請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64454
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉子銘(Tzu-Ming Liu) | |
dc.contributor.author | Chien-Kuo Chen | en |
dc.contributor.author | 陳建國 | zh_TW |
dc.date.accessioned | 2021-06-16T17:48:08Z | - |
dc.date.available | 2014-08-20 | |
dc.date.copyright | 2012-08-20 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-13 | |
dc.identifier.citation | [1] M. A. Van Dilla, T. T. Truiullo, P. F. Mullaney, and J. R. Coultex., “Cell Microfluorometry: A Method for Rapid Fluorescence Measurement,” Science, Vol. 163, No. 3872, pp. 1213-1214, 1969
[2] D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum., “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Applied Optics, Vol. 24, No. 9, pp. 1355-1365, 1985 [3] S. F. Van Eeden, M. E. Klut, B. A.M. Walker, J. C. Hogg., “The use of flow cytometry to measure neutrophil function,” J. Immunol. Methods., Vol. 232, No. 1-2, pp. 23-43, 1999 [4] P. Autissier, C. Soulas, T. H. Burdo, K. C. Williams., “Evaluation of a 12-Color Flow Cytometry Panel to Study Lymphocyte, Monocyte, and Dendritic Cell Subsets in Humans,” Cytometry Part A, Vol. 77A, No. 5, pp. 410-419, 2010 [5] K. S. Mohammad, A. S. Bdesha, M. E. Snell, R. O. N. Witherow, D. V Coleman, “Phase contrast microscopic examination of urinary erythrocytes to localise source of bleeding: an overlooked technique,” J. Clin. Pathol, Vol. 46, No. 7, pp. 642-645, 1993 [6] G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative Fluorescence Resonance Energy Transfer Measurements Using Fluorescence Microscopy,” Biophys. J., Vol. 74, No. 5, pp. 2702-2713, 1998 [7] R. B. Sekar, and A. Periasamy, “Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations,” J. Cell Biol, Vol. 160, No. 5, pp. 629-633, 2003 [8] D. J. Arndt-Jovin, M. Robert-Nicoud, S. J. Kaufman, T. M. Jovin., “Fluorescence Digital Imaging Microscopy in Cell Biology,” Science, Vol. 230, No. 4723, pp. 247-256, 1985 [9] Y. Hiraoka, J. W. Sedat, and D. A. Agard., “The Use of a Charge-Coupled Device for Quantitative Optical Microscopy of Biological Structures,” Science, Vol. 238, No. 4823, pp. 36-41, 1987 [10] G. N. Georgiou, I. E.G. Morrison, R. J. Cherry., “Digital fluorescence imaging of fusion of influenza virus with erythrocytes,” FEBS Lett., Vol. 250, No. 2, pp. 487-492, 1989 [11] A. Villringer, A. Them, U. Lindauer, K. Einhaupl, U. Dirnagl., “Capillary Perfusion of the Rat Brain Cortex. An In Vivo Confocal Microscopy Study,” Circ. Res., Vol. 75, No. 1, pp. 55-62, 1994 [12] J. Seylaz, R. Charbonne, K. Nanri, D. Von Euw, J. Borredon, K. Kacem, P. Meric, and E. Pinard., “Dynamic In Vivo Measurement of Erythrocyte Velocity and Flow in Capillaries and of Microvessel Diameter in the Rat Brain by Confocal Laser Microscopy,” J. Cerebr Blood F. Met., Vol. 19, No. 8, pp. 863-870, 1999 [13] R. LIMA, S. WADA, M. TAKEDA, K. TSUBOTA, T. YAMAGUCHI., “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles,” J. Biomech., Vol. 40, No. 12, pp. 2752-2757, 2007 [14] W. Denk, J. H. Strickler, and W. W. Webb., “Two-Photon Laser Scanning Fluorescence Microscopy,” Science, Vol. 248, No. 4951, pp. 73-76, 1990 [15] D. KLEINFELD, P. P. MITRA+, F. HELMCHEN+, and W. DENK., “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” P. Natl. Acad Sci. USA, Vol. 95, No. 26, pp. 15741-15746, 1998 [16] W. R. Zipfel, R. M. Williams, and W. W. Webb., “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol., Vol. 21, No. 11, pp. 1368-1376, 2003 [17] E. Chaigneau, M. Oheim, E. Audinat, and S. Charpak., “Two-photon imaging of capillary blood flow in olfactory bulb glomeruli,” P. Natl. Acad. Sci. USA, Vol. 100, No. 22, pp. 13081-13086, 2003 [18] M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb., “In Vivo Multiphoton Microscopy of Deep Brain Tissue,” J. Neurophysiol., Vol. 91, No. 4, pp. 1908-1912, 2004 [19] W. S. Kamoun, S. S. Chae, D. A. Lacorre, J. A. Tyrrell, M. Mitre, M. A. Gillissen, D. Fukumura, R. K. Jain, and L. L. Munn., “Simulataneous measurement of RBC velocity, flux,,hematocrit and shear rate in vascular networks,” Nat. Methods, Vol. 7, No. 8, pp. 655-660, 2010 [20] J. Lecoq, A. Parpaleix, E. Roussakis, M. Ducros, Y. G. Houssen, S. A. Vinogradov, and S. Charpak., “Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels,” Nat. Med., Vol. 17, No. 7, pp. 893-898, 2011 [21] E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med., Vol. 9, No. 6, pp. 796-800, 2003 [22] C. S. Hsieh, S. U. Chen, Y. W. Lee, Y. S. Yang, and C. K. Sun, “Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos,” Opt. Express, Vol. 16, No. 15, pp. 11574-11588, 2008 [23] R. D. Schaller, J. C. Johnson, and R. J. Saykally., “Nonlinear Chemical Imaging Microscopy:Near-Field Third Harmonic Generation Imaging of Human Red Blood Cells,” Anal Chem, Vol. 72, No. 21, pp. 5361-5364, 2000 [24] S. P. Tai, C. H. Yu, T. M. Liu, Y. C. Wen, and C. K. Sun., “In vivo Molecular-Resonant Third Harmonic Generation Microscopy of Hemoglobin,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD), paper CTuF4, 2007 [25] C. F. Chang, C. H. Yu, and C. K. Sun, “Multi-photon resonance enhancement of third harmonic generation in human oxyhemoglobin and deoxyhemoglobin,” J. Biophotonics, Vol. 3, No. 10-11, pp. 678-685, 2010 [26] S. H. Chia, C. H. Yu, C. H. Lin, N. C. Cheng, T. M. Liu, M. C. Chan, I. H. Chen, and C. K. Sun., “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express, Vol. 18, No. 16, pp. 17382-17391, 2010 [27] S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt., “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express, Vol. 1, No. 13, pp. 424-431, 1997 [28] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson., “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett., Vol. 22, No. 14, pp. 1119-1121, 1997 [29] Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson., “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett., Vol. 27, No. 2, pp. 98-100, 2002 [30] B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. Hyle Park, G. J. Tearney, B. E. Bouma., “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express, Vol. 11, No. 25, pp. 3490-3497, 2003 [31] Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, D. Huang., “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed Opt., Vol. 13, No. 6, 064003, 2008 [32] Y. Wang, O. Tan, D. Huang., “Investigation of Retinal Blood Flow in Normal and Glaucoma Subjects by Doppler Fourier-Domain Optical Coherence Tomography,” Proc. of SPIE, Vol. 7168, 71680B, 2009 [33] Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang., “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Brit. J. Ophthalmol., Vol. 93, No. 5, pp. 634-637, 2009 [34] X. Wang, X. Xie, G. Ku, L. V. Wang., “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt., Vol. 11, No. 2, 024015, 2006 [35] K. Maslov, E. W. Stein, L. V. Wang., “Photoacoustic microscopy of cerebral blood-oxygenation dynamics in mice,” Proc. of SPIE, Vol. 7177, 71770C, 2009 [36] E. W. Stein, K. Maslov, and L. V. Wang., “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt., Vol. 11, No. 2, 020502, 2009 [37] S. Hu, L. V. Wang., “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt., Vol. 15, No. 1, 011101, 2010 [38] J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, L. V. Wang., “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt., Vol. 16, No. 7, 076003, 2011 [39] C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsi, T. M. Liu, C. Y. Lin, H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol., Vol. 147, No. 1, pp. 19-30, 2004 [40] C. K. Sun, “Higher Harmonic Generation Microscopy,” Adv. Biochem. Eng./Biotechnol., Vol. 95, pp. 1283-1287, 2005 [41] M. R. Tsai, S. Y. Chen, D. B. Shieh, P. J. Lou, and C. K. Sun, “In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy,” Biomed. Opt. Express, Vol. 2, No. 8, pp. 2317-2328, 2011 [42] S. Y. Chen, H. Y. Wu, and C. K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt., Vol. 14, No. 6, 060505, 2009 [43] S. Y. Chen, S. U. Chen, H. Y. Wu, W. J. Lee, Y. H. Liao, and C. K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,” IEEE. J. Sel. Top. Quant., Vol. 16, No. 3, pp. 478-492, 2010 [44] M. Minsky, Microscopy Apparatus, U.S. Patent, No. 3,013,467, 1957 [45] M. Born, E. Wolf, Principles of Optics, Cambridge University Press, England, 1999 [46] E. H. K. Stelzer, Practical Limits to Resolution in Fluorescence Light Microscopy, in R. Yuste, E. Lanni, and A. Konnerth, Imaging Neurons: A Laboratory Manual, Cold Spring Harbor Laboratory Press, America, 12.1-12.9, 2000 [47] J. Murray, Confocal Microscopy, Deconvolution, and Structured Illumination Methods, in R. D. Goldman and D. L. Spector, Live Cell Imaging: A Laboratory Manual, Cold Spring Harbor Laboratory Press, America, pp. 239-280, 2005 [48] J. E. N. Jonkman and E. H. K. Stelzer, Resolution and Contrast in Confocal and Two-Photon Microscopy, in A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, Wiley-Liss, America, pp. 101-125, 2002 [49] M. Laurent, G. Johannin, N. Gilbert, L. Lucas, D. Cassio, P. X Petit, A. Fleury, “Power and limits of laser scanning confocal microscopy,” Biol. Cell, Vol. 80, No. 2-3, pp. 229-240, 1994 [50] H. A. Haus, Waves and Fields in Optoelectronics, Prentice Hall, America, 1984 [51] T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature, Vol. 187, No, 4736, pp. 494-494, 1960 [52] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett., Vol. 7, No. 4, pp. 118-119, 1961 [53] S. W. Chu, T. M. Liu, C. K. Sun, C. Y. Lin, and H. J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express, Vol. 11, No. 8, pp. 933-938, 2003 [54] S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, H. J. Tsai, and C. K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express, Vol. 11, No. 23, pp. 3093-3099, 2003 [55] G. J. Tserevelakis, G. Filippidis, A. J. Krmpot, M. Vlachos, C. Fotakis, N. Tavernarakis, “Imaging Caenorhabditis elegans embryogenesis by third-harmonic generation microscopy,” Micron, Vol. 41, No. 5, pp. 444-447, 2010 [56] R. W. Boyd, Nonlinear Optics, Academic Press, America, 1992 [57] Y. R. Shen, The Principles of Nonlinear Optics, Wiley-Interscience, America, 2002 [58] J. Squier, M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum., Vol. 72, No. 2855, 2001 [59] H. Kogelnik, T. Li, “Laser Beams and Resonators,” Appl. Optics, Vol. 5, No. 10, pp. 1550-1567, 1966 [60] Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett., Vol. 70, No. 8, pp. 922-924, 1997 [61] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Elect., Vol. 28, No. 10, pp. 2086-2096, 1992 [62] E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Elect., Vol. 5, No. 9, pp. 454-458, 1969 [63] J. A. Valdmanis, R. L. Fork, and J. P. Gordon “Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain,” Opt. Lett., Vol. 10, No. 3, pp. 131-133, 1985 [64] R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett., Vol. 9, No. 5, pp. 150-152, 1984 [65] T. P. Habif, Clinical Dermatology: A Color Guide to Diagnosis and Therapy, Mosby, America, 2010 [66] Y. Su, W. Wang, K. Xu, C. Jiang. “The optical properties of skin,” Proc. of SPIE, Vol. 4916, pp. 299-304, 2002 [67] V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE, America, 2007 [68] K. P. Nielsen, L. Zhao, J. J. Stamnes, K. Stamnes, J. Moan, “The optics of human skin: Aspects important for human health,” The Norwegian Academy of Science and Letters, pp. 35-46, 2008 [69] S. L. Jacques, “Origins of tissue optical properties in the UVA, Visible, and NIR regions,” OSA TOPS on Advances in Optical Imaging and Photon Migration, Vol. 2, pp. 364-369, 1996 [70] K. P. Nielsen, L. Zhao, P. Juzenas, J. J. Stamnes, K. Stamnes, and J. Moan, “Reflectance Spectra of Pigmented and Nonpigmented Skin in the UV Spectral Region,” Photochem. Photobiol., Vol. 80, No. 3, pp. 450-455, 2004 [71] I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Optics, Vol. 34, No. 31, pp. 7410-7418, 1995 [72] A. Krishnaswamy and G. V. G. Baranoski, A Study on Skin Optics. Tech. Rep. CS-2004-01, School of Computer Science, University of Waterloo, Canada, 2004 [73] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D: Appl. Phys., Vol. 38, No. 15, pp. 2543-2555, 2005 [74] S. H. Tseng, P. Bargo, A. Durkin, and N. Koll, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express, Vol. 17, No. 17, pp. 14599-14617, 2009 [75] R. R. Anderson and J. A. Parrish, “The Optics of Human Skin,” J. Invest. Dermatol., Vol. 77, pp. 13-19, 1981 [76] E. Salomatina, B. Jiang, J. Novak, A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt., Vol. 11, No. 6, 064026, 2006 [77] M. C. Chan, T. M. Liu, S. P. Tai, C. K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt., Vol. 10, No. 5, 054006, 2005 [78] P. F. Moulton, “Spectroscopic and laser characteristic of Ti:Al2O3,” J. Opt. Soc. Am. B, Vol. 3, No. 1, pp. 125-133, 1986 [79] B. G. Wang, K. König, and K. J. Halbhuber, “Two-photon microscopy of deep intravital tissues and its merits in clinical research,” J. Microsc-Oxford, Vol. 238, No. 1, pp. 1-20, 2010 [80] G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med., Vol. 16, No. 12, pp. 1444-1449, 2010 [81] X. Jiang, S. Zhuo, R. Xu, and J. Chen, “Multiphoton microscopic imaging of in vivo hair mouse skin based on two-photon excited fluorescence and second harmonic generation,” Scanning, Vol. 0, pp. 1-4, 2011 [82] M. Rubart, “Two-Photon Microscopy of Cells and Tissue,” Circ. Res., Vol. 95, No. 12, pp. 1154-1166, 2004 [83] W. L. Rice, D. L. Kaplan, I. Georgakoudi, “Two-Photon Microscopy for Non-Invasive, Quantitative Monitoring of Stem Cell Differentiation,” PLoS ONE, Vol. 5, No. 4, e10075, 2010 [84] K. König, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett., Vol. 22, No. 2, pp. 135-136, 1997 [85] P. C. Cheng, B. L. Lin, F. J. Kao, M. Gu, M. G. Xu, X. Gan, M. K. Huang, Y. S. Wang, “Multi-photon fluorescence microscopy - the response of plant cells to high intensity illumination,” Micron, Vol. 32, No. 7, pp. 661-669, 2001 [86] I. H. Chen, S. W. Chu, C. K. Sun, P.C. Cheng, and B. L. Lin, “Wavelength dependent damage in biological multiphoton confocal microscopy:A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quant. Electron., Vol. 34. No, 12, pp. 1251-1266, 2002 [87] S. W. Chu, I. H. Chen, T. M. Liu, P. C. Chen, and C. K. Sun, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett., Vol. 26, No. 23, pp. 1909-1911, 2001 [88] W. J. Lee, S. Y. Chen, C. F. Lee, Y. S. Chen, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt., Vol. 11, No. 5, 054022, 2006 [89] H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically Compensated Cavities for CW Dye Lasers,” IEEE J. Quantum Elect., Vol. 8, No. 3, pp. 373-379, 1972 [90] Mainz, Optical Glass Data Sheets, Schott, Germany, 2011 [91] W. J. Alford, R. D. Vanderneut, and V. J. Zaleckas, “Laser Scanning Microscopy,” P. IEEE, Vol. 70, No. 6, pp. 641-651, 1982 [92] W. B. Amos, J. G. White, “How the Confocal Laser Scanning Microscope entered Biological Research,” Bio. Cell, Vol. 95, No. 6, pp. 335-342, 2003 [93] N. Callamaras, I. Parker, “Construction of a confocal microscope for real-time x-y and x-z imaging,” Cell Calcium, Vol. 26, No. 6, pp. 271-279, 1999 [94] C. L. Liang, M. Descour, K. B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express, Vol. 9, No. 13, pp. 821-830, 2001 [95] K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc-Oxford, Vol. 207, No. 2, pp. 137-145, 2002 [96] L. Leybaert, A. De Meyer, C. Mabilde, and M. J. Sanderson, “A simple and practical method to acquire geometrically correct images with resonant scanning-based line scanning in a custom-built video-rate laser scanning microscope,” J. Microsc-Oxford, Vol. 219, No. 3, pp. 133-140, 2005 [97] S. Zhuo, J. Chen, T. Luo, D. Zou, and J. Zhao, “Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode,” Opt. Express, Vol. 14, No. 17, pp. 7810-7820, 2006 [98] J. H. Lee, S. Y. Chen, C. H. Yu, S. W. Chu, L. F. Wang, C. K. Sun, B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt., Vol. 14, No. 1, 014008, 2009 [99] H. B. Yu, S. Chen, X. Q. Zhu, H. Q. Yang, and J. X. Chen, “Second harmonic generation imaging of dermal collagen component in human keloid tissue,” J. Phys.: Conf. Ser., Vol. 277, No. 1, 012046, 2011 [100] R. Skalak, P. I. Branemark, “Deformation of Red Blood Cells in Capillaries,” Science, Vol. 164, No. 3880, pp. 717-719, 1969 [101] K. Boryczko, W. Dzwinel, D. A. Yuen, “Dynamical clustering of red blood cells in capillary vessels,” J. Mol. Model., Vol. 9, No. 1, pp. 16-13, 2003 [102] H. Noguchi, and G. Gompper, “Shape transitions of fluid vesicles and red blood cells in capillary flows,” Proc. Natl. Acad. Sci. USA, Vol. 102, No. 40, pp. 14159-14164, 2005 [103] S. Chien, S. Usami, and J. F. Bertles, “Abnormal rheology of oxygenated blood in sickle cell anemia,” J. Clin Invest, Vol. 49, No. 40, pp. 623-634, 1970 [104] K. Tsukada, E. Sekizuka, C. Oshio, and H. Minamitani, “Direct Measurement of Erythrocyte Deformability in Diabetes Mellitus with a Transparent Microchannel Capillary Model and High-Speed Video Camera System,” Microvasc. Res., Vol. 61, No. 3, pp. 231-239, 2001 [105] Y. I. Cho, M. P. Mooney, and D. J. Cho, “Hemorheological Disorders in Diabetes Mellitus,” J. Diabetes Sci Technol., Vol. 2, No. 6, pp. 1130-1138, 2008 [106] C. G. Caro, T. J. Pedley, R. C. Schroter, and W. A. Seed, The Mechanics of the Circulation, Cambridge University Press, England, 2012 [107] S. S. Shevkoplyas, T. Yoshida, L. L. Munn, and M. W. Bitensky, “Biomimetic Autoseparation of Leukocytes from Whole Blood in a Microfluidic Device,” Anal. Chem., Vol. 77, No. 3, pp. 933-937, 2005 [108] S. S. Shevkoplyas, T. Yoshida, L. L. Munn, and M. W. Bitensky, “Hydrodynamic interaction between erythrocytes and leukocytes affects rheology of blood in microvessels,” Biorheology., Vol. 44, No. 3, pp. 191-215, 2007 [109] C. Wang, X. Wang, P. Ye, “The transport and deformation of blood cells in micro-channel,” Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, pp. 116-119, 2008 [110] W. F. Ganong, Review of Medical Physiology, McGraw-Hill/Appleton & Lange, America, 2003 [111] A. M. Robertson, A. Sequeira, and M. V. Kameneva, Hemorheology, in G. P. Galdi, A. M. Robertson, R. Rannacher, and S. Turek, Hemodynamical Flows. Modeling, Analysis and Simulation, Birkhäuser, America, pp. 63-120, 2008 [112] G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood, Vol. 56, No. 5, pp. 866-875, 1980 [113] P. Ruef, T. Böhler, and O. Linderkamp, “Deformability and Volume of Neonatal and Adult Leukocytes,” Pediatr. Res., Vol. 29, No. 2, pp. 128-132, 1991 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64454 | - |
dc.description.abstract | 血液常規檢查是醫院中常見的一項檢驗方式,其在臨床的疾病診斷上不僅扮演相當重要的角色且檢驗結果也常成為評估個人健康與否的重要指標。常見的檢驗項目包含:紅血球計數、白血球計數、血小板計數、血紅素含量及血球容積比等等。雖然血液常規檢查是一項臨床常用的檢查方法,但由於此方式需向病人進行抽血,其侵入性的方式常使得病人感到疼痛且亦造成病人需浪費相當長的時間等待檢驗結果。因此發展一套非侵入性且即時量測血球資訊的檢驗方式是極其重要的。如此一來,不但可減少醫療資源的浪費更可以縮短病人等待結果的時間。
現今,非線性光學顯微術如雙光子螢光顯微術與倍頻顯微術,因具有次微米三維空間解析度的能力,因此已被廣泛地運用於生物體內研究。由於倍頻顯微術本身能量守恆的特性,相較於常用的雙光子螢光顯微術,此方法擁有最小傷害性的優勢,因此更適用於臨床的應用。對於倍頻微術來說,另一項最大的優點是此技術不需要額外的對比劑幫助,就可得到生物組織的形態資訊。 在本篇論文中,我們發展一套即時的三倍頻影像系統並應用於監測人體皮膚微血管內的血球。在本研究中,激發光源採用自建的飛秒鉻貴橄欖石雷射,其輸出波長位於生物組織的穿透窗口,不僅可提供較深的穿透深度,更可減少焦點上的光傷害。在另一方面,為了觀察快速的血球運動,高速的掃瞄能力也是不可缺少的。藉由結合 16 kHz的共振掃瞄鏡,掃瞄速率可高達每秒30張影像。另外,再利用高速的影像擷取卡,將所收集的三倍頻訊號同步取樣並重組出一張512像素大小的影像。 利用此自建的高速掃瞄能力的三倍頻影像系統,對於在皮膚微血管中的血球運動可輕易地觀察到,並且進一步地應用至區分不同種類的血球,尤其是形狀較圓且無堆疊的白血球。如此一來,此技術可用來估計人體內白血球的數目,進而評估病人的白血球量是否正常。在未來的臨床實際應用上,也可用來快速地評估白血病的病人其在化學治療(化療)下白血球數量變化的情形。 | zh_TW |
dc.description.abstract | Complete Blood Count (CBC) is a routine examination running in the hospital. In clinical practices, CBC plays an important role in the diagnosis of diseases. The results of inspection will be a significant indicator of evaluating individual health status. The items of checking include: erythrocytes (red blood cells, RBCs) count, leukocytes (white blood cells, WBCs) count, thrombocytes (platelets) count, Hemoglobin, Hematocrit and so on. Although CBC is a common examination in laboratory medicines, it requires a draw of blood, which is an invasive method to patients. And it cost patients’ time to wait for the results. Hence, it is highly desired to have an on-site measurement method for blood cell counts without invasive draws of blood. That can save the medical resources and the time of patients.
Nowadays, laser scanning nonlinear optical microscopy, such as two-photon fluorescence microscopy (2PFM) and harmonic generation microscopy (HGM), has been widely used for in vivo biological studies with sub-micron three-dimensional (3D) spatial resolution. Owing to the nature of energy conservation of harmonic generation (HG), there is least energy deposition to tissues under observation. Compared with 2PFM, HGM is the least-invasive optical microscopic technique suitable for clinical applications. Moreover, the extra advantage of HGM is that the morphological information of tissues can be revealed without a need of extra labeling. In this thesis, we developed the video-rate third-harmonic-generation (THG) microscopy for blood cell cytometry in human skin. The excitation laser source in our research was a home-built femtosecond Cr:forsterite laser with Kerr Lens Mode-locking. With its output wavelength covering the penetration windows of most biological tissues, the Cr:forsterite laser is an indispensable excitation laser source providing deeper penetration depth and reduced on-focus photodamage. To catch up the fast motion of blood cells, the high-speed scan rate is a critical issue. Combining a 16 kHz resonant mirror and a galvanometer mirror, the 2D scan rate could achieve 30 frames per second (FPS). Taking advantage of the high-speed frame grabber, the THG signal was synchronously sampled and reconstructed to an image with 512-by-512 pixels size. With the aid of high-speed scan rate and HGM, the blood cells in human blood capillary could be clearly observed, especially for round and unstacked leukocytes. We could count the amount of white blood cells and evaluated the corresponding flux of blood volume. Thus evaluated number density agreed with the physiological range of white blood cell count. For clinical use, in the future, the technique is potential to be used to diagnose leucopenia for the patients under chemotherapy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:48:08Z (GMT). No. of bitstreams: 1 ntu-101-R99548028-1.pdf: 36124337 bytes, checksum: 706e5428a3f6423b8f044c75df87435d (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract III Contents V CHAPTER1. INTRODUCTION 1 1-1 Basic Knowledge of Blood Cells 1 1-2 Historical Overviews of Flow Cytometric and Image Cytometric Analysis of Blood Cells 4 1-3 Optical Techniques for Studying Blood Cells 9 1-4 Thesis Motivation and Objective 12 CHAPTER2. BASIC PRINCIPLES 14 2-1 Confocal Microscopy 14 2-2 Nonlinear Optical Microscopy 18 2-2.1 Second Harmonic Generation Microscopy 19 2-2.2 Third Harmonic Generation Microscopy 23 2-3 Mode-locking Ultrafast Lasers 28 2-4 Optics of Human Skin 36 CHAPTER3. SETUP OF VIDEO-RATE THIRD-HARMONIC-GENERATION MICROSCOPE 40 3-1 Build Up The Excitation Laser Source 40 3-2 Optical Scanner 47 3-3 Imaging Acquisition System 49 3-4 Experimental Setup 54 CHAPTER4. RESULTS AND DISCUSSION 59 CHAPTER5. SUMMARY 69 References 71 | |
dc.language.iso | en | |
dc.title | 以高速三倍頻顯微術監測人體微血管內的血球 | zh_TW |
dc.title | Video-rate Third-harmonic-generation Microscopy for in vivo Blood Cell Cytometry in Human Capillaries | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孫啟光(Chi-Kuang Sun),朱家瑜(Chia-Yu Chu),李佳翰(Chia-han Lee),吳耀銘(Yao-Ming Wu) | |
dc.subject.keyword | 三倍頻顯微術,非線性光學,鉻貴橄欖石雷射,血球,微血管, | zh_TW |
dc.subject.keyword | third harmonic generation microscopy,nonlinear optics,cr:forsterite laser,blood cells,capillaries, | en |
dc.relation.page | 84 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 35.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。