting of Rock and Soil”, A. A. Balkema, Rotterdam.
57. Liao, H.J., Borden, R.H. and Krizek, R.J. (1992), “Microfine Cement/Sodium Silicate Grout”, Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication No. 30, pp. 676-687.
58. Liao, K.W., Fan, J.C., and Huang, C.L. (2011) “An Artificial Neural Network for Groutability Prediction of Permeation Grouting with Microfine Cement Grouts”, Computers and Geotechnics, Vol. 38: pp. 978-986.
59. Maag, E. (1938), “Ueber die Verfestigung und Dictung des Bangrundes (injektionen)”, Course on soil mech., Zurich Tech. School.
60. Maan Helal, A. M., and R. J. Krizek. (1992), “Preferred Orientation of Pore Structure in Cement-Grout Sand”, ASCE Grouting, Soil Improvement and Geosynthetics, pp.526-540.
61. Markou, I. N., and D. K. Atmatzidis. (2003), “Mechanical Behavior of a Pulverized Fly Ash Grouted Sand”, Geotechnical Testing Journal, Vol.26, No.4, pp.1-11.
62. Markou, I. N., and D. K. Atmatzidis. (2002), “Properties and Performance of a Pulverized Fly Ash Grout”, Journal of Geotechnical And Geoenvironmental Engineering,Vol.128, No.8, pp.682-691.
63. McKay, M. D. (1988), “ Sensitivity and uncertainty analysis using a statistical sample of input values”, Uncertainty Analysis, 145-186. Y. Ronen, Ed. CRC Press, Boca Raton, Florida.
64. Mollamahmutoglu, M., and Yilmaz, Y. (2011), “Engineering Properties of Medium-to-Fine Sands Injected with Microfine Cement Grout”, Marine Georesources and Geotechnology, Vol. 29, pp.95-109.
65. Mori A., M. Tamura, H. Shibata, and H. Hayashi. (1992), “Some factors related to injected shape in grouting”, ASCE Proc. Conf. Grouting, Soil Improvement and Geosynthetic, Geotechnical Special Publication No. 30, New Orleans, pp. 313-324.
66. Naudts, A. and Landry, E. (2003), “New On-site Wet Milling Technology for the Preparation of Ultrafine Cement-based Grouts”, American Society of Civil Engineering, Vol. 127, pp. 1200-1207.
67. Ozgurel, H. G. and Vipulanandan, C. (2005), “Effect of Grain Size and Distribution on Permeability and Mechanical Behavior of Acrylamide Grouted Sand”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No.12, pp.1457-1465.
68. Paoli, D., Bosco, B., Granata, R. and Bruce, D.A. (1992), “Fundamental Observations on Cement Based Grouts (2): Microfine Cements and the Cemill Process”, Grouting, Soil Improvement and Geosynthetics ASCE, Geotechnical Special Publication. No. 30, pp. 486-499.
69. Pearson, K. (1901). “On Lines and Planes of Closest Fit to Systems of Points in Space”, Philosophical Magazine, Vol. 2, No. 6, pp. 559–572.
70. Peng, G., Tisch, U., Adams, O., Hakim, M., Shehada, N., Broza, Y.Y., Billan, S., Abdah-Bortnyak, R., Kuten, A. and Haick, H. (2009) “Diagnosing Lung Cancer in Exhaled Breath Using Gold Nanoparticles”, Nature Nanotechnology, Vol. 4, pp. 669-673.
71. Perret, S., Palardy, D. and Ballivy, G. (2000), “Rheological Behavior and Setting Time of Microfine Cement-Based Grouts”, ACI Materiala Journal, July-August, 2000, pp. 472-477.
72. Perret, S., Khayat, K.H., Gagnon, E. and Rhazi, J. (2002), “Repair of 130-Year Old Masonry Bridge using High-Performance Cement Grout”, Journal of Bridge Engineering, Vol. 7, No.1, January 1, 2002. ASCE, ISSN, pp. 31-38.
73. Reschke, A.E. (2000), “The Development of Colloidal Mixer Based CRF Systems”, (Presented at MINEFILL 98, Brisbane, Australia, 1998) Rev.Aug.2000. Page 11.
74. Roy, H. B., D. H. Robert, and J. Ilan. (1992), “Grouting soil improvement and geosynthetics”, Geotechinal Special Publication, No.30, Vol.1.
75. Rumelhart, D. E., and J. L. McClelland. (1986), “Parallel Distributed Processing:Explorations in the Microstructure of Cognition”, Vol. 1. Cambridge, MA: MIT Press.
76. Russell, J.S., Jaselskis, E.J., Lawrence, S.P., Tserng, H.P., and Prestine, M.T., (1996), 'Development of a Predictive Tool for Continuous Assessment of Project Performance', Source Document, The Construction Industry Institute.
77. Saiyouri, N., Bouasker, M. and Khelidj, A. (2008), “Gas Permeability Measurement on Injected Soils with Cement Grout” Cement and Concrete Research, Vol. 38,No.1 , pp.95-103.
78. Schwarz, L.G. and Krizek, R.J. (1992), “Effect of Mixing on Rheological Properties of Microfine Cement Grout”, ASCE Grouting, Soil Improvement and Geosynthetics, pp. 512-525.
79. Schwarz, L. G., and R. J. Krizek. (2000), “Evolving morphology of early age microfine cement grout”, Geotechnical Special Publication, n 104, 2000, pp. 181-199.
80. Schwarz, L.G. and Krizek, R.J. (2006), “Hydrocarbon Residuals and Containment in Microfine Cement Grouted Sand”, Journal of Materials in Civil Engineering, Vol. 18, No.2, pp. 214-228.
81. Schwarz, L.G. and Chirumalla, M. (2007), “Effect of Injection Pressure on Permeability and Strength of Microfine Cement Grouted Sand”, Grouting for Ground Improvement: GSP 168 Geo-Denver 2007: New Peaks in Geotechniques.
82. Soga, K., Au, S.K.A., Jafari, M.R., Bolton, M.D. (2004), “Laboratory Investigation of Multiple Grout Injections into Clay” Geotechnique, Vol. 54, No. 2, pp. 81–90.
83. Stephanie, P., Danielle, P. and Gerard, B. (2000), “Rheological Behavior and Setting Time of Microfine Cement-based Grouts”, ACI Materials Journal, Vol. 97, pp. 472-478.
84. Tekin, E. and Akbas, S.O. (2010), “Artificial Neural Networks Approach for Estimating the Groutability of Granular Soils with Cement-Basis Grouts” Bull Eng Geol Environ. Vol. 70: pp. 153-161.
85. Terzaghi, K. and Peck, R.B. (1948), “Soil Mechanics in Engineering Practice”, 1st edition, John Wiley & Sons, Inc, N.Y.
86. Thiessen Team (2000), “The Development of Colloidal Mixer Based CRF Systems”, Reschke, A. E. The Development of Colloidal Mixer Based CRF Systems (present at MINEFILL’98, Brisbane, Australia, 1988) Rev. Aug. 2000.
87. Topcu, I. B., and V. B. Elgun. (2004), “Influence of concrete properties on bleeding and evaporation”, Cement and Concrete Research 34:275-281.
88. Tung, C.P., and Chou, C.A. (2002), “Application of Tabu Search to Groundwater Parameter Zonation”, Journal of American Water Resources Association, Vol. 38, No. 4, pp.1115-1125.
89. U.S. EPA. (1992b), “Guidelines for Exposure Assessment” , Office of Research and Development, National Center for Environmental Assessment, Washington, DC.
90. Vapnik, V., (1995), 'The Nature of Statistical Learning Theory' New York, NY:Springer-Verlag.
91. Yonas B. Dibike1 et al., (2000), 'Support Vector Machines: Review and Applications in Civil Engineering,' Proc. of the 2nd Joint Workshop on Application of AI in Civil engineering.
92. Yonas B. Dibike1, (2001), 'Model Induction with Support Vector Machines: Introduction and Applications,' ASCE Journal of Computing in Civil Engineering, vol.15, No.3,pp.208-216.
