Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6440
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾國芳(Kuo-Fang Chung)
dc.contributor.authorCheng-Te Hsuen
dc.contributor.author許正德zh_TW
dc.date.accessioned2021-05-16T16:29:37Z-
dc.date.available2018-08-26
dc.date.available2021-05-16T16:29:37Z-
dc.date.copyright2013-08-26
dc.date.issued2013
dc.date.submitted2013-08-18
dc.identifier.citation吳明洲。2004。臺灣產碎雪草屬植物之系統生物研究。博士論文,臺灣大學,植物科學研究所。
李彥希、顏宏旭。2011。全球暖化對國家公園環境變遷影響先驅計畫,第1-132頁。內政部營建署。
孫世鐸。2011。應用物種分布模式於氣候變遷下監測樣區之篩選。碩士論文,臺灣大學,森林環境暨資源學系。
許晃雄、周佳、吳宜昭、盧孟明、陳正達、陳永明。2012。台灣氣候變遷的關鍵議題。臺灣醫學 16: 459-470。
黃啟俊。2006。台灣產玉山杜鵑複合群之親緣地理學研究。碩士論文,成功大學,生命科學系。
Balint, M., S. Domisch, C. H. M. Engelhardt, P. Haase, S. Lehrian, J. Sauer, K. Theissinger, S. U. Pauls, and C. Nowak. 2011. Cryptic biodiversity loss linked to global climate change. Nature Climate Change 1: 313-318.
Bogaert, J., P. Van Hecke, and I. Impens. 1999. A reference value for the interior-to-edge ratio of isolated habitats. Acta Biotheoretica 47: 67-77.
Casalegno, S., G. Amatulli, A. Camia, A. Nelson, and A. Pekkarinen. 2010. Vulnerability of Pinus cembra L. in the Alps and the Carpathian mountains under present and future climates. Forest Ecology and Management 259: 750-761.
Chou, C.-H., T.-J. Huang, Y.-P. Lee, C.-Y. Chen, T.-W. Hsu, and C.-H. Chen. 2011. Diversity of the alpine vegetation in central Taiwan is affected by climate change based on a century of floristic inventories. Botanical Studies 52: 503-516.
Chung, J. D., T. P. Lin, Y. L. Chen, Y. P. Cheng, and S. Y. Hwang. 2007. Phylogeographic study reveals the origin and evolutionary history of a Rhododendron species complex in Taiwan. Molecular Phylogenetics and Evolution 42: 14-24.
Chung, K.-F. 2006. Phylogenetics and phylogeography of the South Pacific alpine plant Oreomyrrhis: Insights into global alpine biogeography. Doctoral Dissertation, Washington University, Division of Biology and Biomedical Sciences, Program in Evolution, Ecology and Population Biology, St. Louis.
Chung, K.-F. 2007. Inclusion of the south pacific alpine genus Oreomyrrhis (Apiaceae) in Chaerophyllum based on nuclear and chloroplast DNA sequences. Systematic Botany 32: 671-681.
Chung, K.-F., C.-I. Peng, S. R. Downie, K. Spalik, and B. A. Schaal. 2005. Molecular systematics of the trans-Pacific alpine genus Oreomyrrhis (Apiaceae): phylogenetic affinities and biogeographic implications. American Journal of Botany 92: 2054-2071.
Clement, M., D. Posada, and K. A. Crandall. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657-1659.
DeChaine, E. G. and A. P. Martin. 2004. Historic cycles of fragmentation and expansion in Parnassius smintheus (Papilionidae) inferred using mitochondrial DNA. Evolution 58: 113-127.
Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carre, J. R. G. Marquez, B. Gruber, B. Lafourcade, P. J. Leitao, T. Munkemuller, C. McClean, P. E. Osborne, B. Reineking, B. Schroder, A. K. Skidmore, D. Zurell, and S. Lautenbach. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 027-046.
Elith, J., S. J. Phillips, T. Hastie, M. Dudik, Y. E. Chee, and C. J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43-57.
Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. S. Wisz, and N. E. Zimmermann. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151.
ESRI. 2011. ArcGIS Desktop, version 10.
Excoffier, L., G. Laval, and S. Schneider. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1: 47-50.
Franklin, J. and J. A. Miller. 2009. Mapping Species Distributions: Spatial Inference and Prediction New York: Cambridge University Press.
Guisan, A., O. Broennimann, R. Engler, M. Vust, N. G. Yoccoz, A. Lehmann, and N. E. Zimmermann. 2006. Using niche-based models to improve the sampling of rare species. Conservation Biology 20: 501-511.
Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.
Hsieh, C.-F. 2002. Composition, endemism and phytogeographical affinities of the Taiwan flora. Taiwania 47: 298-310.
Hutchinson, G. E. 1957. Population studies - animal ecology and demography - concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415-427.
Kropf, M., J. W. Kadereit, and H. P. Comes. 2002. Late Quaternary distributional stasis in the submediterranean mountain plant Anthyllis montana L. (Fabaceae) inferred from ITS sequences and amplified fragment length polymorphism markers. Molecular Ecology 11: 447-463.
Lenoir, J., J. C. Gegout, P. A. Marquet, P. de Ruffray, and H. Brisse. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320: 1768-1771.
Liu, C. R., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385-393.
Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen, and W. Thuiller. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 59-69.
Marske, K. A., R. A. B. Leschen, G. M. Barker, and T. R. Buckley. 2009. Phylogeography and ecological niche modelling implicate coastal refugia and trans-alpine dispersal of a New Zealand fungus beetle. Molecular Ecology 18: 5126-5142.
Mathias, M. E. and L. Constance 1955. The genus Oreomyrrhis (Umbelliferae), a problem in south Pacific distribution. Berkeley: University of California Publications in Botany 27 347-416.
Matsui, T., T. Yagihashi, T. Nakaya, H. Taoda, S. Yoshinaga, H. Daimaru, and N. Tanaka. 2004. Probability distributions, vulnerability and sensitivity in Fagus crenata forests following predicted climate changes in Japan. Journal of Vegetation Science 15: 605-614.
McClish, D. K. 1989. Analyzing a portion of the ROC curve. Medical Decision Making 9: 190-195.
Murray, M. G. and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8: 4321-4326.
Ohsawa, T. and Y. Ide. 2008. Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Ecology and Biogeography 17: 152-163.
Parry, M. L., O. F. Canziani, J. P. Palutikof, P. J. v. d. Linden, and C. E. Hanson [eds.]. 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability : Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
Pauls, S. U., C. Nowak, M. Balint, and M. Pfenninger. 2013. The impact of global climate change on genetic diversity within populations and species. Molecular Ecology 22: 925-946.
Pfenninger, M. and D. Posada. 2002. Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): fragmentation, corridor migration, and secondary contact. Evolution 56: 1776-1788.
Pfenninger, M., M. Balint, and S. Pauls. 2012. Methodological framework for projecting the potential loss of intraspecific genetic diversity due to global climate change. BMC Evolutionary Biology 12: 224.
Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259.
R Core Team. 2013. R: A language and environment for statistical computing. website: http://www.R-project.org/.
Ramirez, J. and A. Jarvis. 2008. High Resolution Statistically Downscaled Future Climate Surfaces. Cali, Columbia: International Center for Tropical Agriculture (CIAT); CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).
Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, and D. H. Wall. 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770-1774.
Shih, F.-L., S.-Y. Hwang, Y.-P. Cheng, P.-F. Lee, and T.-P. Lin. 2007. Uniform genetic diversity, low differentiation, and neutral evolution characterize contemporary refuge populations of Taiwan fir (Abies kawakamii, Pinaceae). American Journal of Botany 94: 194-202.
Sinclair, S. J., M. D. White, and G. R. Newell. 2010. How useful are species distribution models for managing biodiversity under future climates? Ecology and Society 15: 8.
Soberon, J. and M. Nakamura. 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences 106: 19644-19650.
Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731-2739.
Torres, R., J. Pablo Jayat, and S. Pacheco. 2013. Modelling potential impacts of climate change on the bioclimatic envelope and conservation of the Maned Wolf (Chrysocyon brachyurus). Mammalian Biology - Zeitschrift fur Saugetierkunde 78: 41-49.
Tsukada, M. 1966. Late Pleistocene vegetation and climate in Taiwan (Formosa). Proceedings of the National Academy of Sciences of the United States of America 55: 543-548.
Waltari, E., R. J. Hijmans, A. T. Peterson, A. S. Nyari, S. L. Perkins, and R. P. Guralnick. 2007. Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE 2: e563.
Williams, S. E., L. P. Shoo, J. L. Isaac, A. A. Hoffmann, and G. Langham. 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6: 2621-2626.
Wu, M.-J., S.-F. Huang, T.-C. Huang, P.-F. Lee, and T.-P. Lin. 2005. Evolution of the Euphrasia transmorrisonensis complex (Orobanchaceae) in alpine areas of Taiwan. Journal of Biogeography 32: 1921-1929.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6440-
dc.description.abstract全球氣候的持續暖化將迫使高山植物往更高海拔遷徙,導致其分布面積大幅縮減,因此評估指出高山植群帶是全球氣候變遷趨勢下最脆弱的生態系之一,然而物種之存續尚繫於種內之遺傳多樣性及演化潛力以因應環境的改變,但鮮少研究探討高山植物分布面積縮小對物種遺傳多樣性的影響。本研究以繖形科山薰香屬植物為例,根據物種採樣點座標及WORLDCLIM氣候資料,以MAXENT程式建立物種分布模型,並將之投影至上次最大冰期(Last Glacial Maximum, LGM)的氣候模型及兩組預測的未來氣候情境,計算預測山薰香及台灣山薰香的分布,評估其脆弱度,並整合物種分布預測與親緣地理資料,評估在不同暖化情境下遺傳多樣性的喪失,其中南湖山薰香由於稀有而資料甚少,並未納入分析。預測結果顯示,山薰香及台灣山薰香在LGM時族群較現今大幅擴張,而在未來不同的暖化情境下,兩物種分別向上遷徙了18–497公尺及17–476公尺,分布面積則分別縮小了44.7–85.8%及49.2–99.9%,且以東北部山區的脆弱度最高而漸次向南遞減。根據分布面積喪失的預測,山薰香及台灣山薰香在葉綠體atpB-rbcL基因間片段之基因單型的多型性在未來分別將有5.3–21.1%及0–80%的喪失。由於東北部同時為遺傳多樣性的熱點,未來保育應加強東北部族群的監測,並針對即將喪失基因單型的族群進行採樣與保種,以維持物種之遺傳多樣性。zh_TW
dc.description.abstractStudies have predicted that alpine plants will be forced to migrate into higher ele-vations as current trend of global warming continues, resulting in drastic deduction in their distribution range. Consequently alpine vegetation is regarded as one of the most vulnerable ecosystems threaten by global climate changes. However, species’ survivor-ship and evolvability to cope with environmental changes also depend on genetic diver-sity. Therefore it is also important to project how shrinking in distribution range would impact extent of genetic diversity. Based on coordinates of collecting data and climate data of WORLDCLIM, we employed the program MAXENT to construct the distribu-tion models of two endemic species of Apiaceae in high elevation of Taiwan, Chaerophyllum involucratum and C. taiwanianum, and used the models to project their past and future distributions during the last glacial maximum (LGM) and under the fu-ture climatic scenarios (i.e. B2B and A2A) predicted by Intergovernmental Panel on Climate Change (IPCC). Changes of projected distribution were used to evaluate the vulnerability of the species. The distributions were also integrated with phylogeographic data to predicted loss of genetic diversity under B2B and A2A. Based on the projections, distributions of both species were much wider during LGM compare to their present distributions. Under B2B and A2A, 18–497 m upward migration and 44.7–85.8% shrinking in distribution are projected in C. involucratum, while 17–476 m and 42.2–99.9% in C. taiwanianum are estimated. Populations in the northeastern part of the island are most vulnerable, with vulnerability decreasing southward. Based on deduction of distribution range, C. involucratum is projected to lose 5.3–21.1% of haplotypes in the chloroplast atpB-rbcL spacer, while 0–80% loss was predicted in C. taiwanianum. Because the northeastern populations also present hotspots of genetic diversity, their high vulnerability urges attention to monitor whether populations there would have shrunk as predicted. Furthermore, ex situ conservation such as germplasm preservation in seedbank should focus on populations harboring haplotypes that are projected to go extinct in the near future.en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:29:37Z (GMT). No. of bitstreams: 1
ntu-102-R99625023-1.pdf: 9654129 bytes, checksum: cd88c16e02798e6937c06e1739445506 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 i
圖目錄 iii
表目錄 iv
附錄目錄 v
前言 1
I. 氣候變遷對高山生態系的衝擊 1
II. 脆弱度評估 2
III. 物種分布預測模型 3
IV. 台灣高山植物之親緣地理 4
V. 台灣山薰香屬簡介 5
研究目的 7
材料與方法 8
I. 研究材料 8
A. 生物資料取得 8
B. 環境資料取得 10
II. 資料分析 11
A. 物種及環境資料前處理 11
B. 族群遺傳變異分析 12
C. 巢狀支序親緣地理分析 12
D. 物種分布預測模型建立 13
E. 多樣性評估分析 14
F. 脆弱度評估 15
結果 17
I. 族群遺傳變異分析、親緣網狀階層分析 17
II. 物種分布預測模型時間序列 18
A. 環境因子選取 18
B. 預測分布模型 19
III. 多樣性評估分析 19
A. 分布面積動態 19
B. 遺傳多樣性喪失評估 20
IV. 脆弱度評估 21
A. 脆弱度指數 21
B. 海拔梯度機率頻度分布 21
C. 棲地破碎程度分析 22
討論 23
I. 台灣山薰香屬遺傳多樣性成因 23
II. 物種分布模型 24
A. 資料誤差 24
B. 模型結構 24
III. 多樣性評估分析 25
結論 27
參考文獻 28
dc.language.isozh-TW
dc.title氣候變遷對台灣高山植物分布及遺傳多樣性影響之評估—以山薰香屬為例zh_TW
dc.titleClimate Change Impact Assessment on Species Distribution and Genetic Diversity of Alpine Plants of Taiwan — Insight from Oreomyrrhis Clade of Chaerophyllumen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江友中(Yu-Chung Chiang),丁宗蘇(Tzung-Su Ding)
dc.subject.keyword物種分布模型,MAXENT,全球暖化,山薰香屬,繖形科,脆弱度,保育遺傳學,zh_TW
dc.subject.keywordspecies distribution model,global warming,conservation genetics,Oreomyrrhis,vulnerability,Apiaceae,MAXENT,en
dc.relation.page112
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf9.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved