Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64381
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賈儀平
dc.contributor.authorTsai-Ping Leeen
dc.contributor.author李在平zh_TW
dc.date.accessioned2021-06-16T17:43:57Z-
dc.date.available2013-01-01
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-14
dc.identifier.citation中文部分
丹桂之助 (1939) 台北盆地之地質 :矢部教授還曆紀念論文,第一卷。
洪如江 (1973) 台北盆地各土層土壤之物理性質:國立台灣大學工程學刊,第十期,第194-217頁。
王執明、鄭穎敏、王源 (1978) 台北盆地之地質及沈積物之研究:台灣礦業,第30卷,第4期,第350-380頁。
歐晉德、李延恭、鄭在仁 (1983) 臺北盆地松山層地下水位及水壓分佈對基礎工程影響。土木水利,第10卷,第3期,第89-102頁。
台灣糖業公司 (1995) 台灣大學農業工程學系教學用井建井報告,共13頁。
簡士超 (1995) 新店至士林地區捷運沿線淺層之水文地質特性研究:國立台灣大學地質學研究所碩士論文,共66頁。
洪如江 (1996) 初等工程地質學大綱,地工技術叢書,共231頁。
張閔翔 (1996) 台北盆地地下水系統之研究:國立台灣大學地質學研究所碩士論文,共61頁。
陳鈞嗣 (2000) 熱脈衝流速儀量測驗證與地層透水性試測,國立台灣大學地質學研究所碩士論文,共66頁。
朱家毅 (2000) 應用流速儀野外試測地層透水性垂直分布之探討,國立台灣大學地質學研究所碩士論文,共61頁。
詹淳傑 (2003) 利用熱脈衝流速儀量測地層透水性垂向分布之探討,國立台灣大學地質學研究所碩士論文,共68頁。
中央地質調查所 (2007) 台灣山區地下水資源調查研究先期計畫96年度計畫-水文地質鑽探及孔內水文試驗分析研究,共169頁。
曾何騰 (2008) 中子井測應用於分析岩體裂隙及孔隙率之研究,國立台灣大學地質學研究所碩士論文,共67頁。
陳柏瑞 (2009) 埔里盆地透水性垂向分布量測,國立台灣大學地質學研究所碩士論文,共51頁。
王泰典,詹尚書、宋政輝、黃燦輝、賈儀平、劉振宇、鄧茂華 (2011) 和社場址水文地質現地試驗案例探討,山區水文地質與地下水資源調查技術研討會

英文部分
Arnold, K.B., Molz, F.J., 2000. In-well hydraulics of the electromagnetic borehole flowmeter: Further studies. Ground Water Monitoring and Remediation, Winter 2000, 52-55.
Bird, R.B., Stewart, W.E., Lightfoot, E.N., 1960. Transport phenomena. John Wiley.
Borgne, T. Le, Bour, O., Paillet F.L., Caudal J.-P., 2006. Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. J. Hydrol. 328, 347-359.
Braester, C., Thunvik, R., 1984. Determination of formation permeability by double-packer tests. J. Hydrol. 72, 375-389.
Collar, R. J., and Mock P. A., 1997 Using water-supply wells to investigate vertical ground- water quality, Ground Water, 35. (5), 743-750.
Crisman, S.A., Molz, F.J., Dunn, D.L., Sappington, F.C., 2001. Application procedures for the electromagnetic borehole flowmeter in shallow unconfined aquifers. Ground Water Monitoring and Remediation, 21, 96-100.
Dinwiddie, C.L., Foley, N.A., Molz. F.J., 1998. In-well hydraulics of the electromagnetic borehole flowmeter. Ground Water, 37, 305-315.
Hanson, R.T., Nishikawa, T., 1996. Combined use of flowmeter and time-drawdown data to estimate hydraulic conductivities in layered aquifer system. Ground Water. 34. (1), 84-94.
Hess, A.E., 1986. Identifying hydraulically conductive fractures with a slow velocity borehole flowmeter. Canadian Geotechnical Journal. 23, 69–78.
Javandel, I., Witherspoon, P.A., 1969. A method on analyzing transient fluid flow in multilayered aquifers. Water Resour. Res. 5. (4), 856–869.
Kabala, Z.J., 1993. The dipole flow test: a new single-borehole test for aquifer characterization. Water Resour. Res. 29. (1), 99–107.
Kabala, Z.J., 1994. Measuring distributions of hydraulic conductivity and storativity by the double flowmeter test. Water Resour. Res. 30. (3), 685–690.
Molz, F.J., Morin, R.H., Hess, A.E., Melville, J.G., Guven, O., 1989. The impeller meter for measuring aquifer permeability variations: evaluation and comparison with other tests, Water Resour. Res. 25. (7), 1677–1683.
Molz, F.J., Guven, O., Melville, J.G., 1990. New approach and methodologies for characterizing the hydrogeologic properties of aquifers. US Environmental Protection Agency Report EPA/600/2-90/002.
Molz, F.J., Young, S.C., 1993. Development and application of borehole flowmeters for environmental assessment. Log Analyst. 3, 13–23.
Molz, F.J., Bowman, G.K., Young, S.C., Waldrop, W.R., 1994. Borehole flowmeters: field application and data analysis. J. Hydrol. 163, 347–371.
Paillet, F.L., 1998. Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. Water Resour. Res. 34. (5), 997-1010.
Paillet, F.L., 2000. A field technique for estimating aquifer parameters using flow log data. Ground Water. 38. (4), 510–521.
Paillet, F.L., 2004. Borehole flowmeter applications in irregular and large-diameter boreholes. Journal of Applied Geophysics. 55, 39–59.
Robertson Geologging Ltd., 1997. User’s Guide for heat pulse Flowmeter sonde.
Rubin, H., 1982. Application of the aquifer's average characteristics for determining the onset of thermohaline convection in a heterogeneous aquifer. J. Hydrol. 57, 321–336.
Ruud, N.C., Kabala, Z.J., Molz, F.J., 1999. Evaluation of flowmeter-head-loss effects in the flowmeter test. Journal of Hydrology, 224, 55-63.
Taylor, K., Wheatcraft, S.W., Hess, J., Hayworth, J.S., Molz, F.J., 1990. Evaluation of methods for determining the vertical distribution of hydraulic conductivity. Ground Water. 27, 88–98.
Young, S.C., Julian, H.E., Pearson, H.S., Molz, F.J., Boman, G.K., 1998. Application of the Electromagnetic Borehole Flowmeter. US Environmental Protection Agency Report EPA/600/R-98/058.
Zimmie, T.F., Riggs, C.O., 1981 Permeability and Groundwater Contaminant Transport, ASTM Spec. Tech. Publ., 746. 
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64381-
dc.description.abstract地層透水性為水文地質的重要參數,然地層的非均質性往往造成地質材料隨著深度而有垂直方向的變化,傳統上應用於井孔中量測地層垂向水力傳導係數分布的方法大多精度欠佳或效益不彰。熱脈衝流速儀則為近期發展中針對井孔中垂向流速量測的一項技術;本研究在實驗室建立模擬系統,藉以分析驗證熱脈衝流速儀的量測結果以及造成誤差的物理機制,並嘗試發展可以擴展流速儀量測範圍的導流裝置。試測結果顯示熱脈衝流速儀之量測準確度因流速環境不同而改變,誤差隨井管內流速降低而增加,於本實驗系統的流量環境下,誤差可由4.6%上升至94.4%。反覆試驗的精確度在低流量環境下則表現較佳,以變異係數表示約為0.4%至5.8%。我們發現誤差主要來自於熱的自然對流以及摩擦損失效應。熱的自然對流在低流速環境下為主要誤差來源,而摩擦損失效應則因流速儀擺設位置的不同以及流速儀幾何構造的差異而有不同的影響。藉由分析實驗室模擬系統的量測結果,可推導出相關之校正公式。繼而選取裝設於非均質沉積物含水層及裂隙岩體的觀測井進行現地試驗,並輔以井站岩芯資料、地球物理井測以及現地水力試驗結果,嘗試估算地層各區段之水力傳導係數和透水性分布。試驗結果顯示熱脈衝流速儀在非均質沉積物含水層中可達到25公分量測間距的解析能力;另可測得井孔內的垂向自然水流,並偵測到大部分井孔內的地下水流僅由單一裂隙流出;對於裂隙岩體當中相對透水的裂隙位置,岩芯或井孔聲波造影的記錄並無法提供直接的判斷依據,但配合移動式導流器以及校正實驗式的使用,即使在低流速的環境下,熱脈衝流速儀對於地層當中相對透水的區段位置亦具有相當良好的辨識能力。若整合其他現地水力試驗的結果,將可提供更有效的地層透水性量測方式。zh_TW
dc.description.abstractHeat-pulse flowmeter can be used to measure low flow velocities in a borehole; however, bias in the results due to measurement error is often encountered. A carefully designed water circulation system was established in the laboratory to evaluate the accuracy and precision of flow velocity measured by heat-pulse flowmeter in various conditions. A movable diverter was also developed to extend the operation flow range assembled on the flowmeter. Test results indicated that the coefficient of variation for repeated measurements, ranging from 0.4% to 5.8%, tends to increase with flow velocity. The measurement error increases from 4.6% to 94.4% as the average flow velocity decreases from 1.37 cm/sec to 0.18 cm/sec. We found that the error resulted primarily from free convection and frictional loss. Free convection plays an important role in heat transport at low flow velocities. Frictional effect varies with the position of measurement and geometric shape of the inlet and flow-through cell of the flowmeter. Based on the laboratory test data, a calibration equation for the measured flow velocity was derived by the least-squares regression analysis. Our laboratory experimental results suggested that, to avoid a large error, the heat-pulse flowmeter measurement is better conducted in laminar flow and the effect of free convection should be eliminated at any flow velocities.
Field measurement of the vertical flow velocity using the heat-pulse flowmeter was then tested in a 23-m deep screened well in an alluvial aquifer to characterize the distribution of hydraulic conductivity along the screen. Measurement results indicate that groundwater flow is concentrated in two highly permeable sections. Their horizontal hydraulic conductivities are 3.7 to 6.4 times greater than the equivalent hydraulic conductivity of the whole aquifer, suggesting that contaminant migration rate could be underestimated in a heterogeneous aquifer. Two more field tests were conducted in open-holes in the fractured rock formation to characterize the preferential flow path. The field test results indicated that, with a proper calibration, the heat-pulse flowmeter measurement is capable of characterizing the vertical distribution of hydraulic conductivity or preferential flow. The position of the highly permeable fracture zone can be identified within the range of 25 cm and a single opened fracture was identified when most flow discharged in a specific location. However, the large aperture and high density of fractures were not certainly correlate well to the permeable zone. Comparing our test results with those obtained from other techniques, we found that heat-pulse flowmeter measurement is more efficient for locating permeable fractures.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:43:57Z (GMT). No. of bitstreams: 1
ntu-101-F91224208-1.pdf: 26768087 bytes, checksum: f1db9b155e820220f93c949355699e9d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 II
致 謝 III
摘 要 IV
Abstract V
目 錄 VII
圖 目 XI
表 目 XIV
第一章 緒論 1
1.1 研究動機及目的 1
1.2 文獻回顧 3
1.3 研究方法 5
第二章 熱脈衝流速儀操作原理與應用 8
2.1 熱脈衝流速儀運作原理 9
2.2 流速儀試驗現地配置與操作方法 12
2.3 地層透水性與分層水力傳導係數分析方法 14
第三章 實驗室量測之分析與校正 18
3.1 實驗室模擬系統 18
3.2 量測結果 21
3.2.1 置中量測 21
3.2.1 偏井壁量測 25
3.3 誤差因子探討 27
3.3.1 管流機制 27
3.3.2 熱傳導 30
3.4 分析與校正 32
第四章 熱脈衝流速儀導流器之開發與校正 36
4.1 導流器構造與配置 36
4.2 裝設導流器後之量測結果 39
4.3 分析與校正 42
4.4 移動式導流器 44
第五章 現地試驗:非均質未固結沉積物含水層 47
5.1 觀測井概述 47
5.2 水文地質 50
5.3 地球物理井測資料分析 51
5.4 現地實驗系統配置 53
5.5 熱脈衝流速儀量測結果之分析與校正 55
5.6 平均水力傳導係數 58
5.7 垂直方向各深度水力傳導係數分布 60
第六章 現地試驗:井孔內自然水流 63
6.1 樟湖試驗井 63
6.2 地質背景 65
6.3 地球物理井測資料分析 70
6.4 岩體裂隙分布 73
6.5 現地實驗系統配置 75
6.6 熱脈衝流速儀量測結果之分析與校正 77
6.7 井孔垂向透水性分布 80
第七章 現地試驗:裂隙岩體 87
7.1 井場概述 87
7.2 地質背景 93
7.3 地球物理井測資料分析 97
7.3.1 一號井 97
7.3.2 二號井 99
7.3.3 三號井 101
7.3.4 四號井 103
7.3.5 五號井 105
7.3.6 六號井 107
7.3.7 七號井 109
7.3.8 八號井 111
7.4 現地實驗系統配置 113
7.5 熱脈衝流速儀量測結果校正與分析 115
7.5.1 一號井 116
7.5.2 二號井 118
7.5.3 三號井 120
7.5.4 四號井 122
7.5.5 五號井 124
7.5.6 六號井 129
7.5.7 七號井 131
7.5.8 八號井 133
7.6 綜合探討 135
第八章 討論 137
8.1 校正實驗式的應用 137
8.1.1 井徑改變與移動式導流器的使用 137
8.1.2 井管內水流方向 139
8.1.3 高流速環境 140
8.2 地層透水性分布的判釋 141
第九章 結論與建議 143
9.1 結論 143
9.2 建議 145
參考文獻 146
中文部分 146
英文部分 148
附錄A 樟湖井岩芯照片 151
附錄B 和社現地試驗量測數據 159
附錄C 和社試驗井場透水性指標 168
dc.language.isozh-TW
dc.subject水力傳導係數zh_TW
dc.subject流速儀zh_TW
dc.subject含水層zh_TW
dc.subject裂隙水流zh_TW
dc.subject導流器zh_TW
dc.subjectHydraulic conductivityen
dc.subjectFlowmeteren
dc.subjectAquiferen
dc.subjectFracture flowen
dc.subjectDiverteren
dc.title熱脈衝流速儀試驗及其應用於地層透水性分布之研究zh_TW
dc.titleLaboratory Testing of Heat-Pulse Flowmeter and its Application to the Distribution of Groundwater Flowen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳宏宇,鄧茂華,黃燦輝,譚義績,陳瑞昇
dc.subject.keyword水力傳導係數,流速儀,含水層,裂隙水流,導流器,zh_TW
dc.subject.keywordHydraulic conductivity,Flowmeter,Aquifer,Fracture flow,Diverter,en
dc.relation.page176
dc.rights.note有償授權
dc.date.accepted2012-08-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
26.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved