Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64396
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志(Shinn-Chi Wu)
dc.contributor.authorChia-Chun Changen
dc.contributor.author張家駿zh_TW
dc.date.accessioned2021-06-16T17:44:48Z-
dc.date.available2012-08-17
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-14
dc.identifier.citationAponte, P. M., T. Soda, K. J. Teerds, S. C. Mizrak, H. J. van de Kan and D. G. de Rooij. 2008. Propagation of bovine spermatogonial stem cells in vitro. Reproduction 136: 543-557.
Avarbock, M. R., C. J. Brinster and R. L. Brinster. 1996. Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nat. Med. 2: 693-696.
Boshart, M., F. Weber, G. Jahn, K. Dorsch-Hasler, B. Fleckenstein and W. Schaffner. 1985. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirous. Cell 41: 521-530.
Brinster R.L. and J. W. Zimmermann. 1994. Spermatogenesis following male germ cell transplantation. Proc. Natl. Acad. USA 91: 11298-11302.
Buaas, F. W., A. L. Kirsh, M. Sharma, D. J. McLean, J. L. Morris, M. D. Griswold D. G. de Rooij and R. E. Braun. 2004. Plzf is required in adult male germ cells for stem cell self-renewal. Nat. Genet. 36: 647-651.
Campbell, R. E., O. Tour, A.. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias and R. Y. Tsien. 2002. A monomeric red fluorescent protein. Proc. Natl. Acad. USA 99: 7877-7882.
Clermont, Y. and C. P. Leblond. 1953. Renewal of sprmatogonia in the rat. Am. J. Anat. 93: 475-501.
Clermont, Y. and B. Perey. 1957. Quantitative study of the cell population of the seminiferous tubules in immature rats. Am. J. Anat. 100: 241-267.
Clouthier, D. E., M. R. Avarbock, S. D. Maika, R. E. Hammer and R. L. Brinster. 1996. Rat spermatogenesis in mouse testes. Nature 381: 418-421.
Costoya, J. A., R. M. Hobbs, M. Barna, G. Cattoretti, K. Manova, M. Sukhwani, K. E. Orwig, D. J. Wolgemuth and P. P. Pandolfi. 2004. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat. Genet. 36: 653-659.
Culty, M., 2009. Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Res. C. Embryo Today 87: 1-26.
Dai, M. S., N. Chevallier, S. Stone, M. C. Heinrich, M. McConnell, T. Reuter, H. E. Broxmeyer, J. D. Licht, L. Lu and M. E. Hoatlin. 2002. The effects of the Fanconi anemia zinc finger (FAZF) on cell cycle, apoptosis, and proliferation are differentiation stage-specific. J. Biol. Chem. 277: 26327-26334.
de Rooij, D. G. 1998. Stem cells in the testes. Int. J. Exp. Pathol. 79: 67-80.
Dobrinski, I., M. R. Avarbock and R. L. Brinster. 1999. Transplantation of germ cells from rabbits and dogs into mouse testis. Biol. Reprod. 61: 1331-1339.
Dobrinski, I., M. R. Avarbock and R. L. Brinster. 2000. Germ cell transplantation from large domestic animals into mouse testis. Mol. Reprod. Dev. 57: 270-279.
Ebata, K.T., X. Zhang and M.C. Nagano. 2005. Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development. Mol. Reprod. Dev. 72: 171-181.
Fregien, N. and N. Davidson. 1986. Activating elements in the promoter region of the chicken β-actin gene. Gene 48: 1-11.
Fukuda, T., C. Hedinger and P. Groscurth. 1975. Ultrastructure of developing germ cells in the fetal and early postnatal human testes. Cell Tissue Res. 161: 55-70.
Goel, S., M. Sugimoto, N. Minami, M. Yamada, S. Kume and H. Imai. 2007. Identification, isolation, and in vitro culture of porcine gonocytes. Biol. Reprod. 77: 127-137.
Hamra, F. K., K. M. Chapman, D. M. Nguyen, A. A. Williams-Stephens, R. E. Hammer and D. L. Garbers. 2005. Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc. Natl. Acad. Sci. USA 102: 17430-17435.
Honaramooz, A., S. O. Megee and I. Dobrinski. 2002. Germ cell transplantation in pigs. Biol. Reprod. 66: 21-28.
Hughes, P. E. and M. A. Varley. 1980. Reproduction in the pig. United Kingdom: Butterworth and Co. : 173-186.
Ikawa, M., K. Kominami, Y. Yoshimura, K. Tanaka, Y. Nishimune and M. Okabe. 1995. Green fluorescent protein as a marker in transgenic mice. Develop. Growth Differ. 37: 455-459.
Izadyar, F., G. T. Spierenberg, L. B. Creemers, K. den Ouden and D. G. Rooij. 2002. Isolation and purification of type A spermatogonia from the bovine testes. Reproduction 124: 85-94.
Kanatsu-Shinohara, M., N. Ogonuki, K. Inoue, H. Miki, A. Ogura, S. Toyokuni and T. Shinohara. 2003. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69: 612-616.
Kanatsu-Shinohara, M., K. Inoue, J. Lee, M. Yoshimoto, N. Ogonuki, H. Miki, S. Baba, T. Kato, Y. Kazuki, S. Toyokuni, M. Toyoshima, O. Niwa, M. Oshimura, T. Heike, T. Nakahata, F. Ishino, A. Ogura and T. Shinohara. 2004a. Generation of pluripotent stem cells from neonatal mouse testes. Cell 119: 1001-1012.
Kanatsu-Shinohara, M., S. Toyokuni and T. Shinohara. 2004b. CD9 is a surface marker on mouse and rat male germline stem cells. Biol. Reprod. 70: 70-75.
Kanatsu-Shinohara, M., N. Ogonuki, T. Iwano, J. Lee, Y. Kazuki, K. Inoue, H. Miki, M. Takehashi, S. Toyokuni, Y. Shinkai, M. Oshimura, F. Ishino, A. Ogura and T. Shinohara. 2005. Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 132: 4155-4163.
Kanatsu-Shinohara, M., M. Ikawa, M. Takehashi, N. Ogonuki, H. Miki, K. Inoue, Y. Kazuki, J. Lee, S. Toyokuni, M. Oshimura, A. Ogura and T. Shinohara. 2006. Production of knockout mice by random or targeted mutagenesis in spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 103: 8018-8023.
Kanatsu-Shinohara, M., T. Muneto, J. Lee, M. Takenaka, S. Chuma, N. Nakatsuji, T. Horiuchi and T. Shinohara. 2008. Long-term culture of male germline stem cells from hamster testis. Biol. Reprod. 78: 611-617.
Kanatsu-Shinohara, M., M. Takehashi, S. Takashima, J. Lee, H. Morimoto, S. Chuma, A. Raducanu, N. Nakatsuji, R. Fassler and T. Shinohara. 2008. Homing of mouse spermatogonial stem cells to germline niche depends on β1-integrin. Cell Stem Cell 3: 533-542.
Kanatsu-Shinohara, M., K. Inoue, N. Ogonuki, H. Morimoto, A. Ogura and T. Shinohara. 2011a. Serum- and feeder-free culture of mouse germline stem cells. Biol. Reprod. 84: 97-105.
Kanatsu-Shinohara, M., M. Kato-Itoh, M. Ikawa, M. Takehashi, M. Sanbo, Y. Morioka, T. Tanaka, H. Morimoto, M. Hirabayashi and T. Shinohara. 2011b. Homologous recombination in rat germline stem cells. Biol. Reprod. 85: 208-217.
Kim, B. G., C. M. Cho, Y. A. Lee, B. J. Kim, K. J. Kim, Y. H. Kim, K. S. Min, C. G. Kim and B. Y. Ryu. 2010. Enrichment of testicular gonocytes and genetic modification using lentiviral transduction in pigs. Biol. Reprod. 82: 1162-1169.
Ko, K., N. Tapia, G. Wu, J. B. Kim, M. J. A. Bravo, P. Sasse, T. Glaser, D. Ruau, D. W. Han, B. Greber, K. Hausdorfer, V. Sebastiano, M. Stehling, B. K. Fleischmann, O. Brustle, M. Zenke and H. R. Scholer. 2009. Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5: 87-96.
Kubota, H., M. R. Avarbock and R. L. Brinster. 2004. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 101: 16489-16494.
Kubota, H., X. Wu, S. M. Goodyear, M. R. Avarbock and R. L. Brinster. 2011. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J. 25: 2606-2614.
Lawson, K. A., N. R. Dunn, B. A. J. Roelen, L. M. Zeinstra, A. M. Davis, C. V. E. Wright, J. P. W. F. M. Korving and B. L. M. Hogan. 1999. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13: 424-436.
Li, J. Y., M. A. English, H. J. Ball, P. L. Yeyati, S. Waxman and J. D. Licht. 1997. Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J. Biol. Chem. 272: 22447-22455.
Looijenga, L. H., R. Hersmus, A. J. Gillis, R. Pfundt, H. J. Stoop, R. J. H. L. M. van Gurp, J. Velrman, H. B. Beverloo, E. van Drunen, A. G. van Kessel, R. R. Pera, D. T. Schneider, B. Summersgill, J. Shipley, A. Mclntyre, P. van der Spek, E. Schoenmakers and J. W. Oosterhuis. 2006. Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Res. 66: 290-302.
Luo, J. P., S. Megee, R. Rathi and I. Dobrinski. 2006. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testes: application to enrichment and culture of porcine spermatogonia. Mol. Reprod. Dev. 73: 1531-1540.
Matson, C. K., M. W. Murphy, M. D. Griswold, S. Yoshida, V. J. Bardwell and D. Zarkower. 2010. The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells. Dev. Cell 19: 612-624.
Meilinger, D., K. Fellinger, S. Bultmann, U. Rothbauer, I. M. Bonapace, W. E. F. Klinkert, F. Spada and H. Leonhardt. 2009. Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Reports 10: 1259-1264.
Meng, X., M. Lindahl, M. E. Hyvonen, M. Parvinen, D. G. de Rooji, M. W. Hess, A. Raatikainen-Ahokas, K. Sainio, H. Rauvala, M. Lakso, J. G. Pichel and H. Westphal. 2000. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287: 1489-1493.
Misener, T. R., S. G. Fuller. 1995. Testicular versus breast and colorectal cancer screening: early detection practices of primary care physicians. Cancer Pract. 3: 310-316.
Moraveji, S. F., F. Attari, A. Shahverdi, H. Sepehri, A. Farrokhi, S. N. Hassani, H. Fonoudi, N. Aghdami and H. Baharvand. 2012. Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis. Hum. Reprod. 8: 2313-2314.
Nagano, M., J. R. McCarrey and R. L. Brinster. 2001a. Primate spermatogonial stem cells colonize mouse testis. Biol. Reprod. 64: 1409-1416.
Nagano, M., C. J. Brinster, K. E. Orwig, B. Y. Ryu, M. R. Avarbock and R. L. Brinster. 2001b. Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc. Natl. Acad. Sci. USA 98: 13090-13095.
Nagano, M., P. Patrizio and R. L. Brinster. 2002. Long-term survival of human spermatogonial stem cells in mouse testis. Fertil. Steril. 78: 1225-1233.
Nakagawa, T., M. Sharma, Y. Nabeshima, R. E. Braum and S. Yoshida. 2010. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328: 62-67.
Nayernia, K., J. Nolte, H. W. Michelmann, J. H. Lee, K. Rathsack, N. Drusenheimer, A. Dev, G. Wulf, I. E. Ehrmann, D. J. Elliot, V. Okpanyi, U. Zechner, T. Haaf, A. Meinhardt and W. Engel. 2006. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev. Cell 11: 125-132.
Niwa, H., K. Yamamura and J. Miyazaki. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193-200.
Oatley, M. J., A. V. Kaucher, K. E. Racicot and J. M. Oatley. 2011. Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol. Reprod. 85: 347-356.
Ogawa, T., I. Dobrinski, M. R. Avarbock and R. L. Brinster. 1999. Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testis. Biol. Reprod. 60: 515-521.
Ohta, H., K. Yomogida, K. Dohmae, and Y. Nishimune. 2000. Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development 127: 2125-2131.
Richards, A. J., G. C. Enders and J. L. Resnick. 1999. Differentiation of murine premigratory primordial germ cells in culture. Biol. Reprod. 61: 1146-1151.
Russo, A. A., P. D. Jeffrey and N. P. Pavletich. 1996. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3: 696-700.
Sada, A., A. Suzuki, H. Suzuki and Y. Saga. 2009. The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science 325: 1394-1398.
Sadri-Ardekani, H., S. C. Mizrak, S. K. van Daalen, C. M. Korver, H. L. Roepers-Gajadien, M. Koruji, S. Hovingh, T. M. de Reijke, J. J. de la Rosette, F. van der Veen, D. G. de Rooij, S. Repping and M. M. van Pelt. 2009. Propagation of human spermatogonial stem cells in vitro. JAMA 302: 2127-2134.
Sariola, H. and M. Saarma. 2003. Novel functions and signaling pathways of GDNF. J. Cell Sci. 116: 3855-3862.
Seandel, M., D. James, S. V. Shmelkov, I. Falciatori, J. Kim, S. Chavala, D. S. Scherr, F. Zhang, R. Torres, N. W. Gale, G. D. Yancopoulos, A. Murphy, D. M. Valenzuela, R. M. Hobbs, P. P. Pandolfi and S. Rafii. 2007. Generation of functional multipotent stem cells from GRP125+ germline progenitors. Nature 449: 346-350.
Shimomura, O., F. K. Johnson and Y. Saica. 1962. Extration, purification and properties of Aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell Physiol. 59: 223-239.
Shinohara, T., M.R. Avarbock and R.L. Brinster. 1999. β1- and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 96: 5504-5509.
Skakkebaek, N. E., J. G. Berthelsen, A. Giwercman and J. Muller. 1987. Carcinoma-in-situ of the testes: possible origin from gonocytes and precursor of all types of germ cell tumors except spermatocytoma. Int. J. Androl. 10: 19-28.
Skye, C. M., S. J. Stanger, D. M. Santarelli, S. D. Roman, B. Nixon, E. A. McLaughlin. 2012. A unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One 7:e35553
Takehashi, M., M. Kanatsu-Shinohara and T. Shinohara. 2010. Generation of genetically modified animals using spermatogonial stem cells. Dev. Growth Differ. 52: 303-310.
Tegelenbosch, R. A. and D. G. Rooij. 1993. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290: 193-200.
Waheeb, R., M. C. Hofmann. 2011. Human spermatogonial stem cells: a possible origin for spermatocytic seminoma. Int. J. Androl. 34: e296-e305.
Wang, R., P. K. Nakane and T. Koji. 1998. Autonomous cell death of mouse male germ cells during fetal and postnatal period. Biol. Reprod. 58: 1250-1256.
Wu, Z., I. Falciatori, L. A. Molyneux, T. E. Richardson, K. M. Chapman and F. K. Hamra. 2009. Spermatogonial culture medium: an effective and efficient nutrient mixture for culture rat spermatogonial stem cells. Biol. Reprod. 81: 77-86.
Yang, Y. and A. Honaramooz. 2011. Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating. Reprod. Fertil. Dev. 23: 496-505.
Yeyati, P. L., R. Shaknovich, S. Boterashvili, J. Li, H. J. Ball, S. Waxman, K. Nason-Burchenal, E. Dmitrovsky, A. Zelent and J. D. Licht. 1999. Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene 18: 925-934.
Ying, Y., X. M. Liu, A. Marble, K. A. Lawson and G. Q. Zhao. 2000. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol. Endocrinol. 14: 1053-1063.
Yoshida, S., M. Sukeno, T. Nakagawa, K. Ohbo, G. Nagamatsu, T. Suda and Y. C. Nabeshima. 2006. The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 133: 1495-2505.
Zogbi, C., R. B. Tesser, G. Encinas, S. M. Miraglia and T. Stumpp. 2012. Gonocyte development in rats: proliferation distribution and death revisited. Histochem. Cell Biol. 138: 305-322.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64396-
dc.description.abstract生殖母細胞 (gonocyte) 係一介於始基生殖細胞 (primordial germ cell) 及精原母細胞 (spermatogonium) 之雄性生殖細胞種類。生殖母細胞與未分化之精原母細胞因可建立及維持生精作用,皆被稱為精原幹細胞 (spermatogonial stem cell)。小鼠精原幹細胞已被證實可於體外長期增殖培養,並保有其幹細胞特性,此外,亦有多方研究報告指出,部分精原幹細胞於培養過程中,會主動行再程序化 (reprogram) 轉為類似胚幹細胞 (embryonic stem cell) 特性之多能性生殖幹細胞 (pluripotent germline stem cell)。若於前述特性,精原幹細胞不僅成為後生遺傳學 (epigenetics) 及生殖生物學 (reproductive biology) 等相關研究之重要模型,更可做為治療性生殖產學之極佳技術新平台。
製備高純度之精原幹細胞為研究其分子及生理特性之重要步驟。生殖母細胞為二月齡前仔豬睪丸內唯一屬於生殖類型之細胞;職是之故,將雄性仔豬睪丸中之體細胞移除後,即可獲得高純度之雄性生殖母細胞。雖然目前尚未發現生殖母細胞之特異表面抗原,但可依據其低貼附特性和較大之細胞容積與體細胞區隔之。
源自本研究室成功產製攜帶有紅色螢光蛋白質DsRed之轉基因豬,乃藉由CAG啟動子有效驅動螢光蛋白質之表現,遂令其全身細胞均能穩定表此螢光蛋白;惟試驗結果證明在該等DsRed轉基因豬之睪丸中,各不同分化階段之生殖細胞中,其螢光表現遠不如彼等體細胞者然。進一步試驗依上述之生殖母細胞特性,配合細胞貼附性差異及細胞分選策略針對四至六週齡仔豬之生殖母細胞進行培養,再經流式細胞分選儀 (cell sorter) 完成篩選獲得具備強前散射光 (forward scatter, FSC) 及弱紅螢光之細胞,證明確能有效將生殖母細胞之純度由初始分離之1.0 ± 0.3% 顯著提升至90.4 ± 1.6% (p<0.01) 之譜;設若僅收集彼等具有強前散射光之細胞群,其細胞純度亦高達80.9 ± 2.6% (p<0.01)。
進一步試驗乃藉由精原幹細胞標誌PLZF抗體之使用,針對二至八週齡仔豬,完成睪丸切片之免疫染色鑑定;結果發現彼等表現有PLZF之生殖母細胞比例,係隨著週齡漸增,且與生殖母細胞之回位 (homing) 現象具正相關性;足見PLZF之表現確可提供做為豬生殖母細胞具幹細胞特性之標誌。職是之故,進一步試驗乃針對以PLZF之表現進行檢測,俾確認彼等業經純化之生殖母細胞的固有特性;試驗結果顯示,業經純化之生殖母細胞中具有表現PLZF之百分率高達67.2 ± 7.3%,分別係可能具幹細胞潛力者。
綜合上述,本研究完成兩階段之細胞純化技術,自單一睪丸成功製備高度純化之豬生殖母細胞,除可以提供未來最為早期生殖細胞分化特性研究之模式細胞,另外且依生殖母細胞之基因表現形象將之區分成為若干類別之生殖母細胞亞群 (subpopulation),可供未來針對生殖母細胞之幹細胞特性及其細胞命運 (cell fate) 決定因子等分子機制,進行系列性詳實深入探討之使用。
zh_TW
dc.description.abstractGonocytes have been known to be derived from primordial germ cells and to give rise to undifferentiated spermatogonia, or spermatogonial stem cells (SSCs), which establish and maintain spermatogenesis within the postnatal testes. Mouse SSCs were demonstrated as that they can long-term proliferate in vitro without losing the ability of differentiating into sperm after transplantation. Besides, a few SSCs can automatically reprogram to a pluripotent status which is similar to those of embryonic stem cells (ESCs). Due to these special features, SSC is a valuable cell model for epigenetic and reproductive studies, and will be a novel platform for transgenic animal production as well.
Establishment of significantly enriched population of SSCs is a critical step that will facilitate the researches of their molecular and biological properties. Despite of the lack of specific surface marker, the weak adhesion ability and the large size of gonocytes suggested the possibility to purify gonocytes by differential plating and cell sorting. Most cells of our DsRed transgenic pigs, in which the transgene of DsRed fluorescent protein was driven by the ubiquitous CAG promoter, stably represent fluorescence. However, to our surprise, in all the male germ cells, the expression levels of DsRed were found to be much lower than those found in most of somatic cells. Hence, gonocytes, which were isolated from pigs between 4 to 6 weeks of age, were purified by differential plating following by cell sorting sequentially. The high forward scatter (FSC) and weak fluorescence cell population was collected, and the germ cells were labeled with an antibody targets a germ cell specific marker, VASA. The purity of gonocytes was significantly elevated from 1.0 ± 0.3% to 90.4 ± 1.6% (p<0.01), which is also significantly higher than the other ones (80.9 ± 2.6%) selected by FSC only (p<0.01).
PLZF is a transcriptional regulator essential for self-renewal and maintenance of SSCs. Here in this study, immunostain was performed on testes sections from pigs at each 2, 4, 6 and 8 weeks of age, respectively. The ratio of PLZF positive germ cells appeared to be increased with ages and the relation between PLZF expression and germ cell homing was observed, suggesting PLZF is a marker for porcine SSCs. For the purpose to analyze the stem cell potential of purified gonocytes, the expression of PLZF was detected by immunocytochemistry. There were 67.2 ± 7.3% of VASA positive cells, found in those cells purified after cell sorting, and these cells were also shown positive to PLZF, indicating the stemness of them.
Overall, a two-step purification method for preparing gonocyte-enriched testicular cells from single testis has been successfully established after this present study. The highly pure fluorescent gonocytes might include a specific germ cell population, which can derive to SSCs. As a consequence, this gonocyte-enriched cell population could be an excellent model for further studies related to both characterization of primitive porcine germ cells and the germ cell fate determination.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:44:48Z (GMT). No. of bitstreams: 1
ntu-101-R99626002-1.pdf: 3434217 bytes, checksum: 623bb60fc802067ab66d4819b4212548 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目次
謝誌 1
中文摘要 2
ABSTRACT 4
目次 6
圖次 8
第1章 緒論 10
第2章 文獻探討 11
2.1 雄性哺乳動物生殖介紹 11
2.1.1 睪丸組織 11
2.1.2 睪丸細胞 12
2.1.3 生精作用 13
2.2 精原幹細胞介紹 14
2.2.1 幹細胞 14
2.2.2 精原幹細胞 14
2.2.3 生殖母細胞 15
2.2.4 精原幹細胞之純化 16
2.2.5 精原幹細胞之體外培養 17
2.2.6 精原幹細胞之分化潛能 17
2.2.7 精原幹細胞之應用 18
第3章 試驗研究 20
3.1 仔豬生殖母細胞之分離與純化 20
3.1.1 前言 20
3.1.2 材料與方法 21
3.1.3 結果 23
3.1.4 討論 29
3.2 以流式細胞分選儀純化紅螢光蛋白質基因轉殖豬生殖母細胞之研究 30
3.2.1 前言 30
3.2.2 材料與方法 31
3.2.3 結果 33
3.2.4 討論 40
3.3 仔豬生殖母細胞特性之研究 41
3.3.1 前言 41
3.3.2 材料與方法 43
3.3.3 結果 46
3.3.4 討論 56
第4章 綜合討論 58
第5章 結論 61
第6章 未來展望 63
第7章 參考文獻 64
dc.language.isozh-TW
dc.title紅螢光豬生殖母細胞之純化與特性分析zh_TW
dc.titlePurification and Characterization of Gonocytes Isolated from DsRed Transgenic Pigsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor宋麗英(Li-Ying Sung)
dc.contributor.oralexamcommittee鄭登貴(Teng-Kuei Cheng),林劭品(Shau-Pin Lin),劉逸軒(I-Hsuan Liu)
dc.subject.keyword生殖母細胞,精原幹細胞,基因轉殖豬,zh_TW
dc.subject.keywordGonocyte,Spermatogonial stem cell,transgenic pig,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2012-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
3.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved