請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64500完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊烽正(Feng-Cheng Yang) | |
| dc.contributor.author | Wei-Ting Shih | en |
| dc.contributor.author | 石瑋婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:50:54Z | - |
| dc.date.available | 2014-08-17 | |
| dc.date.copyright | 2012-08-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-13 | |
| dc.identifier.citation | Antony Arokia Durai Raj, K. & Rajendran, C., 2012. A genetic algorithm for solving
the fixed-charge transportation model: Two-stage problem. Computers and Operations Research, 39 (9), 2016-2032. Ertogral, K., 2008. Multi-item single source ordering problem with transportation cost: A lagrangian decomposition approach. European Journal of Operational Research, 191 (1), 154-163. Gen, M. & Syarif, A., 2005. Hybrid genetic algorithm for multi-time period production/distribution planning. Comput. Ind. Eng., 48 (4), 799-809. Jo, J.B., Li, Y. & Gen, M., 2007. Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm. Computers and Industrial Engineering, 53 (2), 290-298. Manimaran, P., Selladurai, V., Yeh, W.C. & Sivakumar, M., 2011. Particle swarm optimisation for fixed-charge transportation problem in a multistage supply chain network. International Journal of Logistics Systems and Management, 9 (3), 328-350. Paksoy, T. & Yapici Pehlivan, N., 2012. A fuzzy linear programming model for the optimization of multi-stage supply chain networks with triangular and trapezoidal membership functions. Journal of the Franklin Institute, 349 (1), 93-109. Syarif, A., Yun, Y. & Gen, M., 2002. Study on multi-stage logistic chain network: A spanning tree-based genetic algorithm approach. Computers and Industrial Engineering, 43 (1), 299-314. 林皙杰 (2008),具時窗限制之多階多廠序列生產工程鏈的訂單分配問題暨其遺 傳演算求解法,碩士論文,國立臺灣大學工業工程學研究所。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64500 | - |
| dc.description.abstract | 本研究提出一個具實務性的運輸規劃問題,名為「價格遞減的多產品多期多
廠多市多重運輸指派問題及其遺傳演算求解法」。完整定義此問題及其數學模型, 求解目標為極大化利潤。問題的限制條件為各期各產品從各廠的運輸量不超過工 廠的現貨量,及產品數量守恆。本文研擬遺傳演算求解法,在問題模型架構下研 擬整數型及實數型兩種染色體編碼法,分別研擬各自的交配法、突變法,並研擬 四種篩選法。最後展出最終運輸規劃結果。求解結果會顯示各期各產品從各廠使 用各交通工具運至各市場的運輸量。本研究並以C#程式語言在.NET Framework 的平台開發「遺傳演算為基的5MTP 求解系統」。本研究根據問題特性設定兩種 極端的情境及三種不同的市場價格下降率,共六種範例進行測試,並與以滿足最 大利益的市場需求的人工運輸規劃及隨機求解法進行比較,驗證本研究所提出的 求解效率及結果。 | zh_TW |
| dc.description.abstract | This paper presents a practical transportation planning problem for a multi-plant, multi-market, multi-product, multi-vehicle, multi-period transportation problem for
price-reducing products. A mathematical model for the problem was rigorously defined and the goal to solve is to maximize the profit. Constraints on this problem include transportation amount of each period of each product of each plant doesn’t exceed its number limit and product number conservation. This paper proposed a GA based solving system for real number and integer chromosome encoding methods, and each has its own crossover and mutation methods. Each encoding method has four types of selection methods, which deploys the final transportation plan. The transportation plan reveals the numbers of each period using different vehicle from all of the plant to transport each product to each market. A prototype system, GA-based 5MTP Solver Planning System, implementing the proposed GA method was developed to test sample data. In this study, we set two extreme scenarios and three different market price decline rate based on problem characteristics, total of six samples tested. And compared our results with artificial transport planning which is aimed at the most profitable of the market demand and random solving method proposed in this study, in order to prove our method’s efficiency. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:50:54Z (GMT). No. of bitstreams: 1 ntu-101-R99546023-1.pdf: 5764352 bytes, checksum: f3e1d3a955ba530831ce522eafcbda4f (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 ............................................................................................................................................... I
ABSTRACT ....................................................................................................................................... III 目錄 .................................................................................................................................................... IV 圖目錄 .................................................................................................................................................. V 表目錄 ................................................................................................................................................ VI 第1 章 緒論 ..................................................................................................................................... 1 1.1 研究動機 ............................................................................................................................. 1 1.2 研究目的 ............................................................................................................................. 2 1.3 研究流程 ............................................................................................................................. 2 1.4 章節概要 ............................................................................................................................. 5 第2 章 文獻探討 ............................................................................................................................. 6 2.1 運輸問題 ............................................................................................................................. 6 2.2 遺傳演算法 ......................................................................................................................... 7 第3 章 價格遞減的多產品多期多廠多市多重運輸指派問題及其遺傳演算求解法 ..................... 12 3.1 5MTP 運輸問題 ................................................................................................................ 12 3.2 5MTP 數學模型 ................................................................................................................ 14 3.3 5MTP 之實數編碼的遺傳演算求解法 .............................................................................. 18 3.4 5MTP 之整數編碼的遺傳演算求解法 .............................................................................. 30 第4 章 演算法效能分析與實例驗證 ............................................................................................. 46 4.1 GA5MTPS 求解系統 ......................................................................................................... 46 4.2 滿足最大利益的市場需求為目標的人工運輸規劃法 ....................................................... 47 4.3 隨機求解法 ....................................................................................................................... 53 4.4 範例問題定義與參數設定................................................................................................. 53 4.5 效能分析測試 ................................................................................................................... 56 第5 章 結論與未來研究建議 ........................................................................................................ 63 5.1 結論 ................................................................................................................................... 63 5.2 未來研究建議 ................................................................................................................... 63 參考文獻 ............................................................................................................................................. 65 附錄A ................................................................................................................................................. 66 附錄B ................................................................................................................................................. 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 運輸規劃問題 | zh_TW |
| dc.subject | 遺傳演算法 | zh_TW |
| dc.subject | 價格遞減 | zh_TW |
| dc.subject | price-reducing | en |
| dc.subject | transportation planning problem | en |
| dc.subject | Genetic Algorithm | en |
| dc.title | 價格遞減的多產品多期多廠多市多重運輸指派問題
及其遺傳演算求解法 | zh_TW |
| dc.title | A Multi-plant, Multi-market, Multi-product,
Multi-vehicle, Multi-period Transportation Problem For Price-reducing Products | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳政鴻(Cheng-Hung Wu),徐旭昇(Chiuh-Cheng Chyu) | |
| dc.subject.keyword | 價格遞減,運輸規劃問題,遺傳演算法, | zh_TW |
| dc.subject.keyword | price-reducing,transportation planning problem,Genetic Algorithm, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