93. Zebovitz, S., Krizek, R.J. and Atmatzidis, D.K. (1989), “Injection of Fine Sands with Very Fine Cement Grout”, Journal of Geotechnical Engineering, No. 12, pp. 1717-1733.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64546-
dc.description.abstract本研究之目的為建立粉土質砂層超微粒水泥漿體滲透灌漿可灌性之預測模式。因為本研究區域為富含較高細粒料之粉土質砂層以及所使用之超微粒水泥粒徑遠小於傳統卜特蘭水泥,遂傳統相對粒徑比可灌性經驗公式無法有效預測。因此,本研究藉由蒐集台灣地區(台北及高雄)240筆超微粒水泥漿體現地灌漿資料以支持向量機配合禁忌演算法及羅吉斯迴歸分別建立可灌性預測模式及公式。選擇可能影響可灌性之因子,除了參考傳統相對粒徑比可灌性經驗公式所使用之土壤通過百分比為10%所對應之粒徑大小( )、土壤通過百分比為15%所對應之粒徑大小( )外,亦將細粒料含量(FC)與水灰比(W/C)納入考慮。透過支持向量機配合禁忌演算法建立之模式,以十種不同資料組合數進行驗證,其預測準確率之平均值可達97.75%。再者,由本研究可灌性預測模式良好之預測結果顯示,應用支持向量機配合禁忌演算法搜尋參數建立可灌性預測模式進行預測,為相當可行之方法,亦說明支持向量機在處理複雜且非線性問題上有相當良好之表現。此外,應用羅吉斯迴歸所建立之預測公式與傳統相對粒徑比可灌性經驗公式一樣具有簡單之方程式,方便於工程師使用,也期待能易於廣泛應用在實際工程上。zh_TW
dc.description.abstractThe purpose of this research is to establish the prediction model of the groutability of the silty sand soils using microfine cement grouts in a permeation grouting. Due to the fact that the region covered in this paper consists of the silty sand soils with relatively higher proportion of the fines content(FC) and the particle size of microfine cement used is considerably smaller than the conventional Portland cement, the existing empirical formula with relative particle size ratio is unable to provide effective predictions. Thus, this research derives the prediction model and formula from 240 data in Taiwan (Taipei and Kaohsiung) using Support Vector Machine(SVM) with Tabu Search(TS) and Logistic Regression(LR), respectively. In terms of selecting factors for the groutability, apart from the relative size for particles passing through soil with 10% and 15% permeability that are used in the conventional empirical formula with relative particle size ratio, this research also takes the fines content(FC) and the water-to-cement ratio(W/C) into account. By using SVM with TS, the model established can reach 97.75% precision of prediction. Moreover, the fine results of groutability prediction, not only indicate the feasibility of applying SVM with TS, but also explain the advantages of SVM in dealing with complicated and non-linear scenarios. In addition, the prediction formula derived from LR shares the same simplicity as in the conventional empirical formula with relative particle size ratio. It is hoped that, since engineers can use this formula with ease, it can also be widely used in applications and real-life constructions.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:53:44Z (GMT). No. of bitstreams: 1
ntu-101-R99622012-1.pdf: 6406333 bytes, checksum: e8e85382a610dbe03a8ae1fee00aaf95 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目 錄
摘 要 i
Abstract ii
目 錄 iii
圖 目 錄 v
表 目 錄 vii
第一章 前言 1
1.1研究動機 1
1.2研究目的 2
1.3論文架構 3
第二章 文獻回顧 6
2.1超微粒水泥漿體滲透灌漿可灌性評估方法 6
2.1.1選取可灌性因子-主成分分析 6
2.1.2傳統可灌性經驗公式 8
2.1.3禁忌演算法可灌性預測公式 12
2.1.4類神經網路可灌性預測模式 14
2.2分析及預測方法 17
2.2.1支持向量機(Support Vector Machine, SVM) 17
2.2.2禁忌演算法(Tabu Search, TS) 19
2.2.3羅吉斯迴歸(Logistic Regression, LR) 20
第三章 研究方法 23
3.1現地灌漿資料 23
3.1.1資料樣本 23
3.1.2灌漿材料 26
3.1.3灌漿方式 29
3.2選取可灌性因子 32
3.3設定資料分組-訓練與測試 34
3.4模式之建立 37
3.4.1支持向量機(Support Vector Machine, SVM) 37
3.4.2禁忌演算法(Tabu Search, TS) 47
3.4.3羅吉斯迴歸(Logistic Regression, LR) 51
3.5評估方法之適用性 56
3.6模式準確度之評估 57
第四章 結果與討論 60
4.1支持向量機(SVM)配合禁忌演算法(TS)預測模式 60
4.2羅吉斯迴歸(LR)預測公式 68
4.3各預測模式準確率綜合比較 76
第五章 結論與建議 79
5.1結論 79
5.2建議 80
文獻回顧 81
附錄一:現地資料 90
附錄二:符號表 94
附錄三:程式 95

圖 目 錄
圖1.1 研究流程圖……………………………………………………….……...………5
圖2.1 主成分分析判別肺癌及健康呼氣之結果(摘自 Peng et al., 2009)……….……7
圖2.2 灌漿前後孔隙填充示意圖(摘自 Helal and Krizek, 1992).…………….………7
圖2.3 細顆粒含量與灌漿壓力(摘自 Ozgurel and Vipulanandan, 2005).……………11
圖2.4 水灰比及N值對可灌性關係圖(摘自 Axelsson et al., 2009).…………………11
圖2.5 雙曲型函數門檻值(s)的敏感度分析(摘自 Huang et al., 2010).…...…………16
圖2.6 雙曲型函數門檻值(s)的敏感度分析(摘自 Liao et al., 2011).…………...…...18
圖2.7 水力傳導度的設計分區情形(摘自 Tung and Chou, 2002).……………..……21
圖3.1 預定施灌區域-捷運新莊線CK570H區域(摘自 勤岩工程,2006).……..……24
圖3.2 灌漿改良範圍(摘自 勤岩工程,2006)…………………………………………24
圖3.3 預定施灌區域(摘自 勤岩工程,2005).……………………………….………25
圖3.4 部分現地照片(摘自 勤岩工程,2005).………………………….……………25
圖3.5 超微粒水泥與一般卜特蘭水泥粒徑分布曲線圖………………………..……31
圖3.6 一般卜特蘭水泥(a)與超微粒水泥(b)電子顯微圖………………….…………31
圖3.7 馬歇爾管低壓灌漿示意圖(摘自 勤岩工程,2005).…………………..………33
圖3.8 二重管低壓灌漿圖(摘自 勤岩工程,2006).……………………...………..…33
圖3.9 支持向量機資料分類示意圖(摘自 李文通,2008)….……………………..…39
圖3.10 最大分離間隔與最優分離超平面(摘自 Yonas B. Dibike1 et al., 2000).…...39
圖3.11 支持向量(SV)示意圖(摘自 李文通,2008).…………………………………42
圖3.12 線性不可分與鬆弛變量示意圖(摘自 Yonas B. Dibike1 et al., 2000).……...42
圖3.13 可容錯線性SVR 模式(摘自 Russell, J.S. et al., 1996).……………..………44
圖3.14 禁忌演算法演算流程圖………………………………………………………50
圖3.15 八個鄰近解的取點示意圖……………………………………………………50
圖3.16 羅吉斯函數圖形(摘自 林柏維,2010).……………………………….………54
圖4.1 支持向量機(SVM)中之參數γ與C值初始解為(0, 0)搜尋路徑……………..…61
圖4.2 支持向量機(SVM)中之參數γ與C值初始解為(10, 0)搜尋路徑………………62
圖4.3 支持向量機(SVM)中之參數γ與C值初始解為(10, 13)搜尋路徑…………..…62
圖4.4 支持向量機(SVM)中之參數γ與C值初始解為(5, 6)搜尋路徑………..………63
圖4.5 支持向量機(SVM)中之參數γ與C值初始解為(1, 1*10^6)搜尋路徑…………65
圖4.6 支持向量機(SVM)中之參數γ與C值初始解為(2, 2.1*10^8)搜尋路徑…..…...65

表 目 錄
表2.1禁忌演算法預測公式(1)十種不同資料組合數之準確率(摘自 黃建霖,2012).13
表2.2禁忌演算法預測公式(2)十種不同資料組合數之準確率(摘自 黃建霖,2012).13
表2.3禁忌演算法預測公式(3)十種不同資料組合數之準確率(摘自 黃建霖,2012).13
表2.4 不同因子之倒傳遞類神經網路預測模式之結果(摘自 Huang et al., 2010)....16
表2.5 四種影響因子之倒傳遞類神經網路預測模式之結果(摘自 黃建霖,2012)...16
表2.6 七個因子之幅狀基底函數類神經網路模式結果(摘自 Liao et al., 2011)……18
表2.7 四種影響因子之幅狀基底函數類神經網路模式結果(摘自 黃建霖,2012)..18
表3.1 孔位資料組數與水灰比………………………………………………………..27
表3.2 超微粒水泥基本定義…………………………………………………………..28
表3.3 超微粒水泥、爐石基本性質表………………………………………………...28
表3.4 超微粒水泥灌漿材料與一般卜特蘭水泥之基本性質比較表………………..30
表3.5 訓練與測試資料組數統計表…………………………………………………..35
表3.6 訓練與測試之各孔位資料組數表…………………………………..…………36
表3.7 分類誤差矩陣…………………………………………………………………..59
表4.1 禁忌演算法搜尋不同初始解之最佳解搜尋次數與準確率…………………..61
表4.2 強化搜尋精度與準確率………………………………………………………..63
表4.3 支持向量機(SVM)預測模式訓練195筆資料之結果………………………….67
表4.4 支持向量機(SVM)預測模式測試45筆資料之結果……………………..…….67
表4.5 支持向量機(SVM)預測模式全部240筆資料之結果………………………….67
表4.6 支持向量機(SVM)預測模式十種不同資料組合數之準確率………………...69
表4.7 LR_d15c十種不同資料組合數其可能影響因子與常數項之係數…………..71
表4.8 LR_d15十種不同資料組合數其可能影響因子與常數項之係數……………71
表4.9 LR_d10c十種不同資料組合數其可能影響因子與常數項之係數…………..72
表4.10 LR_d10十種不同資料組合數其可能影響因子與常數項之係數…………..72
表4.11 LR_d15c十種不同資料組合數之準確率…………..…………..……………73
表4.12 LR_d15十種不同資料組合數之準確率………………………...…..…...…..73
表4.13 LR_d10c十種不同資料組合數之準確率………………………...…..…...…74
表4.14 LR_d10十種不同資料組合數之準確率………………………...…..…...…..74
表4.15 四種羅吉斯迴歸(LR)預測公式十種不同資料組合數之全部準確率…....…75
表4.16 各種預測模式之準確率綜合比較………………………….…………...……77
dc.language.isozh-TW
dc.subject超微粒水泥zh_TW
dc.subject滲透灌漿zh_TW
dc.subject可灌性zh_TW
dc.subject羅吉斯迴歸zh_TW
dc.subject禁忌演算法zh_TW
dc.subject支持向量機zh_TW
dc.subjectLogistic Regression(LR)en
dc.subjectgroutabilityen
dc.subjectSupport Vector Machine(SVM)en
dc.subjectmicrofine cementen
dc.subjectpermeation groutingen
dc.subjectTabu Search algorithm (TS)en
dc.title應用支持向量機及羅吉斯迴歸法建立超微粒水泥漿體滲透灌漿可灌性預測模式zh_TW
dc.titleUsing Support Vector Machine and Logistic Regression Methods to Build Groutability Models for Permeation Grouting with Microfine Cement Grouten
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳榮河,童慶斌,廖國偉,黃建霖
dc.subject.keyword支持向量機,禁忌演算法,羅吉斯迴歸,超微粒水泥,滲透灌漿,可灌性,zh_TW
dc.subject.keywordSupport Vector Machine(SVM),Tabu Search algorithm (TS),Logistic Regression(LR),microfine cement,permeation grouting,groutability,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2012-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved