請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64495完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊彬 | |
| dc.contributor.author | Yih-Dean Jan | en |
| dc.contributor.author | 詹益典 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:50:36Z | - |
| dc.date.available | 2012-09-17 | |
| dc.date.copyright | 2012-09-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-13 | |
| dc.identifier.citation | 1. Ahn KD, Chung CM, Kim YH (1999). Synthesis and photopolymerization of multifunctional methacrylates derived from bis-GMA for dental applications. J appl polym sci 71:2033-7.
2. Atai M, Watts DC, Atai Z (2005). Shrinkage strain-rate of dental resin monomer and composite systems. Biomaterials 26:5015-20. 3. Bellomo G, Mirabelli F, Richelmi P, Malorni W, Losi F, Orrenius S (1990). The cytoskeleton as a target in quinone toxicity. Free Radical Reviews and Comments 8:391–9. 4. Bowen RL (1959). Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of Bisphenol and glycidyl acrylate. Patent No. US3066112. 5. Bowen RL (1961). Method of preparing a monomer having phenoxy and methacrylate groups linked by hydroxy glyceryl groups. Patent No. US3179623. 6. Bowen RL (1962). Silica-resin direct filling material and method of preparation. Patent No. US3194783. 7. Bowen RL, Argentar H (1971). Amine accelerators for methacrylate resin systems. J Dent Res 50:923-8. 8. Brannstrom M (1986). The cause of postoperative sensitivity and its prevention. J Endod 12:475-81. 9. Buonocore MG (1955). A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 34:849-53. 10. Carlos AG, Federico BS, Jorge GI, Gabriel SE, Miguel CM (2004). Calculation of contraction rates due to shrinkage in light-cured composites. Dent Mater 20:228-35. 11. Chen CY, Huang CK, Lin SP, Han JL, Hsieh KH, Lin CP (2008). Low-shrinkage visible-light-curable urethane-modified epoxy acrylate/SiO2 composites as dental restorative materials. Composites Sci Technol 68:2811-7. 12. Christensen RP, Christensen GJ (1982). In vivo comparison of a microfilled and a composite resin: a three-year report. J Prosthet Dent 48:657-63. 13. Chung CM, Kim JG, Kim MS, Kim KM, Kim KN (2002). Development of a new photocurable composite resin with reduced curing shrinkage. Dent Mater 18:174-8. 14. Condon JR, Ferracane JL (1997). In vitro wear of composite with varied cure, filler level, and flller treatment. J Dent Res 76:1405-11. 15. Craig RG. Craig’s Restorative Dental Materials, 12th edition. 2006:191. 16. Dart E, Nemcek J (1971). Photopolymerizable composition. Patent No. GB1408265. 17. Dietschi D, Magne P, Holz J (1994). Recent trands in esthetic restorations for posterior teeth. Quintessence Int 25:659-77. 18. Engelmann J, Leyhausen G, Leibfritz D, Geurtsen W (2001). Metabolic effects of dental resin components in vitro detected by NMR spectroscopy. J Dent Res 80:869-75. 19. Fan PL, Edahl A, Leung RL, Stanford JW (1985). Alternative interpretations of water sorption values of composite resins. J Dent Res 64:78-80. 20. Floyd C J, Dickens SH (2006). Network structure of Bis-GMA- and UDMA-based resin systems. Dent Mater 22:1143-9. 21. Geurtsen W (2000). Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med 11:333-55. 22. Go´ mez-Mendikute A, Etxeberria A, Olabarrieta I, Cajaraville MP (2002). Oxygen radical production and actin filament disruption in bivalve haemocytes treated with benzo[a]pyrene. Marine Environ Res 54:431–6. 23. Goncalves F, Pfeifer CS, Stansbury JW, Newman SM, Braga RR (2010). Influence of matrix composition on polymerization stress development of experimental composites. Dent Mater 26:697-703. 24. International Organization for Standardization (ISO) 10993-12, 2006. 25. Jeon MY , Yoo SH , Kim JH, Kim CK, Cho BH (2007). Dental restorative composite fabricated from a novel organic matrix without an additional diluent. Biomacromolecules 8:2571-5. 26. Jingwei He, Yuanfang Luo, Fang Liu, Demin Jia (2010). Synthesis and characterization of a new trimethacrylate monomer with low polymerization shrinkage and its application in dental restoration materials. J biomater Appl 25:235-49. 27. Kenneth J. Anusavice. PHILIPS’ SCIENCE OF DENTAL MATERIALS, 10th edition. 1996:273-8. 28. Kim NR, Park HC, Kim I, Lim BS, Yang HC (2010). In vitro cytocompatibility of N-acetylcysteine-supplemented dentin bonding agents. J Endod 36:1844-50. 29. Lavigueur C. Zhu XX (2012). Recent advances in the development of dental composite resins. Rsc Advances2:59-63. 30. Lockwood DB, Wataha JC, Lewis JB, Tseng WY, Messer RL, Hsu SD (2005). Blue light generates reactive oxygen species (ROS) differentially in tumor vs. normal epithelial cells. Dent Mater 21:683-8. 31. Lovell L G, Berchtold KA, Elliott JE, Lu H, Bowman CN (2001). Understanding the kinetics and network formation of dimethacrylate dental resins. Polymers for Advanced Technologies 12:335-45. 32. Magali D, Delphine TB, Jacques D, Gaetane L (2006). Volume contraction in photocured resins: The shrinkage-conversion relationship revised. Dent Mater 22:359-65. 33. Milzani A, Dalle-Donne I, Colombo R (1997). Prolonged oxidative stress on actin. Arch Biochem Biophy 339:267–74. 34. Milzani A, Dalle-Donne I, Rossi R, Guistarini D, Lusini L, Simplicio P, et al. (2001) From actin oxidation to cell misfunctionings: attempting to overcome the gap by a cytoskeletal bridge. Recent Reviews in Biophy Biochem 1:1–19. 35. Mohsen NM, Craig RG, Hanks CT (1998). Cytotoxicity of urethane dimethacrylate composites before and after aging and leaching. J Biomed Mater Res 39:252-60. 36. Ratanasathien S, Wataha JC, Hanks CT, Dennison JB (1995). Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. J Dent Res 74:1602-6. 37. Sakaguchi RL, Versluis A, Douglas WH (1997). Analysis of strain gage method for measurement of post-gel shrinkage in resin composites. Dent Mater 13:233-9. 38. Samuelsen JT, Dahl JE, Karlsson S, Morisbak E, Becher R (2007). Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases p38, JNK and ERK. Dent Mater 23:34-9. 39. Schweikl H, Spagnuolo G, Schmalz G (2006). Genetic and cellular toxicology of dental resin monomers. J Dent Res 85:870-7. 40. Simonsen RJ (1987). The preventive resin restoration: a minimally invasive, nonmetallic restoration. Compendium 8:428-32. 41. Spagnuolo G, D'Anto V, Cosentino C, Schmalz G, Schweikl H, Rengo S (2006). Effect of N-acetyl-L-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials 27:1803-9. 42. Tilbrook DA, Clarke RL, Howle NE, Braden M (2000). Photocurable epoxy-polyol matrices for use in dental composites I. Biomaterials 21:1743-53. 43. Tomasik AK, Biernat M, Parzuchowski PG (2010). Hyperbranched multimethacrylate resins of low viscosity and low oxygen inhibition for dental applications. Polimery 55:284-92. 44. Tseng WY, Chen RS, Wang JL, Lee MS, Rueggeberg FA, Chen MH (2007). Effects on microstrain and conversion of flowable resin composite using different curing modes and units. J Biomed Mater Res Part B: Appl Biomater 81B:323-9. 45. Tseng WY, Huang CH, Chen RS, Lee MS, Chen YJ, Rueggeberg FA, et al (2007). Monomer conversion and cytotoxicity of dental composites irradiated with different modes of photoactivated curing. J Biomed Mater Res B Appl Biomater 83:85-90. 46. Tveit AB, Espelid I (1986). Radiograpgic diagnosis of caries and marginal defects in connection with radiopaque composite fillings. Dent Mater 2:159-62. 47. Venhoven BA, de Gee AJ, Werner A, Davidson CL (1996). Influence of filler parameters on the mechanical coherence of dental restorative resin composites. Biomaterials 17:735-40. 48. Waller D (1970). Photopolymerizable dental products. Patent No. US3709866. 49. Wang YL, Lee BS, Chang KC, Chiu HC, Lin FH, Lin CP (2007). Characterization, fluoride release and recharged properties of polymer-kaolinite nanocomposite resins. Composites Sci Technol 67:3409-16. 50. Weinmann W, Thalacker C, Guggenberger R (2005). Siloranes in dental composites. Dent Mater 21:68-74. 51. 張淑芳(1998). 氬雷射對牙科複合樹脂聚合的作用(碩士論文). 台北,國立台灣大學醫學院牙醫科學研究所。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64495 | - |
| dc.description.abstract | 複合樹脂是目前最受歡迎的牙科填補材料。複合樹脂具有許多好處,例如美觀,易操作,低花費等。但是同時也有一些缺點,例如聚合收縮,抗磨耗力低,邊緣變色等。複合樹脂主要由有機單體和無機填料所組成。分子量大,收縮小的甲基壓克力,如雙酚A丙三醇雙甲基丙烯酸酯(Bis-GMA),常被使用做為樹脂基質。但Bis-GMA的高黏稠度,使得無機填料的添加量和轉化率受到限制。低分子量的單體,如TEGDMA常被添加來降低黏稠度,增加反應性和轉化率。然而,稀釋單體也會增加聚合收縮,產生收縮應力,導致填補物和牙齒交界面粘著失敗,邊緣變色,繼發性蛀牙,術後敏感及牙髓發炎等問題。聚合收縮是造成臨床上複合樹脂填補失敗的最主要原因。所以,如何降低聚合收縮,是研發新複合樹脂的重要方向。
目前,市面上仍未出現「零收縮」的複合樹脂。在本實驗中,我們想研發一種適合牙科使用的低收縮複合樹脂。我們預期,樹脂單體的分子量和體積愈大,聚合收縮就會愈小。複合樹脂最常使用的基質就是Bis-GMA及其衍生物。我們將甲基壓克力接上側鏈,以增加分子量和體積。氨基甲酸乙酯(urethane),具有低收縮,抗磨耗及生物相容性佳等優點,可做為側鏈的材料。我們選擇三種二異氰酸鹽(HDI,H12MDI 和TDI),分別加上HEMA,做為側鏈材料。HDI是線性分子結構,H12MDI具有兩個氫化六角環,TDI則有一個苯環結構。不同分子結構和密度的側鏈,可能會對樹脂造成不同的影響。 實驗組樹脂的分子量和黏稠度,會隨著側鏈密度的增加而增加。樹脂的聚合收縮和轉化率則隨著側鏈密度的增加而減少。DM-M-1.5c和DM-T-1.5c這兩組的聚合收縮明顯小於所有實驗組。雖然這兩組的轉化率明顯低於對照組,但是表面硬度卻相當或是高於對照組,可能是因為官能度較高的緣故。而這兩組的細胞存活率和控制組並沒有明顯差異。樹脂的生物相容性,和單體分子結構的立體障礙有關。當側鏈的密度增加,立體障礙就會增加,形成交聯結構後,有毒的樹脂單體,就會被包覆在複雜結構中,而不會釋放出來。本實驗發現用氨基甲酸乙酯做側鏈的壓克力樹脂,可以有效減少收縮及增加硬度,並具有良好的生物相容性,未來可以應用在牙科材料上。 | zh_TW |
| dc.description.abstract | Composite resins are currently the most popular dental restorative materials worldwide. Composite resins provide certain advantages such as good esthetics, easy application, and lower costs. However, there remain some disadvantages to their use, such as polymerization shrinkage, low wear resistance, and marginal discoloration. Composite resins are composed of organic monomers and inorganic fillers. High molecular weight dimethacrylate monomers with low polymerization shrinkage and high strength, such as bisphenol A-glycidyl dimethacrylate (bis-GMA), are most commonly used. The high viscosity of bis-GMA reduces the loading of fillers and also the degree of conversion of the monomers in the absence of other low viscosity diluents. Low molecular weight diluent monomers, such as triethylene glycol dimethacrylate (TEGDMA), are often added to reduce viscosity and increase the reactivity and conversion rate. However, the diluent monomers also increase polymerization shrinkage, leading to polymerization stress, debonding at the restoration-tooth interface, secondary caries, postoperative sensitivity, pulpal irritation, and marginal discoloration. Polymerization shrinkage is the principal cause of failure of clinical dental composite resin fillings. Reducing this shrinkage, thus, represents one of the most important goals in the development of new matrices for composite resins.
Currently, there remains a lack of “non-shrinkage” composite resins worldwide. In this study, we aimed to develop low-shrinkage composite resins for dental application. As expected, the higher the molecular weight and volume the monomer, the less extensive the shrinkage when polymerized. Most commercial dental composite resins are composed of bis-GMA or its derivatives. We increased the molecular weight and volume of the dimethacrylate molecule by conjugating functional side chains to the dimethacrylate structure. Urethane, which is a compound of diisocyanate and 2-hydroxyethyl methacrylate (HEMA), is a material suitable for use as a dimethacrylate side chain. Polyurethane displays certain advantages, such as low shrinkage, high wear resistance, and good biocompatibility. We selected three diisocyanates with different chemical structures as side chain materials: 1,6-Diisocyanatohezane (HDI), 4,4’-diisocyanatodicyclohexylmethane (H12MDI) and toluene 2,4-diisocyanate (TDI). HDI is a linear structure molecule. H12MDI contains two aliphatic rings (cyclohexane) linked by a methyl group, whereas TDI contains a toluene moiety. When conjugated to dimethacrylate, these three chemical structures reduced polymerization shrinkage and increased the mechanical strength of the composites. Different structures and numbers of side chains on dimethacrylate provided different results. The molecular weight and viscosity of experimental resins were increased as functional side chain density was increased. The polymerization shrinkage and degree of conversion were decreased when functional side chain density was increased. Polymerization shrinkage in the DM-M-1.5c and DM-T-1.5c groups was significantly less extensive than in the other groups (p<0.05). Although the degree of conversions of these two groups were significantly lower than that of the control group, the surface hardness values were equal to or significantly higher than that of the control group because of increasing functionalities of the side chain-modified groups. There were non-significant differences between these two groups and the control group in cell vitality. The biocompatibility of dental resin is related to the stereo hindrance of resin matrix molecular structures. When the ratio of HDI, H12MDI or TDI functional side chain to dimethacrylate is increased, the stereo hindrance of resin structure is increased, more toxic resin monomers are trapped in the complicated resin structure, and thus the resin matrix reveals less cytotoxicity. The urethane modification of dimethacrylate, therefore, represents an effective means of reducing polymerization shrinkage and increasing surface hardness. The modified dimethacrylate with good biocompatibility might be suitable for dental use in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:50:36Z (GMT). No. of bitstreams: 1 ntu-101-D92422003-1.pdf: 8694349 bytes, checksum: c57b798f7fb50108576fd7834e723a82 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 謝辭------------------------------------------------------------------i
中文摘要------------------------------------------------------------ii 英文摘要------------------------------------------------------------iv 目錄-----------------------------------------------------------------vii 圖次-----------------------------------------------------------------x 表次-----------------------------------------------------------------xiii 英文縮寫-----------------------------------------------------------xiv 第一章 緒論-------------------------------------------------------1 第二章 文獻回顧-------------------------------------------------3 第三章 實驗材料與方法-----------------------------------------7 3.1實驗材料----------------------------------------------------7 3.2實驗儀器--------------------------------------------------7 3.3樹脂基質的合成-----------------------------------------8 3.3.1 HDI系統樹脂基質之合成-------------------------8 3.3.2 H12MDI系統樹脂基質之合成---------------------9 3.3.3 TDI系統樹脂基質之合成-------------------------10 3.3.4對照組樹脂基質之合成---------------------------11 3.4複合樹脂的製備-----------------------------------------11 3.4.1 HDI系統複合樹脂---------------------------------11 3.4.2 H12MDI系統複合樹脂---------------------------11 3.4.3 TDI系統複合樹脂-------------------------------12 3.4.4對照組複合樹脂------------------------------------12 3.5材料性質的測試--------------------------------------------12 3.5.1樹脂基質-----------------------------------------------12 3.5.1.1黏稠度測試---------------------------------------12 3.5.1.2聚合收縮------------------------------------------13 3.5.1.3表面硬度------------------------------------------13 3.5.1.4轉化率--------------------------------------------14 3.5.1.5細胞毒性------------------------------------------15 3.5.2複合樹脂-----------------------------------------------17 3.5.2.1聚合收縮-----------------------------------------17 3.5.2.2表面硬度------------------------------------------17 3.5.2.3轉化率--------------------------------------------18 3.5.2.4細胞毒性-----------------------------------------19 第四章 結果-------------------------------------------------------21 4.1樹脂基質的基本性質---------------------------------------21 4.1.1 HDI系統樹脂基質的性質----------------------------21 4.1.2 H12MDI系統樹脂基質的性質------------------------21 4.1.3 TDI系統樹脂基質的性質----------------------------22 4.2複合樹脂的基本性質---------------------------------------22 4.2.1 HDI系統複合樹脂的性質----------------------------22 4.2.2 H12MDI系統複合樹脂的性質-------------------------22 4.2.3 TDI系統複合樹脂的性質----------------------------23 4.3樹脂基質的細胞毒性---------------------------------------23 4.4複合樹脂的細胞毒性--------------------------------------24 第五章 討論------------------------------------------------------25 5.1樹脂基質--------------------------------------------------25 5.2複合樹脂-------------------------------------------------28 第六章 結論-----------------------------------------------------33 參考文獻----------------------------------------------------------34 附錄:已發表論文-----------------------------------------------------87 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物相容性 | zh_TW |
| dc.subject | 複合樹脂 | zh_TW |
| dc.subject | 轉化率 | zh_TW |
| dc.subject | 硬度 | zh_TW |
| dc.subject | 聚合收縮 | zh_TW |
| dc.subject | 氨基甲酸乙酯改質樹脂 | zh_TW |
| dc.subject | polymerization shrinkage | en |
| dc.subject | urethane-modified resin | en |
| dc.subject | degree of conversion | en |
| dc.subject | hardness | en |
| dc.subject | biocompatibility | en |
| dc.subject | composite resin | en |
| dc.title | 以二異氰酸鹽和甲基丙烯酸-2-羥基乙酯做為側鏈的牙科用壓克力樹脂的性質探討 | zh_TW |
| dc.title | Properties of dental methacrylate resins with different urethane-modified side chains | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄧麗珍,鄭景暉,林弘萍,謝國煌,藍萬烘 | |
| dc.subject.keyword | 生物相容性,複合樹脂,轉化率,硬度,聚合收縮,氨基甲酸乙酯改質樹脂, | zh_TW |
| dc.subject.keyword | biocompatibility,composite resin,degree of conversion,hardness,polymerization shrinkage,urethane-modified resin, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-14 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 8.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
