Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64487
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor尹相姝
dc.contributor.authorYuan-Jia Jouen
dc.contributor.author周原加zh_TW
dc.date.accessioned2021-06-16T17:50:06Z-
dc.date.available2014-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-13
dc.identifier.citation1. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jr., Jones EG (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Archives of general psychiatry 52:258-266.
2. Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. The American journal of psychiatry 156:1580-1589.
3. Aleman A, Hijman R, de Haan EH, Kahn RS (1999) Memory impairment in schizophrenia: a meta-analysis. The American journal of psychiatry 156:1358-1366.
4. Arnold SE, Han LY, Moberg PJ, Turetsky BI, Gur RE, Trojanowski JQ, Hahn CG (2001) Dysregulation of olfactory receptor neuron lineage in schizophrenia. Archives of general psychiatry 58:829-835.
5. Bagossi P, Horvath G, Vereb G, Szollosi J, Tozser J (2005) Molecular modeling of nearly full-length ErbB2 receptor. Biophysical journal 88:1354-1363.
6. Baptista T, Kin NM, Beaulieu S, de Baptista EA (2002) Obesity and related metabolic abnormalities during antipsychotic drug administration: mechanisms, management and research perspectives. Pharmacopsychiatry 35:205-219.
7. Benardais K, Kasem B, Couegnas A, Samama B, Fernandez S, Schaeffer C, Antal MC, Job D, Schweitzer A, Andrieux A, Giersch A, Nehlig A, Boehm N (2010) Loss of STOP protein impairs peripheral olfactory neurogenesis. PloS one 5:e12753.
8. Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP (1992) Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. The Journal of neuroscience : the official journal of the Society for Neuroscience 12:924-929.
9. Benes FM, Vincent SL, Marie A, Khan Y (1996) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75:1021-1031.
10. Boucher AA, Arnold JC, Duffy L, Schofield PR, Micheau J, Karl T (2007) Heterozygous neuregulin 1 mice are more sensitive to the behavioural effects of Delta9-tetrahydrocannabinol. Psychopharmacology 192:325-336.
11. Brockes JP, Lemke GE, Balzer DR, Jr. (1980) Purification and preliminary characterization of a glial growth factor from the bovine pituitary. The Journal of biological chemistry 255:8374-8377.
12. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175-187.
13. Caggiano M, Kauer JS, Hunter DD (1994) Globose basal cells are neuronal progenitors in the olfactory epithelium: a lineage analysis using a replication-incompetent retrovirus. Neuron 13:339-352.
14. Calvo M, Zhu N, Tsantoulas C, Ma Z, Grist J, Loeb JA, Bennett DL (2010) Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 30:5437-5450.
15. Canavan SV, Mayes LC, Treloar HB (2011) Changes in maternal gene expression in olfactory circuits in the immediate postpartum period. Frontiers in psychiatry / Frontiers Research Foundation 2:40.
16. Carter LA, MacDonald JL, Roskams AJ (2004) Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. The Journal of neuroscience : the official journal of the Society for Neuroscience 24:5670-5683.
17. Chen MS, Bermingham-McDonogh O, Danehy FT, Jr., Nolan C, Scherer SS, Lucas J, Gwynne D, Marchionni MA (1994) Expression of multiple neuregulin transcripts in postnatal rat brains. J Comp Neurol 349:389-400.
18. Falls DL (2003) Neuregulins: functions, forms, and signaling strategies. Experimental cell research 284:14-30.
19. Falls DL, Harris DA, Johnson FA, Morgan MM, Corfas G, Fischbach GD (1990) Mr 42,000 ARIA: a protein that may regulate the accumulation of acetylcholine receptors at developing chick neuromuscular junctions. Cold Spring Harb Symp Quant Biol 55:397-406.
20. Ferguson KM (2004) Active and inactive conformations of the epidermal growth factor receptor. Biochemical Society transactions 32:742-745.
21. Feron F, Perry C, Hirning MH, McGrath J, Mackay-Sim A (1999) Altered adhesion, proliferation and death in neural cultures from adults with schizophrenia. Schizophrenia research 40:211-218.
22. Graziadei PP, Graziadei GA (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. Journal of neurocytology 8:1-18.
23. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Archives of general psychiatry 57:1061-1069.
24. Guo WP, Wang J, Li RX, Peng YW (2006) Neuroprotective effects of neuregulin-1 in rat models of focal cerebral ischemia. Brain research 1087:180-185.
25. Harrison PJ, McLaughlin D, Kerwin RW (1991) Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 337:450-452.
26. Heizmann CW, Braun K (1992) Changes in Ca(2+)-binding proteins in human neurodegenerative disorders. Trends in neurosciences 15:259-264.
27. Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andrade M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proceedings of the National Academy of Sciences of the United States of America 104:14501-14506.
28. Hoffmann VP, Case M, Jacobson JG (2012) Assessment of treatment algorithms including amantadine, metformin, and zonisamide for the prevention of weight gain with olanzapine: a randomized controlled open-label study. The Journal of clinical psychiatry 73:216-223.
29. Holbrook EH, Szumowski KE, Schwob JE (1995) An immunochemical, ultrastructural, and developmental characterization of the horizontal basal cells of rat olfactory epithelium. J Comp Neurol 363:129-146.
30. Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW, Yansura D, Abadi N, Raab H, Lewis GD, et al. (1992) Identification of heregulin, a specific activator of p185erbB2. Science 256:1205-1210.
31. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 95:15718-15723.
32. Keshavan MS (1999) Development, disease and degeneration in schizophrenia: a unitary pathophysiological model. Journal of psychiatric research 33:513-521.
33. Kishimoto J, Keverne EB, Emson PC (1993) Calretinin, calbindin-D28k and parvalbumin-like immunoreactivity in mouse chemoreceptor neurons. Brain research 610:325-329.
34. Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M, Okabe M, Ikeda T, Itohara S, Kikusui T, Mori K, Sakano H (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503-508.
35. Kotter R (2001) Neuroscience databases: tools for exploring brain structure-function relationships. Philosophical transactions of the Royal Society of London Series B, Biological sciences 356:1111-1120.
36. Lemke G (1996) Neuregulins in development. Mol Cell Neurosci 7:247-262.
37. Leung CT, Coulombe PA, Reed RR (2007) Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci 10:720-726.
38. Marchionni MA, Goodearl AD, Chen MS, Bermingham-McDonogh O, Kirk C, Hendricks M, Danehy F, Misumi D, Sudhalter J, Kobayashi K, et al. (1993) Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362:312-318.
39. Martzke JS, Kopala LC, Good KP (1997) Olfactory dysfunction in neuropsychiatric disorders: review and methodological considerations. Biological psychiatry 42:721-732.
40. Mei L, Xiong WC (2008) Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nature reviews Neuroscience 9:437-452.
41. Moberg PJ, Agrin R, Gur RE, Gur RC, Turetsky BI, Doty RL (1999) Olfactory dysfunction in schizophrenia: a qualitative and quantitative review. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 21:325-340.
42. Moberg PJ, Turetsky BI (2003) Scent of a disorder: olfactory functioning in schizophrenia. Current psychiatry reports 5:311-319.
43. Nguyen AD, Shenton ME, Levitt JJ (2010) Olfactory dysfunction in schizophrenia: a review of neuroanatomy and psychophysiological measurements. Harvard review of psychiatry 18:279-292.
44. Norton N, Moskvina V, Morris DW, Bray NJ, Zammit S, Williams NM, Williams HJ, Preece AC, Dwyer S, Wilkinson JC, Spurlock G, Kirov G, Buckland P, Waddington JL, Gill M, Corvin AP, Owen MJ, O'Donovan MC (2006) Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 141B:96-101.
45. O'Tuathaigh CM, Babovic D, O'Meara G, Clifford JJ, Croke DT, Waddington JL (2007) Susceptibility genes for schizophrenia: characterisation of mutant mouse models at the level of phenotypic behaviour. Neuroscience and biobehavioral reviews 31:60-78.
46. O'Tuathaigh CM, O'Connor AM, O'Sullivan GJ, Lai D, Harvey R, Croke DT, Waddington JL (2008) Disruption to social dyadic interactions but not emotional/anxiety-related behaviour in mice with heterozygous 'knockout' of the schizophrenia risk gene neuregulin-1. Progress in neuro-psychopharmacology & biological psychiatry 32:462-466.
47. Peles E, Bacus SS, Koski RA, Lu HS, Wen D, Ogden SG, Levy RB, Yarden Y (1992) Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69:205-216.
48. Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52:139-153.
49. Seckinger RA, Goudsmit N, Coleman E, Harkavy-Friedman J, Yale S, Rosenfield PJ, Malaspina D (2004) Olfactory identification and WAIS-R performance in deficit and nondeficit schizophrenia. Schizophrenia research 69:55-65.
50. Snodgrass-Belt P, Gilbert JL, Davis FC (2005) Central administration of transforming growth factor-alpha and neuregulin-1 suppress active behaviors and cause weight loss in hamsters. Brain research 1038:171-182.
51. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E, Gunnarsdottir S, Walker N, Petursson H, Crombie C, Ingason A, Gulcher JR, Stefansson K, St Clair D (2003) Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. American journal of human genetics 72:83-87.
52. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. American journal of human genetics 71:877-892.
53. Steinthorsdottir V, Stefansson H, Ghosh S, Birgisdottir B, Bjornsdottir S, Fasquel AC, Olafsson O, Stefansson K, Gulcher JR (2004) Multiple novel transcription initiation sites for NRG1. Gene 342:97-105.
54. Tadenev AL, Kulaga HM, May-Simera HL, Kelley MW, Katsanis N, Reed RR (2011) Loss of Bardet-Biedl syndrome protein-8 (BBS8) perturbs olfactory function, protein localization, and axon targeting. Proceedings of the National Academy of Sciences of the United States of America 108:10320-10325.
55. Toru M, Nishikawa T, Mataga N, Takashima M (1982) Dopamine metabolism increases in post-mortem schizophrenic basal ganglia. Journal of neural transmission 54:181-191.
56. Turetsky BI, Hahn CG, Arnold SE, Moberg PJ (2009) Olfactory receptor neuron dysfunction in schizophrenia. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 34:767-774.
57. Turetsky BI, Moberg PJ, Roalf DR, Arnold SE, Gur RE (2003) Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia. Archives of general psychiatry 60:1193-1200.
58. Turetsky BI, Moberg PJ, Yousem DM, Doty RL, Arnold SE, Gur RE (2000) Reduced olfactory bulb volume in patients with schizophrenia. The American journal of psychiatry 157:828-830.
59. Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu SB, Young WS, 3rd (2007) Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav 6:540-551.
60. Woodley SK, Baum MJ (2003) Effects of sex hormones and gender on attraction thresholds for volatile anal scent gland odors in ferrets. Horm Behav 44:110-118.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64487-
dc.description.abstract嗅覺系統與情感和記憶功能的關係很密切,所以當嗅覺功能異常時,會導致情感的不正常,可能與情緒性的疾病有相關性,例如精神分裂症。先前的研究的確指出,精神分裂症病人會出現異常的嗅覺功能,例如受到干擾的氣味探索,氣味記憶和氣味辨別;也已有學者利用核磁共振掃描發現精神分裂病人的嗅球體積減少。已知Neuregulin1 (NRG1,神經生長素1)基因是精神分裂症的易感性基因之一。NRG1與它的受體,ErbBs,被認為在神經系統發育上扮演重要的角色。本實驗的目的是探討NRG1基因的變異,對小鼠嗅覺功能及嗅覺上皮神經細胞新生的影響。我們觀察八週大的NRG1+/+(野生型)小鼠與NRG1 +/- (變異型)小鼠的行為。之後它們接受腹腔bromodeoxyuridine (BrdU)注射,150毫克/公斤,每天一劑連續三天;在第4天 (BrdU-4D) , 第10天(BrdU-10D) , 第21天 (BrdU-21D) 以及第28天 (BrdU-28D) ,我們將動物麻醉灌流,取出它們的嗅覺上皮進行免疫細胞化學染色。
實驗結果如下
1. 行為實驗結果:
NRG1變異小鼠體重比野生型輕約9.2%。開放性空間行為測驗顯示,變異小鼠在中央及周邊停留的時間和行走距離與野生型相似。根據嗅不同氣味的習慣/去習慣測試,與野生型相比,變異小鼠幾乎無法辨識不同味道與兩個不同鼠籠的墊料氣味。這些結果指出NRG1基因活性是維持正常嗅覺的重要因素。
2. 形態免疫染色結果:
(A) 嗅覺上皮的背側區
(i) BrdU-4D和BrdU-10D NRG 1變異小鼠的BrdU正染色細胞數目比對應組野生型小鼠多94.6%和65.8%,但BrdU-21D和BrdU-28D NRG 1變異小鼠的含BrdU細胞數目與野生型類似。
(ii) 與野生型比較,NRG 1變異小鼠的doublecortin(DCX)染色細胞,即神經母細胞(neuroblast)的數目減少45.6%; olfactory marker protein(OMP),一種成熟嗅覺接受神經細胞(olfactory receptor neuron)的標誌蛋白的染色面積與強度減少28.9%與18.6%;calretinin (CR),一種鈣離子結合蛋白,染色細胞數量減少37.6%。
(iii) 變異小鼠的cleaved caspase 3染色細胞數目比野生型增加75.8%。
(B)嗅覺上皮中隔區
(i) BrdU-4D,BrdU-10D和BrdU-28D NRG1變異小鼠的BrdU染色細胞數目比野生型增加62.1%,54.5%和54.6%,但BrdU-21D NRG1變異小鼠沒有改變。
(ii) 與背側區類似,NRG1變異小鼠DCX染色細胞數目比野生型減少31.5%和cleaved caspase 3染色細胞數目增加38.5%,雖然OMP與CR表現與野生型相似。
(iii) 電子顯微鏡觀察發現,與野生型比較,變異小鼠嗅覺上皮底層細胞的核膜孔洞數量呈現上升趨勢,與嗅覺接受神經細胞的纖毛從其基底部單支突起,而非野生型的多支突起。
我們的染色結果也證實嗅覺上皮存在NRG1與ErbB 2接受器蛋白質,此指出NRG1可能會透過與ErbB 2結合導致上述特定細胞表現的改變。根據以上結果我們推測,NRG1基因的變異導致NRG1蛋白質異常,可能使小鼠嗅覺上皮含ErbB 2細胞的下游的訊息路徑發生改變,使細胞增生數目上升,但也使細胞存活下降,未成熟與成熟神經細胞數目也減少。變異小鼠嗅覺接受神經細胞纖毛不正常的超微結構,可能與其不正常的行為和細胞新生與凋亡增加有關係。NRG1基因活性顯然會影響神經細胞的增生,分化和存活,故我們推論其在精神分裂症病理機制扮演重要角色。
zh_TW
dc.description.abstractOlfactory system is closely associatied with emotion and memory. Olfactory malfunction may lead to abnormal emotion, and this may play roles in mood-related disease, such as schizophrenia. Previous studies indicate that abnormal olfactory functions are common symptoms of schizophrenics, which include disturbed identification, discrimination, memory, and detection of odors. As shown by MRI scans, reduced bulb volumes were seen in schizophrenic patients. Neuregulin 1 (NRG1) is thought to be one of the susceptibility genes of schizophrenia. Neuregulin 1 (NRG1) and its receptors, ErbBs, may play important roles in the development of nervous system. Thus, the goal of this experiment was to examine the effects of the mutation of NRG1 gene on the olfaction and olfactory epithelium (OE) neurogenesis. Following behavioral observation 8 week-old wildtype (WT, NRG1+/+) and mutant (Mut, NRG1+/-) mice were intraperitoneally injected with bromodeoxyuridine (BrdU), 150 mg/kg, once daily for 3 consecutive days. On the 4th day (BrdU-D4), 10th day (BrdU-D10), 21st day (BrdU-D21) and 28th day (BrdU-D28) the mice were subjected to preparation for immunocytochemistry on their OE.
Our results are as follows.
1. Behavior test results:
NRG1 mutant mice showed decreased average body weight by about 9.2%. As revealed from the open field test, the distance and duration traveled by mutant mice were similar in the central and peripheral parts of the field respectively to that of WT. The olfactory habituation/dishabituation test revealed that, mutant mice were unable to discriminate different odors and litter odors.
2. Morphological results:
(A) In the dorsal region of OE
(i) The numbers of BrdU-positive cells were increased by 94.6% and 65.8% in the BrdU-D4 and BrdU-D10 mutant mice, compared to WT, whereas BrdU-D21 and BrdU-D28 mutant mice were similar to WT.
(ii) Mutant mice contained 45.6% less number of the doublecortin (DCX) , a marker for neuroblasts, positive cells than that of WT.
(iii) The levels of the olfactory marker protein (OMP) for mature olfactory receptor neurons (ORNs) were decreased by 28.9% and 18.6% in its expression area and OD in the Mutant mice.
(iv) OE of mutant mice had 37.6% lower number of calretinin (CR) positive cells.
(v) Mutant mice had 75.8% more number of cleaved caspase 3 positive cells.
(B) In the septal region of OE
(i) The numbers of BrdU-positive cells were increased by 62.1%, 54.5% and 54.6% in the BrdU-D4, BrdU-D10 and BrdU-D28 mutant mice, compared to WT, whereas BrdU-D21 mutant mice were similar to WT.
(ii) Mutant mice contained 31.5% less number of the doublecortin (DCX) positive cells than that of WT.
(iii) Mutant mice had 38.5% more number of cleaved caspase 3 positive cells, whereas OMP and CR expression were similar to WT.
(C) Electron microscopy revealed that compared to that of WT, the number of nuclear membrane pores seemed incereased in the mutant basal cell and a single cilium arose from its basal part in the mutant ORN, instead of the multiple cilia arising from one single basal part in WT ORNs.
Our results also confirmed the presence of NRG1 and ErbB 2 receptor in OE. These point out that the abnormal NRG1 protein may bind to the ErbB 2, leading to altered intracellular signaling of those specific cells. In the mutant mice, the decreased number and abnormal ultrastructure of olfactory receptor neurons may be related to their abnormal behavior and increased neurogenesis and apoptosis. NRG1 gene activity apparently is critically involved in the proliferation, differentiation and survival of neural cells, and thus may play important roles in the pathogenesis of schizophrenia.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:50:06Z (GMT). No. of bitstreams: 1
ntu-101-R99446007-1.pdf: 5878574 bytes, checksum: c124aaf462a4c898433d003197d95d8f (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 i
英文摘要 iii
緒論 1
材料與方法 11
結果 24
討論 34
參考文獻 39
表格說明 44
結果圖 49
dc.language.isozh-TW
dc.subject神經新生zh_TW
dc.subject神生長素1zh_TW
dc.subject精神分裂症zh_TW
dc.subject嗅覺上皮zh_TW
dc.subjectNeuregulin 1en
dc.subjectneurogenesisen
dc.subjectolfactory epitheliumen
dc.subjectschizophreniaen
dc.title神經生長素1基因變異對成年小鼠嗅覺上皮構造及神經細胞新生的影響zh_TW
dc.titleEffects of Neuregulin-1 Gene Mutation on the Structure and Neurogenesis of the Olfactory Epithelium in Adult Miceen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李立仁,李莉姿,胡海國
dc.subject.keyword神生長素1,精神分裂症,嗅覺上皮,神經新生,zh_TW
dc.subject.keywordNeuregulin 1,schizophrenia,olfactory epithelium,neurogenesis,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2012-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨生物細胞學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
5.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved