Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64433
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor康照洲(Jaw-Jou Kang)
dc.contributor.authorChi-Hao Tsaien
dc.contributor.author蔡季濠zh_TW
dc.date.accessioned2021-06-16T17:46:54Z-
dc.date.available2017-09-19
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-08-14
dc.identifier.citation參考文獻
Alen P, Claessens F, Verhoeven G, Rombauts W, Peeters B (1999) The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 19: 6085-6097
Allen JW, Johnson RS, Bhatia SN (2005) Hypoxic inhibition of 3-methylcholanthrene-induced CYP1A1 expression is independent of HIF-1 alpha. Toxicol Lett 155: 151-159
Alvarez-Tejado M, Alfranca A, Aragones J, Vara A, Landazuri MO, del Peso L (2002) Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension. J Biol Chem 277: 13508-13517
Anafi M, Yang YF, Barlev NA, Govindan MV, Berger SL, Butt TR, Walfish PG (2000) GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor. Mol Endocrinol 14: 718-732
Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA, Bunn HF, Livingston DM (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A 93: 12969-12973
Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45: 106-114
Barouki R, Coumoul X, Fernandez-Salgueroc PM (2007) The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett 581: 3608-3615
Beischlag TV, Wang S, Rose DW, Torchia J, Reisz-Porszasz S, Muhammad K, Nelson WE, Probst MR, Rosenfeld MG, Hankinson O (2002) Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Mol Cell Biol 22: 4319-4333
Belandia B, Parker MG (2000) Functional interaction between the p160 coactivator proteins and the transcriptional enhancer factor family of transcription factors. Journal of Biological Chemistry 275: 30801-30805
Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1 alpha in normoxia. Embo J 22: 4082-4090
Borud B, Hoang T, Bakke M, Jacob AL, Lund J, Mellgren G (2002) The nuclear receptor coactivators p300/CBP/cointegrator-associated protein (p/CIP) and transcription intermediary factor 2 (TIF2) differentially regulate PKA-stimulated transcriptional activity of steroidogenic factor 1. Mol Endocrinol 16: 757-773
Bouras T, Southey MC, Venter DJ (2001) Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu. Cancer Res 61: 903-907
Brahimi-Horn MC, Pouyssegur J (2009) HIF at a glance. J Cell Sci 122: 1055-1057
Brusselmans K, Compernolle V, Tjwa M, Wiesener MS, Maxwell PH, Collen D, Carmeliet P (2003) Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest 111: 1519-1527
Carrero P, Okamoto K, Coumailleau P, O'Brien S, Tanaka H, Poellinger L (2000a) Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1 alpha. Mol Cell Biol 20: 402-415
Carrero P, Okamoto K, Coumailleau P, O'Brien S, Tanaka H, Poellinger L (2000b) Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol 20: 402-415
Carver LA, Bradfield CA (1997) Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. Journal of Biological Chemistry 272: 11452-11456
Chan WK, Yao G, Gu YZ, Bradfield CA (1999) Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways - Demonstration of competition and compensation. Journal of Biological Chemistry 274: 12115-12123
Chang CC, Lin MT, Lin BR, Jeng YM, Chen ST, Chu CY, Chen RJ, Chang KJ, Yang PC, Kuo ML (2006) Effect of connective tissue growth factor on hypoxia-inducible factor 1alpha degradation and tumor angiogenesis. J Natl Cancer Inst 98: 984-995
Chauchereau A, Amazit L, Quesne M, Guiochon-Mantel A, Milgrom E (2003) Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. Journal of Biological Chemistry 278: 12335-12343
Chen YH, Kim JH, Stallcup MR (2005) GAC63, a GRIP1-dependent nuclear receptor coactivator. Mol Cell Biol 25: 5965-5972
Cogliano VJ, Boan RA, Straif K, Grosse Y, Secretan B, Ghissassi FE (2008) Use of mechanistic data in IARC evaluations. Environ Mol Mutagen 49: 100-109
Conney AH (1982) Induction of Microsomal-Enzymes by Foreign Chemicals and Carcinogenesis by Polycyclic Aromatic-Hydrocarbons - Clowes,G.H.A. Memorial Lecture. Cancer Res 42: 4875-4917
Cretney JR, Lee HK, Wright GJ, Swallow WH, Taylor MC (1985) Analysis of polycyclic aromatic hydrocarbons in air particulate matter from a lightly industrialized urban area. Environ Sci Technol 19: 397-404
Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR (1998) Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev 12: 3343-3356
Fernandezsalguero P, Pineau T, Hilbert DM, Mcphail T, Lee SST, Kimura S, Nebert DW, Rudikoff S, Ward JM, Gonzalez FJ (1995) Immune-System Impairment and Hepatic-Fibrosis in Mice Lacking the Dioxin-Binding Ah Receptor. Science 268: 722-726
Frigo DE, Basu A, Nierth-Simpson EN, Weldon CB, Dugan CM, Elliott S, Collins-Burow BM, Salvo VA, Zhu Y, Melnik LI, Lopez GN, Kushner PJ, Curiel TJ, Rowan BG, McLachlan JA, Burow ME (2006) p38 mitogen-activated protein kinase stimulates estrogen-mediated transcription and proliferation through the phosphorylation and potentiation of the p160 coactivator glucocorticoid receptor-interacting protein 1. Mol Endocrinol 20: 971-983
Fujisawasehara A, Sogawa K, Yamane M, Fujiikuriyama Y (1987) Characterization of Xenobiotic Responsive Elements Upstream from the Drug-Metabolizing Cytochrome P-450c Gene - a Similarity to Glucocorticoid Regulatory Elements. Nucleic Acids Res 15: 4179-4191
Gehin M, Mark M, Dennefeld C, Dierich A, Gronemeyer H, Chambon P (2002) The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol 22: 5923-5937
Gianni M, Parrella E, Raska I, Jr., Gaillard E, Nigro EA, Gaudon C, Garattini E, Rochette-Egly C (2006) P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARalpha-mediated transcription. The EMBO journal 25: 739-751
Gonzalez FJ, Fernandez-Salguero P (1998) The aryl hydrocarbon receptor - Studies using the AHR-null mice. Drug Metabolism and Disposition 26: 1194-1198
Gradin K, McGuire J, Wenger RH, Kvietikova I, Whitelaw ML, Toftgard R, Tora L, Gassmann M, Poellinger L (1996) Functional interference between hypoxia and dioxin signal transduction pathways: Competition for recruitment of the Arnt transcription factor. Mol Cell Biol 16: 5221-5231
Greenlee WF, Poland A (1979) Nuclear Uptake of 2,3,7,8-Tetrachlorodibenzo-Para-Dioxin in C57bl-6j and Dba-2j Mice - Role of the Hepatic Cytosol Receptor Protein. Journal of Biological Chemistry 254: 9814-9821
Gregory CW, Fei XY, Ponguta LA, He B, Bill HM, French FS, Wilson EM (2004) Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. Journal of Biological Chemistry 279: 7119-7130
Guo LX, Liu JH, Xia ZN (2009) Geniposide inhibits COCl2-induced PC12 cells death via the mitochondrial pathway. Chinese Med J-Peking 122: 2886-2892
Hankinson O (1995) The Aryl-Hydrocarbon Receptor Complex. Annu Rev Pharmacol 35: 307-340
Hao N, Whitelaw ML, Shearwin KE, Dodd IB, Chapman-Smith A (2011) Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR. Nucleic Acids Res 39: 3695-3709
Hoang T, Fenne IS, Cook C, Borud B, Bakke M, Lien EA, Mellgren G (2004) cAMP-dependent protein kinase regulates ubiquitin-proteasome-mediated degradation and subcellular localization of the nuclear receptor coactivator GRIP1. Journal of Biological Chemistry 279: 49120-49130
Hong H, Kohli K, Garabedian MJ, Stallcup MR (1997) GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 17: 2735-2744
Hu CJ, Sataur A, Wang L, Chen H, Simon MC (2007) The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell 18: 4528-4542
Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23: 9361-9374
Ichihara S, Yamada Y, Gonzalez FJ, Nakajima T, Murohara T, Ichihara G (2009) Inhibition of ischemia-induced angiogenesis by benzo[a]pyrene in a manner dependent on the aryl hydrocarbon receptor. Biochem Biophys Res Commun 381: 44-49
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O-2-regulated prolyl hydroxylation. Science 292: 468-472
Jelkmann W (1992) Erythropoietin - Structure, Control of Production, and Function. Physiol Rev 72: 449-489
Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW (2002) Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111: 709-720
Kaelin WG, Ratcliffe PJ (2008) Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell 30: 393-402
Khan S, Liu SX, Stoner M, Safe S (2007) Cobaltous chloride and hypoxia inhibit aryl hydrocarbon receptor-mediated responses in breast cancer cells. Toxicol Appl Pharm 223: 28-38
Kim JE, Sheen YY (2000) Inhibition of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-stimulated Cyp1a1 promoter activity by hypoxic agents. Biochem Pharmacol 59: 1549-1556
Kleinhitpass L, Tsai SY, Weigel NL, Allan GF, Riley D, Rodriguez R, Schrader WT, Tsai MJ, Omalley BW (1990) The Progesterone-Receptor Stimulates Cell-Free Transcription by Enhancing the Formation of a Stable Preinitiation Complex. Cell 60: 247-257
Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002) The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. Journal of Biological Chemistry 277: 30283-30288
Kubiak R, Belowski J, Szczeklik J, Smolik E, Mielzynska D, Baj M, Szczesna A (1999) Biomarkers of carcinogenesis in humans exposed to polycyclic aromatic hydrocarbons. Mutat Res-Gen Tox En 445: 175-180
Kuo CY, Cheng YW, Chen CY, Lee H (1998) Correlation between the amounts of polycyclic aromatic hydrocarbons and mutagenicity of airborne particulate samples from Taichung City, Taiwan. Environ Res 78: 43-49
Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain: A hypoxic switch. Science 295: 858-861
Lee K, Burgoon LD, Lamb L, Dere E, Zacharewski TR, Hogenesch JB, LaPres JJ (2006) Identification and characterization of genes susceptible to transcriptional cross-talk between the hypoxia and dioxin signaling cascades (vol 19, pg 1284, 2006). Chem Res Toxicol 19: 1702-1702
Lee YH, Campbell HD, Stallcup MR (2004) Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity. Mol Cell Biol 24: 2103-2117
Li H, Gomes PJ, Chen JD (1997) RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci U S A 94: 8479-8484
Li ZD, Liu LZ, Shi XL, Fang J, Jiang BH (2007) Benzo[a]pyrene-3,6-dione inhibited VEGF expression through inducing HIF-1 alpha degradation. Biochem Biophys Res Commun 357: 517-523
Lopez GN, Turck CW, Schaufele F, Stallcup MR, Kushner PJ (2001) Growth factors signal to steroid receptors through mitogen-activated protein kinase regulation of p160 coactivator activity. Journal of Biological Chemistry 276: 22177-22182
Luch A (2005) Nature and nurture - Lessons from chemical carcinogenesis. Nat Rev Cancer 5: 113-125
Ma Q (2007) Aryl hydrocarbon receptor degradation-promoting factor (ADPF) and the control of the xenobiotic response. Mol Interv 7: 133-137
Madak-Erdogan Z, Katzenellenbogen BS (2012) Aryl hydrocarbon receptor modulation of estrogen receptor alpha-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140. Toxicological sciences : an official journal of the Society of Toxicology 125: 401-411
Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L (2002) Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 277: 32405-32408
Maltepe E, Keith B, Arsham AM, Brorson JR, Simon MC (2000) The role of ARNT2 in tumor angiogenesis and the neural response to hypoxia. Biochem Biophys Res Commun 273: 231-238
Mcguire J, Whitelaw ML, Pongratz I, Gustafsson JA, Poellinger L (1994) A Cellular Factor Stimulates Ligand-Dependent Release of Hsp90 from the Basic Helix-Loop-Helix Dioxin Receptor. Mol Cell Biol 14: 2438-2446
Menzie CA, Potocki BB, Santodonato J (1992) Exposure to Carcinogenic Pahs in the Environment. Environ Sci Technol 26: 1278-1284
Michaud SE, Menard C, Guy LG, Gennaro G, Rivard A (2003) Inhibition of hypoxia-induced angiogenesis by cigarette smoke exposure: impairment of the HIF-1alpha/VEGF pathway. Faseb J 17: 1150-1152
Mukherjee A, Soyal SM, Fernandez-Valdivia R, Gehin M, Chambon P, DeMayo FJ, Lydon JP, O'Malley BW (2006) Steroid receptor coactivator 2 is critical for progesterone-dependent uterine function and mammary morphogenesis in the mouse. Mol Cell Biol 26: 6571-6583
Naeem H, Cheng DH, Zhao QS, Underhill C, Tini M, Bedford MT, Torchia J (2007) The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol Cell Biol 27: 120-134
Nesnow S, Mass MJ, Ross JA, Galati AJ, Lambert GR, Gennings C, Carter WH, Stoner GD (1998) Lung tumorigenic interactions in strain A/J mice of five environmental polycyclic aromatic hydrocarbons. Environ Health Perspect 106: 1337-1346
Nie MH, Blankenship AL, Giesy JP (2001) Interactions between aryl hydrocarbon receptor (AhR) and hypoxia signaling pathways. Environ Toxicol Phar 10: 17-27
O'Malley BW (2007) Coregulators: From whence came these 'master genes'. Mol Endocrinol 21: 1009-1013
Ohh M, Park CW, Ivan N, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2: 423-427
Onate SA, Tsai SY, Tsai MJ, Omalley BW (1995) Sequence and Characterization of a Coactivator for the Steroid-Hormone Receptor Superfamily. Science 270: 1354-1357
Park H (1999) Aromatic hydrocarbon nuclear translocator as a common component for the hypoxia- and dioxin-induced gene expression. Mol Cells 9: 172-178
Peter Guengerich F, Chun YJ, Kim D, Gillam EM, Shimada T (2003) Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutat Res 523-524: 173-182
Phillips DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mutat Res-Gen Tox En 443: 139-147
Poland A, Glover E, Kende AS (1976) Stereospecific, High Affinity Binding of 2,3,7,8-Tetrachlorodibenzo-Para-Dioxin by Hepatic Cytosol - Evidence That Binding Species Is Receptor for Induction of Aryl-Hydrocarbon Hydroxylase. Journal of Biological Chemistry 251: 4936-4946
Poland A, Knutson JC (1982) 2,3,7,8-Tetrachlorodibenzo-Para-Dioxin and Related Halogenated Aromatic-Hydrocarbons - Examination of the Mechanism of Toxicity. Annu Rev Pharmacol 22: 517-554
Powis G, Kirkpatrick L (2004) Hypoxia inducible factor-1alpha as a cancer drug target. Mol Cancer Ther 3: 647-654
Prasch AL, Andreasen EA, Peterson RE, Heideman W (2004) Interactions between 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and hypoxia signaling pathways in zebrafish: Hypoxia decreases responses to TCDD in zebrafish embryos. Toxicol Sci 78: 68-77
Roman AC, Carvajal-Gonzalez JM, Rico-Leo EM, Fernandez-Salguero PM (2009) Dioxin Receptor Deficiency Impairs Angiogenesis by a Mechanism Involving VEGF-A Depletion in the Endothelium and Transforming Growth Factor-beta Overexpression in the Stroma. Journal of Biological Chemistry 284: 25135-25148
Ruas JL, Poellinger L, Pereira T (2005a) Role of CBP in regulating HIF-1-mediated activation of transcription. J Cell Sci 118: 301-311
Ruas JL, Poellinger L, Pereira T (2005b) Role of CBP in regulating HIF-1-mediated activation of transcription. J Cell Sci 118: 301-311
Rushing SR, Denison MS (2002) The silencing mediator of retinoic acid and thyroid hormone receptors can interact with the aryl hydrocarbon (Ah) receptor but fails to repress Ah receptor-dependent gene expression. Arch Biochem Biophys 403: 189-201
Salazar S, Diaz-Gonzalez G, Botello AV (1991) Presence of aliphatic and polycyclic aromatic hydrocarbons in the atmosphere of northwestern Mexico City, Mexico. Bull Environ Contam Toxicol 46: 690-696
Seifert A, Katschinski MM, Tonack S, Fischer B, Santos AN (2008) Significance of prolyl hydroxylase 2 in the interference of aryl hydrocarbon receptor and hypoxia-inducible factor-1 alpha signaling. Chem Res Toxicol 21: 341-348
Semenza GL (2010) Oxygen homeostasis. Wires Syst Biol Med 2: 336-361
Shah YM, Rowan BG (2005) The Src kinase pathway promotes tamoxifen agonist action in ishikawa endometrial cells through phosphorylation-dependent stabilization of estrogen receptor alpha promoter interaction and elevated steroid receptor coactivator 1 activity. Mol Endocrinol 19: 732-748
Shang YF, Brown M (2002) Molecular determinants for the tissue specificity of SERMs. Science 295: 2465-2468
Shaw GR, Connell DW (1994a) Prediction and Monitoring of the Carcinogenicity of Polycyclic Aromatic-Compounds (Pacs). Rev Environ Contam T 135: 1-62
Shaw GR, Connell DW (1994b) Prediction and monitoring of the carcinogenicity of polycyclic aromatic compounds (PACs). Rev Environ Contam Toxicol 135: 1-62
Shields PG, Bowman ED, Harrington AM, Doan VT, Weston A (1993) Polycyclic aromatic hydrocarbon-DNA adducts in human lung and cancer susceptibility genes. Cancer Res 53: 3486-3492
Simon Z, Balaban AT, Ciubotariu D, Balaban TS (1985) Qsar for Carcinogenesis by Polycyclic Aromatic-Hydrocarbons and Derivatives in Terms of Delocalization Energy, Minimal Sterical Differences and Topological Indexes. Rev Roum Chim 30: 985-1000
Spelsber.Tc, Steggles AW, Omalley BW (1971) Progesterone-Binding Components of Chick Oviduct .3. Chromatin Acceptor Sites. Journal of Biological Chemistry 246: 4188-&
Subramaniam N, Treuter E, Okret S (1999) Receptor interacting protein RIP140 inhibits both positive and negative gene regulation by glucocorticoids. Journal of Biological Chemistry 274: 18121-18127
Swanson HI, Bradfield CA (1993) The Ah-Receptor - Genetics, Structure and Function. Pharmacogenetics 3: 213-230
Takeshita A, Cardona GR, Koibuchi N, Suen CS, Chin WW (1997) TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. Journal of Biological Chemistry 272: 27629-27634
Taylor RT, Wang F, Hsu EL, Hankinson O (2009) Roles of Coactivator Proteins in Dioxin Induction of CYP1A1 and CYP1B1 in Human Breast Cancer Cells. Toxicol Sci 107: 1-8
Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387: 677-684
Voegel JJ, Heine MJS, Zechel C, Chambon P, Gronemeyer H (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. Embo J 15: 3667-3675
Wang F, Zhang RX, Wu XM, Hankinson O (2010) Roles of Coactivators in Hypoxic Induction of the Erythropoietin Gene. Plos One 5
Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-Inducible Factor-1 Is a Basic-Helix-Loop-Helix-Pas Heterodimer Regulated by Cellular O-2 Tension. Proc Natl Acad Sci U S A 92: 5510-5514
Webb P, Nguyen P, Shinsako J, Anderson C, Feng WJ, Nguyen MP, Chen DG, Huang SM, Subramanian S, McKinerney E, Katzenellenbogen BS, Stallcup MR, Kushner PJ (1998) Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol 12: 1605-1618
Wei W, Yu XD (2007) Hypoxia-inducible factors: Crosstalk between their protein stability and protein degradation. Cancer Lett 257: 145-156
Wenger RH, Gassmann M (1997) Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem 378: 609-616
Whitlock JP (1993) Mechanistic Aspects of Dioxin Action. Chem Res Toxicol 6: 754-763
Whitlock JP, Okino ST, Dong LQ, Ko HSP, ClarkeKatzenberg R, Qiang M, Li H (1996) Cytochromes P450 .5. Induction of cytochrome P4501A1: A model for analyzing mammalian gene transcription. Faseb Journal 10: 809-818
Wu H, Sun L, Zhang Y, Chen Y, Shi B, Li R, Wang Y, Liang J, Fan D, Wu G, Wang D, Li S, Shang Y (2006) Coordinated regulation of AIB1 transcriptional activity by sumoylation and phosphorylation. J Biol Chem 281: 21848-21856
Wu RC, Feng Q, Lonard DM, O'Malley BW (2007) SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129: 1125-1140
Xu JM, Li QT (2003) Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol 17: 1681-1692
Xu JM, Liao L, Ning C, Yoshida-Komiya H, Deng CX, O'Malley BW (2000) The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci U S A 97: 6379-6384
Xu JM, Qiu YH, DeMayo FJ, Tsai SY, Tsai MJ, O'Malley BW (1998) Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279: 1922-1925
Xu JM, Wu RC, O'malley BW (2009) Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 9: 615-630
Yao EF, Denison MS (1992) DNA-Sequence Determinants for Binding of Transformed Ah-Receptor to a Dioxin-Responsive Enhancer. Biochemistry 31: 5060-5067
Ye XC, Han SJ, Tsai SY, DeMayo FJ, Xu JM, Tsai MJ, O'Malley BW (2005) Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice. Proc Natl Acad Sci U S A 102: 9487-9492
Yi P, Feng Q, Amazit L, Lonard DM, Tsai SY, Tsai MJ, O'Malley BW (2008) Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1. Mol Cell 29: 465-476
Zhou G, Hashimoto Y, Kwak I, Tsai SY, Tsai MJ (2003) Role of the steroid receptor coactivator SRC-3 in cell growth. Mol Cell Biol 23: 7742-7755
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64433-
dc.description.abstract苯芘為多環芳香烴 (PAHs) 這類環境汙染物的其中之一員,可透過與多環芳香烴受體 (Aryl Hydrocarbon Receptor, AhR) 結合,啟動下游基因的表現。過去文獻指出許多心血管疾病患者暴露苯芘之後,在缺氧環境下病情會有惡化的趨勢,可能機轉為苯芘會抑制缺氧狀態下的訊息傳遞。缺氧誘導因子-1α(Hypoxia- inducible Factor-1α, HIF-1α)為一種對氧分壓敏感的轉錄因子,於正常氧分壓下會被快速降解,但缺氧環境 (hypoxia) 會促使 HIF-1α 穩定存在並與芳香烴受體核轉位蛋白 (aryl hydrocarbon receptor nuclear translocator, ARNT) 形成複合體啟動下游基因轉錄。先前本實驗室觀察到 HUVECs 細胞前處理苯芘 (B[a]P) 後,接著進行缺氧狀態時會抑制 HIF-1α 蛋白穩定性;並證實在 HepG2 細胞株內 AhR 蛋白的表現量確實會對缺氧反應元件 (Hypoxia- Responsive Element, HRE) 活性及其下游基因表現造成影響,顯示同時暴露 PAHs 與缺氧環境下,可能導致 HIF-1α與 AhR 共同競爭和 ARNT 的結合,進而對彼此啟動下游轉錄活化形成干擾,但詳細機轉目前仍未明瞭。HIF-1α、ARNT 及 AhR 三者在結構上皆屬於 PAS (PER-ARNT-SIM) 家族中的 bHLH (basic helix -loop-helix) 轉錄因子。在過去的研究中發現,核受體輔活化子(Nuclear Receptor Coactivator 2, NcoA2),有可能透過與 bHLH-PAS 類的蛋白-蛋白間交互作用 (protein-protein interaction) 來調控轉錄因子間的活化與抑制,進而在轉錄因子的活化、影響胚胎的成形和改變腫瘤的發育等過程中扮演重要的角色;因此本研究興趣在於探討 NcoA2 在 HIF-1α 與 AhR 兩條訊息傳遞路徑中所扮演之角色。本研究以HEK293T 和 HepG2 兩株細胞為模型,主要因為兩株細胞 AhR 表現量不同;利用干擾性核糖核酸 (RNA interference, RNAi) 技術使 NcoA2 蛋白靜默,並以冷光酶分析法 (Luciferase assay) 觀察結果,發現 HRE 活性在缺氧狀態下NcoA2 的靜默會減少 1.5 倍的轉錄活性,顯示 NcoA2 在細胞缺氧狀態下調控的重要性。此外,氯化亞鈷或 0.5% 氧分壓的缺氧環境下會使 NcoA2 蛋白表現量有減少趨勢,但透過大量表現 HIF-1α並不影響 NcoA2 蛋白表現量,顯示NcoA2 並非透過 HIF-1α,而是受到缺氧狀態下誘導的訊息傳遞所調控;而利用 HepG2 處理苯芘後也可以發現 NcoA2 有減少的趨勢,但在 HEK293T 卻看不到相同結果,顯示 AhR 的表現量會對 NcoA2 造成影響。除此之外,我們也觀察到前處理苯芘後在缺氧狀態下會使 NcoA2 在核內的表現量更加減少的現象,顯示 AhR 活化後所導致的 NcoA2 蛋白減少可能會降低缺氧狀態下 HRE的轉錄活性;免疫沉澱法分析的結果也得知, NcoA2 可能可以透過 AhR 的表現量或是自身不正常的大量表現,來增加與 ARNT 的作用進而抑制 HIF-1α- ARNT 複合體的形成,但 NcoA2 本身對於 HRE 轉錄活化有一定的促進作用,因此 NcoA2 的靜默也會導致 HIF-1α 與 ARNT 的作用不完全,進而影響HRE的轉錄活性。總結以上結果,NcoA2 確實在HRE 的轉錄活化扮演重要角色,但是 AhR 的表現量可能是影響 NcoA2 功能的主要因素,並且 NcoA2 的表現量差異也會雙向調節HRE的轉錄活性。zh_TW
dc.description.abstractBenzo[a]pyrene (B[a]P), one of the polycyclic aromatic hydrocarbons family (PAHs),
and is a well-known aryl hydrocarbon receptor (AhR) agonist. Such of studies indicate that when exposure to B[a]P, many patients with CVD (cardiovascular disease) have worsening trend in oxygen- deficient environment condition, the reason is B[a]P may inhibite the signal transduction induced by hypoxia. Hypoxia-inducible Factor-1α (HIF-1α) a transcriptional factor composed of α- and β-subunits (ARNT), is a key regulator of metabolic adaptation to hypoxia. In our previous studies, hypoxia –induced HIF-1α was suppressed in human umbilical vein endothelial cells (HUVECs) after treated with Benzo[a]pyrene (B[a] P), the decreased in AhR protein level enhanced the activity of HRE and HRE-related genes induction under hypoxia treatment in HepG2. The data suggest when exposure to PAHs under hypoxia, AhR might compete to ARNT with HIF-1α forming the complex for transactivation. However, the detailed mechanism was still unknown. Nuclear Receptor Coactivator 2 (NcoA2), a transcription coactivator which could regulate the bHLH-PAS family proteins (HIF-1α, ARNT, AhR) transcriptional activity by protein-protien interactions to regulate transcription factor activation and inhibition, and thus play an important role in the activation of the transcription factor, affecting the embryo forming and change the course of tumor development. The aim of this study is to understand the role of NcoA2 between AhR and HIF-1α pathway.In this study, based on the basal level of AhR, we use the HEK293T and HepG2 as the cell model. NcoA2 was silenced by using NcoA2 shRNA, following analysis with Luciferase assay observed the HRE activity was decreased obviously; moreover,the HIF-1α protein accumulation (6hr after hypoxia treatment) and NcoA2 degradation was found in hypoxia –treated HEK293T cells. The decreased NcoA2 protein was mainly found in nuclear fraction rather than cytosol, these results indicated NcoA2 may regulate the gene transcription under hypoxia in a HIF-1α - independent manner. In contrast to hypoxia, the treatment of B[a]P could also repress NcoA2 expression in HepG2, but not in HEK293T. interestingly, HepG2 was pre-treated B[a]P follow by hypoxia incubating for 6 hours, the result showed that NcoA2 significantly decreased in nuclear fraction, indicating that the activation of AhR caused NcoA2 protein reduction may reduce the activity of the transcription of HRE under hypoxic. Immunoprecipitation analysis showed AhR expression or NcoA2 abnormal expression may influence NcoA2-ARNT interaction thereby inhibit HIF-1α-ARNT complex formation. In conclusion, NcoA2 indeed plays an important role on HRE activation; but the expression of the AhR may be a major factor affecting NcoA2 function. These results lead NcoA2 colud both up-regulate and down –regulate the transcriptional activity of the HRE.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:46:54Z (GMT). No. of bitstreams: 1
ntu-101-R99447011-1.pdf: 2650832 bytes, checksum: a593f38113fb9fb9571aa9f7d1dcd9f4 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄 (Contents)
口試委員會審定書
謝誌
縮寫表(Abbreviations) ………………….……………………………………….…...iv
圖表目錄(Figures and Tables) ………………...…………….………………….….....v
中文摘要……..….….………………………………………………………….….....vii
英文摘要.………………….……………………………………………………....….ix
第一章 緒論 ( Introduction )
1.1多環芳香烴(Polycyclic aromatic hydrocarbons, PAHs)與苯芘 ( benzo[a]pyrene, B[a]P ) 毒理背景介紹….………………………..............................................……2
1.2多環芳香烴受體(Aryl hydrocarbon receptor, AhR)與缺氧誘導因子-1(hypoxia inducible factors 1, HIFs-1)…………...……..…………………………………..….4
1.3類固醇受體輔活化子 (Steroid Receptor Coactivators, SRCs) ..............................7
1.4核受體輔活化子 (NcoA2, SRC2) 在缺氧狀態之調控 .......................................9
1.5研究動機……………………………………………………………………….…10
第二章 實驗材料與方法 ( Materials and Methods )
2.1 實驗材料…..…………….……………………………………………..……......13
2.1.1細胞株 (Cell lines)…..…………….…………………………...…….….…......13
2.1.2藥品與試劑 (Chemicals and Reagents)……………………………...…..…….13
2.1.3抗體 (Antibodies)…………………………………………..……….….….......15
2.1.4質體 (Plasmids)…………………………………..…………………..…..........15
2.2 實驗方法…….…………….....……..……………………………………….…..15
2.2.1細胞培養 (Cell culture)………………………………………..…….………...15
2.2.2缺氧系統培養箱 (Hypoxia chamber)……………….…...................................16
2.2.3細胞毒性測試 (Cell viability test/MTT assay)……..........................................16
2.2.4 細胞總蛋白質液收集 (Cell lysate collection)………….……………….........17
2.2.5 西方墨點法 (Western blot analysis).................................................................17
2.2.6 免疫沉澱法 (Immunoprecipitation)………………………………………......18
2.2.7質體萃取(Plasmid DNA purification)…………………………………...……..18
2.2.8質體轉染 (Plasmid transfection)……………………..……….…….................18
2.2.9 慢病毒製備與感染 ( Lentivirus production and infection )……………….…18
2.2.10 HRE冷光酶分析法 (HRE luciferase assay)…………………………………19
2.2.11免疫螢光染色 (immunofluorescence staining)………………………………20
2.2.12 統計分析 (Statistic analysis)…………………………………………….…..21
第三章 實驗結果 ( Results )
3.1 PolyJetTM 轉染試劑對HEK293T細胞 NcoA2蛋白之靜默…...........................23
3.2 NcoA2的靜默不會造成人類胚胎腎細胞 (HEK293T) 存活率下降…….…....23
3.3 野生型與NcoA2靜默型HEK293T細胞株在正常氧分壓與缺氧狀態下對缺氧反應元件(HRE)活性之影響………………………….………………..……………23
3.4 模擬缺氧狀態下與HIF-1α 蛋白表現量對NcoA2蛋白表現量之影響.….........25
3.5模擬缺氧狀態下會減少NcoA2在細胞核內之表現量…....................................26
3.6苯芘透過多環芳香烴受體 (AhR)影響NcoA2之蛋白表現量………………....26
3.7苯芘會抑制模擬缺氧狀態下之HIF-1α累積並減少細胞核內NcoA2之表現量……………………………………………………………………………………..27
3.8慢病毒載體(lentiviral vector)對HepG2細胞多環芳香烴受體 (AhR) 之靜默會減少模擬缺氧狀態下NcoA2蛋白於細胞核內之表現量…………………….....28
3.9芳香烴受體核轉位蛋白(ARNT)主要分布於細胞核…………………………..29
3.10大量表現載體 pcDNA3.1-NcoA2 之篩選……………………………….........30
3.11NcoA2蛋白表現量會影響芳香烴受體核轉位蛋白(ARNT)與響缺氧誘導因子-1α(HIF-1α) 之鍵結能力…………………………………………………………30
第四章 討論 ( Discussion )
4.1 NcoA2於缺氧狀態下負回饋調控之可能機轉………........................................33
4.2 HIF-1α之表現量與NcoA2調控缺氧反應元件活性之關聯性...........................36
4.3苯芘活化AhR與缺氧反應元件之關聯性…………………………………........37
4.4苯芘活化AhR導致NcoA2蛋白表現量減少之探討…..…………………....….37
4.5 NcoA2蛋白對缺氧反應元件正向與負向調控之探討…………….………...…38
第五章 結論 (Conclusion) ...…….............................................................................40
參考文獻 (References) ………...................................................................................42
圖表集 (Figures and Tables) ......................................................................................55
dc.language.isozh-TW
dc.subject苯芘zh_TW
dc.subject核受體輔活化子zh_TW
dc.subject缺氧誘導因子-1αzh_TW
dc.subject多環芳香烴受體zh_TW
dc.subjectBenzo[a]pyrene (B[a]P)en
dc.subjectNuclear Receptor Coactivator 2en
dc.subjectHypoxia- inducible Factor-1αen
dc.subjectaryl hydrocarbon receptoren
dc.title苯芘對於缺氧狀態下多環芳香烴受體與缺氧誘導因子-1α間關係之影響:核受體輔活化子角色之探討zh_TW
dc.titleEffects of B[a]P and hypoxia on the Functional Relation between AhR and HIF-1α :The role of Nuclear Receptor Coactivator 2en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏茂雄(Mao-Hsiung Yen),鄭幼文(Yu-Wen Cheng)
dc.subject.keyword苯芘,核受體輔活化子,缺氧誘導因子-1α,多環芳香烴受體,zh_TW
dc.subject.keywordBenzo[a]pyrene (B[a]P),Nuclear Receptor Coactivator 2,Hypoxia- inducible Factor-1α,aryl hydrocarbon receptor,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2012-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved