請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64467
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王萬波(Won-Bo Wang) | |
dc.contributor.author | Ji-Shu Tsai | en |
dc.contributor.author | 蔡季書 | zh_TW |
dc.date.accessioned | 2021-06-16T17:48:55Z | - |
dc.date.available | 2017-09-19 | |
dc.date.copyright | 2012-09-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-14 | |
dc.identifier.citation | Beatriz B. Leitao (2011) The SUMO E3-ligase PIAS1 couples reactive oxygen speciesdependent JNK activation to oxidative cell death. FASEB J. 25, 3416-3425
Beigel J & Bray M (2008) Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res 78, 91-102. Blaas D, Patzelt E & Kuechler E (1982) Identification of the cap binding protein of influenza virus. Nucleic Acids Res 10, 4803-4812. Chang LK, Lee YH, Cheng TS, Hong YR, Lu PJ, Wang JJ, Wang WH, Kuo CW, Li SS, and Liu ST (2004) Post-translational Modification of Rta of Epstein-Barr Virus by SUMO-1. J. Biol. Chem. 279, 38803–38812. Cheung TK, Guan Y, Ng SS, Chen H, Wong CH, Peiris JS & Poon LL (2005) Generation of recombinant influenza A virus without M2 ion-channel protein by introduction of a point mutation at the 5' end of the viral intron. J Gen Virol 86, 1447-1454. De Clercq E (2006) Antiviral agents active against influenza A viruses. Nat Rev Drug Discov 5, 1015-1025. Delphine Guilligay, Franck Tarendeau, Patricia Resa-Infante, Rocio Coloma, Thibaut Crepin, Peter Sehr, Joe Lewis, Rob W H Ruigrok, Juan Ortin, Darren J Hart & Stephen Cusack (2008) The structural basis for cap binding by influenza virus polymerase subunit PB2. Nature Structural & Molecular Biology 15, 500 – 506. Deng T, Engelhardt OG, Thomas B, Akoulitchev AV, Brownlee GG & Fodor E (2006) Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol 80, 11911-11919. Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, Baudin F, Cusack S & Ruigrok RW (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458, 914-918. Engelhardt OG & Fodor E (2006) Functional association between viral and cellular transcription during influenza virus infection. Rev Med Virol 16, 329-345. Fechter P & Brownlee GG (2005) Recognition of mRNA cap structures by viral and cellular proteins. J Gen Virol 86, 1239-1249. Fechter P, Mingay L, Sharps J, Chambers A, Fodor E & Brownlee GG (2003) Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. J Biol Chem 278, 20381-20388. Fodor E, Crow M, Mingay LJ, Deng T, Sharps J, Fechter P & Brownlee GG (2002) A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76, 8989-9001. Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG & Garcia-Sastre A (1999) Rescue of influenza A virus from recombinant DNA. J Virol 73, 9679-9682. Fodor E & Smith M (2004) The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol 78, 9144-9153. Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B & Osterhaus AD (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79, 2814-2822. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, Jombart T, Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson NM, Rambaut A, Pybus OG, Lopez-Gatell H, Apluche-Aranda CM, Chapela IB, Zavala EP, Guevara DM, Checchi F, Garcia E, Hugonnet S & Roth C (2009) Pandemic Potential of a Strain of Influenza A (H1N1) : Early Findings. Science. Gabriel G, Herwig A & Klenk HD (2008) Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog 4, e11. Gallie DR (1998) A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. Gene 216, 1-11. Garaigorta U & Ortin J (2007) Mutation analysis of a recombinant NS replicon shows that influenza virus NS1 protein blocks the splicing and nucleo-cytoplasmic transport of its own viral mRNA. Nucleic Acids Res 35, 4573-4582. Gaush CR & Smith TF (1968) Replication and plaque assay of influenza virus in an established line of canine kidney cells. Appl Microbiol 16, 588-594. Graham FL, Smiley J, Russell WC & Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59-74. Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok RW, Ortin J, Hart DJ & Cusack S (2008) The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15, 500-506. Hara K, Schmidt FI, Crow M & Brownlee GG (2006) Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J Virol 80, 7789-7798. Hatta M, Gao P, Halfmann P & Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840-1842. Hatta M, Hatta Y, Kim JH, Watanabe S, Shinya K, Nguyen T, Lien PS, Le QM & Kawaoka Y (2007) Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog 3, 1374-1379. Honda A, Mizumoto K & Ishihama A (1999) Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells 4, 475-485. Horimoto T & Kawaoka Y (2005) Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 3, 591-600. Ish-Horowicz D & Burke JF (1981) Rapid and efficient cosmid cloning. Nucleic Acids Res 9, 2989-2998. Kalyan D, James MA, Ma LC, Krug RM, Eddy A (2010) Structures of influenza A proteins and insights into antiviral drug targets. Nature Structural & Molecular Biology 17, 530-538 Kobasa, D.,Jones, S.M., Shinya, K., Kash, J.C., Copps, J., Ebihara, H., Hatta, Y., Kim, J.H., Halfmann, P., Hatta, M., Feldmann, F., Alimonti J.B., Fernando, L., Li, Y., Katze, M.G., Feldmann, H., & Kawaoka, Y. (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature, 455, 319-323. Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG, Tscherne DM, Ortigoza MB, Liang Y, Gao Q, Andrews SE, Bandyopadhyay S, De Jesus P, Tu BP, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, Garcia-Sastre A, Young JA, Palese P, Shaw ML, Chanda SK. (2010) Human host factors required for influenza virus replication. Nature 7282,813-7. Labadie K, Dos Santos Afonso E, Rameix-Welti MA, van der Werf S & Naffakh N (2007) Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. Virology 362, 271-282. Lee JM, Kang HJ, Lee HR, Choi CY, Jang WJ, Ahn JH (2003) PIAS1 enhances SUMO-1 modification and the transactivation activity of the major immediate earlyIE2 protein of human cytomegalovirus. FEBS Lett. 555, 322–328 Li ML, Rao P & Krug RM (2001) The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J 20, 2078-2086. Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A. 95,10626-10631. Luytjes W, Krystal M, Enami M, Parvin JD & Palese P (1989) Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59, 1107-1113. Naito T, Momose F, Kawaguchi A & Nagata K (2007) Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 81, 1339-1349. Massin P, van der Werf S & Naffakh N (2001) Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol 75, 5398-5404. Momose F, Basler CF, O'Neill RE, Iwamatsu A, Palese P & Nagata K (2001) Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol 75, 1899-1908. Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y & Nagata K (2002) Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277, 45306-45314. Ortega J, Martin-Benito J, Zurcher T, Valpuesta JM, Carrascosa JL, Ortin J. (2000) Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification. J Virol 1, 156-63. Pal S, Santos A, Rosas JM, Ortiz-Guzman J, Rosas-Acosta G (2011) Influenza A virus interacts extensively with the cellular SUMOylation system during infection. Virus Res 158, 12-27. Palese P & Young JF (1982) Variation of influenza A, B, and C viruses. Science 215, 1468-1474. Pleschka S, Jaskunas R, Engelhardt OG, Zurcher T, Palese P & Garcia-Sastre A (1996) A plasmid-based reverse genetics system for influenza A virus. J Virol 70, 4188-4192. Rytinki MM, Kaikkonen S, Pehkonen P, Jaaskelainen T, Palvimo JJ (2009) PIAS proteins: pleiotropic interactors associated with SUMO. Cell. Mol. Life Sci. 66, 3029-3041. Sangita Pal, Andres Santos, Juan M Rosas, Joshua Ortiz-Guzman, German Rosas-Acosta (2011) Influenza A virus interacts extensively with the cellular SUMOylation system during infection. Virus Research 158, 12-27. Shih SR & Krug RM (1996) Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells. EMBO J 15, 5415-5427. Shih SR, Nemeroff ME & Krug RM (1995) The choice of alternative 5' splice sites in influenza virus M1 mRNA is regulated by the viral polymerase complex. Proc Natl Acad Sci U S A 92, 6324-6328. Shuai K, Lui B (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol. 8, 593-605. Sidorenko Y & Reichl U (2004) Structured model of influenza virus replication in MDCK cells. Biotechnol Bioeng 88, 1-14. Subbarao EK, London W & Murphy BR (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67, 1761-1764. Tarendeau F, Boudet J, Guilligay D, Mas PJ, Bougault CM, Boulo S, Baudin F, Ruigrok RW, Daigle N, Ellenberg J, Cusack S, Simorre JP & Hart DJ (2007) Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol 14, 229-233. Ulmanen I, Broni BA & Krug RM (1981) Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription. Proc Natl Acad Sci U S A 78, 7355-7359. Vassileva MT, Matunis MJ. (2004) SUMO modification of heterogeneous nuclear ribonucleoproteins. Mol Cell Biol 9, 3623-32. Vertegaal AC, Ogg SC, Jaffray E, Rodriguez MS, Hay RT, Andersen JS, Mann M, Lamond AI. (2004) A proteomic study of SUMO-2 target proteins. J Biol Chem 32,33791-8. Webster RG, Bean WJ, Gorman OT, Chambers TM & Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152-179. Wolff T, O'Neill RE & Palese P (1998) NS1-Binding protein (NS1-BP): a novel human protein that interacts with the influenza A virus nonstructural NS1 protein is relocalized in the nuclei of infected cells. J Virol 72, 7170-7180. Wu CY, Jeng KS, Lai MM (2011) The SUMOylation of matrix protein M1 modulates the assembly and morphogenesis of influenza A virus. J Virol 85, 6616-6628. Xu K, Klenk C, Liu B, Keiner B, Cheng J, Zheng BJ, Li L, Han Q, Wang C, Li T, Chen Z, Shu Y, Liu J, Klenk HD, Sun B (2011) Modification of nonstructural protein 1 of influenza A virus by SUMO1. J Virol 85, 1086-1098. Zhang S, Wang Q, Wang J, Mizumoto K, Toyoda T (2012) Two mutations in the C-terminal domain of influenza virus RNA polymerase PB2 enhance transcription by enhancing cap-1 RNA binding activity. Biochim Biophys Acta. 1819, 78-83. Zhou B, Li Y, Speer SD, Subba A, Lin X, Wentworth DE (2012) Engineering temperature sensitive live attenuated influenza vaccines from emerging viruses. Vaccine 24, 3691-3702. Zebedee SL & Lamb RA (1988) Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 62, 2762-2772. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64467 | - |
dc.description.abstract | 流感病毒的 PA、PB1及PB2 蛋白質為構成其病毒特有的RNA-dependent RNA polymerase (RdRp),其中PB2蛋白質具有結合到宿主pre-mRNA的帽蓋上,對於病毒複製或是RNA 轉錄都是不可或缺的。本實驗室在找尋可能與PB2 進行交互作用的細胞蛋白質時,利用酵母菌雙雜合系統(Yeast two-hybrid system),找出細胞蛋白質PIAS1會與PB2進行交互作用。
我們利用GST pull-down assay和co-immunoprecipitation確認PB2會與PIAS1結合,而為了測試PIAS1對於流感病毒的生長所造成之影響,利用流感病毒螢光酶報導系統(Luciferase Reporter Assay),發現在大量表現PIAS1時會抑制病毒聚合酶功能的效果;反之,利用PIAS1 shRNA降低細胞中PIAS1的量,則會提升病毒聚合酶功能。這個結果顯示,PIAS1會抑制A型流感病毒的轉錄與複製。 而由於PIAS1在細胞中為SUMO E3 Ligase,因此想知道是否PIAS1與PB2交互作用而進一步將PB2 SUMOylation。我們首先必須先了解PB2是否會SUMOylation的現象。而在293T細胞中,進行in vivo SUMOylation,發現A型流感病毒WSN/33的PB2蛋白質的確有SUMOylation的現象。而在我們初步的結果中,也猜測PIAS1在PB2的SUMOylation扮演著角色。 為了進一步了解PB2的SUMOylation對流感病毒的影響,我們利用電腦分析尋找PB2上可能會有SUMOylation的位點。其中在lysine339與718附近的氨基酸序列符合SUMO consensus sequence。因此利用site-directed mutagenesis建構PB2 K339R, K718R, K339,718R。利用in vivo SUMOylation測試這些mutants,發現仍然可以進行SUMO1 modification,但是在流感病毒螢光酶報導系統比較正常與突變的PB2,發現突變的PB2能提升病毒聚合酶功能。關於PB2的SUMO1 modification的影響還需進一步的實驗證明。 | zh_TW |
dc.description.abstract | Influenza A virus uses an RNA-dependent RNA polymerase (RdRp) consisting of PA, PB1 and PB2 proteins to transcribe and replicate its RNA genome. PB2, which is a cap binding protein, plays an important role in influenza A viral transcription and replication. In the process of searching for cellular proteins that interact with PB2, our lab previous used yeast two-hybrid system to identify PB2-interacting cellular proteins and found that PIAS1 is one of the cellular proteins that can interact with PB2.
In this study, we confirmed the interaction between PB2 and PIAS1 by GST pull-down assays and co-immunoprecipitation assays. We used minigenome luciferase reporter assay to test whether PIAS1 could affect influenza A viral transcription and replication. We found that when PIAS1 was overexpressed, it could suppress the activity of viral RdRp. On the other hand, when PIAS1 was knocked down by expressing pias1shRNA, the activity of viral RdRp was significantly increased. These data indicate that PIAS1 plays an inhibitory role in influenza A virus transcription and replication. PIAS1 is a SUMO E3 ligase. It is possible that through interacting with PB2, PIAS1 plays a role in PB2 sumoylation. To investigate this, we first tested whether PB2 could be sumoylated in the cells. By using in vivo sumoylation assay, we showed that PB2 was sumoylated in 293T cells. Our preliminary data also suggest that PIAS1 plays a role in PB2 sumoylation. To understand the effect of the sumoylation on PB2 function, we used computer analysis to identify potential sumoylation sites on PB2. The amino acid sequences surrounding K339 and K718 match the SUMO consensus sequence. We then constructed K339R, K718R, and K339,718R PB2 mutants by site-directed mutagenesis. We used in vivo sumoylation assay to test these mutants, and found that those mutants still could be sumoylated. But in minigenome luciferase reporter assay, our data indicated that all three PB2 mutants had significantly higher activity than wild-type PB2. To identify the effect of PB2 SUMOylation awaits further investigation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:48:55Z (GMT). No. of bitstreams: 1 ntu-101-R99445117-1.pdf: 3389984 bytes, checksum: 433b81c629cfcbb8e2a53b73d60cf596 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄 1
圖目錄 4 附圖目錄 5 中文摘要 6 Abstract 7 緒論 9 研究目的 16 材料與方法 17 實驗材料 17 一、 化學藥品及試劑 17 二、 套組試劑 20 三、 抗體 20 四、 酵素 21 五、 其它 21 六、 細胞株(Cell line) 21 七、 質體 (Plasmid) 22 實驗方法 26 一、 質體建構 (Construction) 26 二、 細菌轉形 (Transformation) 26 三、 勝任細胞的製備 (Preparation of competent cells) 27 四、 小量質體製備 (Mini-preparation) 28 五、 大量質體製備 (Large-scale plasmid isolation) 29 六、 質體轉染 (Transfection) 31 七、 酵母菌轉形 (yeast transformation) 33 八、 細胞全蛋白質之收取 34 九、 蛋白質定量 34 十、 西方墨點法 (Western blot) 35 十一、Glutathione S-transferase (GST) pull-down 分析 35 十二、免疫共沈澱法 (Co-Immunoprecipitation) 37 十三、螢光酶分析 (Luciferase assay) 37 十四、in vivo SUMOylation 38 十五、point mutation 38 實驗結果 40 一、 利用酵母菌雙雜合篩選(yeast two-hybrid system)確認病毒蛋白質PB2 與細胞因子PIAS1的交互作用。 40 二、 透過GST pull-down assay確認PB2蛋白質與PIAS1蛋白質之間在病毒感染的細胞內有交互作用。 40 三、 利用共同免疫沉澱法(co-immunoprecipitation)確認PB2與PIAS1在in vivo的情況下有交互作用。 41 四、 利用螢光酶報導系統測試PIAS1是否影響流感病毒複製效率。 41 五、 利用螢光酶報導系統測試SUMO1是否影響流感病毒複製效率。 42 六、 A/WSN/33流感病毒蛋白PB2具有SUMO1 modification。 42 七、 PIAS1是否參與病毒蛋白PB2的SUMO1 modification。 43 八、 利用螢光酶報導系統測試帶有tag的PB2的複製效率。 43 九、 尋找Influenza A/WSN/33 PB2的SUMOylation site。 44 十、 利用螢光酶報導系統測試帶有點突變PB2的複製效率。 45 討論 46 附表 62 參考文獻 64 | |
dc.language.iso | zh-TW | |
dc.title | A型流行性感冒病毒PB2蛋白質與細胞蛋白質PIAS1 之間的交互作用 | zh_TW |
dc.title | The interaction between Influenza A viral PB2 protein and cellular PIAS1 protein | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄧述諄(Shu-Chun Teng),楊宏志(Hung-Chih Yang),繆希椿(Shi-Chuen Miaw) | |
dc.subject.keyword | 流行性感冒病毒,PB2 蛋白質,PIAS1,SUMOylation, | zh_TW |
dc.subject.keyword | Influenza A virus,PB2,PIAS1,SUMOylation, | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 3.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。