Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64380
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳媺玫(Meei-Mei Chen)
dc.contributor.authorPei-Chung Chenen
dc.contributor.author陳沛君zh_TW
dc.date.accessioned2021-06-16T17:43:54Z-
dc.date.available2017-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-14
dc.identifier.citation黃佩瑜。(2010)嘉義和雲林縣內養殖魚種與分離鏈球菌間之相關性研究及對吳郭魚之毒性分析。國立嘉義大學水生生物科學系暨研究所碩士論文。
洪崇順。(2006)台灣鯛鏈狀球菌之鑑定及分子分型研究。國立嘉義大學獸醫學系碩士論文。
邱淑雍。(2008) 烏魚鏈狀球菌之分子分型與抗菌劑感受性試驗。國立嘉義大學獸醫學系碩士論文。
許承智。(2011)台灣水產動物分離鏈球菌株對四環黴素與紅黴素抗要性基因之調查與分析。國立台灣大學獸醫學研究所碩士論文。
謝育錚。(2008)吳郭魚周邊血液單核球衍生之巨噬細胞單株抗體的建立與應用。國立中興大學獸醫學院獸醫學系研究所碩士論文。
鐘禎熙。(2003)魚類來源鏈球菌全細胞疫苗保護效力之評估。國立台灣大學獸醫學研究所碩士論文。
Abuseliana A., Daud H., Abdul-Aziz S., Khairani-Bejo S., Alsaid M. (2010) Streptococcus agalactiae the etiological agent of mass mortality in farmed red tilapia (Oreochromis sp.) J Anim Vet Adv, 9, 2640-2646.
Al-Marzouk A., Duremdez R., Yuasa K., Al-zenki S., Al-Gharabally H., Munday B. (2005) Fish kill of mullet Liza klunzingeri in Kuwait Bay: the role of Streptococcus agalactiae and the influence of temperature. Dis Asian Aqua V, 187-191.
Al-Sweiha N., Maiyegunc S., Diejomaohb M. Rotimi V., Khodakhast F., Hassan F., George S., Baig S. (2004) Streptococcus agalactiae (Group B Streptococci) carriage
in late pregnancy in Kuwait. Med Princ Pract, 13, 10-14.
Amal A.M.N., Nur-Nazifah M., Siti-Zaharh A., Sabri M.Y., Zamri-Saad M. (2008) Determination of LD50 for Streptococcus agalactiae infections in red tilapia and GIFT. ISTA VIII, 12-14.
Areschoug T, Waldemarsson J, Gordon S. (2008) Evasion of macrophage scavenger receptor A-mediated recognition by pathogenic streptococci. Eur J Immunol, 38, 3068-3079.
Azevedo N.L., Souza W. (1992) A cytochemical study of the interaction between Tritrichomonas foetus and mouse macrophages. Parasitol Res, 78, 545-552.
Belosevic M., Hanington P.C., Barreda D.R.(2006)Development of goldfish macrophages in vitro. Fish Shellfish Immunol, 20, 152-171.
Bolduc G.R., Baron M.J., Gravekamp C., Lachenauer C.S., Madoff L.C. (2002) The alpha C protein mediates internalization of group B Streptococcus within human cervical epithelial cells. Cell Microbiol, 4, 751-758.
Brazeau C., Gottschalk M., Vincelette S., Martineau-Doize B. (1996) In vitro phagocytosis and survival of Streptococcus suis capsular type 2 inside murine macrophages. Microbiology, 142, 1231-1237.
Brown J.H. (1919) The use of blood agar for the study of Streptococci. Rockefeller Inst Med Res, 9.
Butt E.M., Bonynge C.W., Joyce R.L. (1936) The demonstration of capsules about hemolytic Streptococci with indian ink or azo blue. J Infect Dis, 58, 5-9.
Cieslewicz M. J., Chaffin D., Glusman G., Kasper D., Madan A., Rodrigues S., Fahey J., Wessels M. R.,. Rubens C. E. (2005) Structural and genetic diversity of group B Streptococcus capsular polysaccharides. Infect Immun, 73, 3096-3103.
Dijkstra J. M., Kiryu I., Kollner B., Yoshiura Y., Ototake M. (2003) MHC class II invariant chain homologues in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol, 15, 91-105.
Domeenech A., Derenaaandez Garayzabal J., Pacual C., Garcia J., Cutuli M., Moreno M., Collin M., Dominguez L. (1996) Streptococcosis in cultured turbot, Scopthalnus maximus (L.), associated with Streptococcus parauberis. J Fish Dis, 19, 33-38.
Dvorak G., Rovid-Spickler A., Roth J. (2008) Streptococcosis. In Handbook for zoonotic dieases of companion animals, 234-241.
Eldar A., Bejerano Y., Bercovier H. (1994) Streptococcus shiloi and Streptococcus difficile: Two new streptococcal species causing a meningoencephalitis in fish. Curr Microbiol, 28, 139-143.
Eldar A., Bejerano Y., Livoff A., Horovitcz A., Bercovier H. (1995a) Experimental streptococcal meningo-encephalitis in cultured fish. Vet Microbiol, 43, 33-40.
Eldar A., Frelier P.F., Assenta L., Varner P.W., Lawhon S., Bercovier H. (1995b) Streptococcus shiloi, the name for an agent causing septicemic infection in fish, is a junior synonym of Streptococcus iniae. Int J Syst Bacteriol, 45, 840-842.
Evans D.L., Taylor S.L., Leary J.H., Bishop G.R., Eldar A., Jaso-Friedmann L.(2000)
In vivo activation of tilapia nonspecific cytotoxic cells by Streptococcus iniae and amplification with apoptosis regulatory factors. Fish Shellfish Immunol, 10, 419-434.
Evans J.J., Shoemaker C.A., Klesius P.H. (2001) Distribution of Streptococcus iniae in hybrid striped bass (Morone chrysops × Morone saxatilis) following nare inoculation. Aquaculture, 194, 233-243.
Evans J., Klesius P., Gilbert P., Shoemaker C., Al-Sarawi M., Landsberg J., Duremdez R., Al-Marzouk A. & Al-Zenki S. (2002) Characterization of β-hemolytic group B Streptococcus agalactiae in cultured seabream, Sparus auratus L., and wild mullet, Liza klunzingeri(Day), in Kuwait. J Fish Dis, 25, 505-513.
Evans J.J., Wiedenmayer A.A., Klesius P.H., Shoemaker C.A. (2004) Survival of Streptococcus agalactiae from frozen fish following natural and experimental infections. Aquaculture, 233, 15-21.
Evans J.J., Pasnik D.J., Klesius P.H., Al-Ablani S. (2006) First report of Streptococcus agalactiae and Lactococcus garvieae from a wild bottlenose dophin (Tursiops Truncatus). J Wildl Dis, 42, 561-569.
Evans J.J., Bohnsack J.F., Klesius P.H., Whiting A.A., Garcia J.C., Shoemaker C.A., Takahashi S. (2008) Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: a sophin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human neonatal infections in Japan. J Med Microbiol, 57, 1369-1376.
Evans J.J., Klesius P.H., Pasnik D.J., Bohnsack J.F. (2009a) Human Streptococcus
agalactiae isolate in Nile Tilapia (Oreochromis niloticus). Emerg Infect Dis, 15, 774-776.
Evans Hernandez., Figueroa J., Iregui C. (2009b) Streptococcosis on a red tilapia, Oreochromis sp., farm: a case study. J Fish Dis, 32, 247-252.
Ferrieri P, Baker C.J., Hillier S.L., Flores A.E. (2004) Diversity of surface protein expression in group B streptococcal colonizing and invasive isolates. Indian J Med Res, 119, 191-196.
Fettucciari K., Rosati E., Scaringi L., Cornacchione P., Migliorati G., Sabatini R., Fetriconi I., Rossi R., Marconi P. (2000) Group B Streptococcus induces apoptosis in macrophages. J Immunol, 165, 3923-3933.
Fettucciari K., Fetriconi I., Mannucci R., Nicoletti I., Bartoli A., Coaccioli S., Marconi P. (2006) Group B Streptococcus induces macrophage apoptosis by calpain activation. J Immunol, 176, 7542-7556.
Fischetti V.A. (1989) Streptococcal M protein: molecular design and biological behavior. Clin Microbiol Rev, 2, 285-314.
Fredriksen F., Raisanen S., Myklebust R., Stenfors L.E. (1996) Bacterial adherence to the surface and isolated cell epithelium of the palatine tonsils. Acta Otolaryngol, 116, 620-626.
Garcia J., Klesius P., Evans J., Shoemaker C.A. (2008) Non-infectivity of cattle Streptococcus agalactiae in Nile tilapia, Oreochromis niloticus and channel catfish, Ictalurus punctatus. Aquaculture, 281, 151-154.
Geissmann F., Manz M., Jung S., Sieweke M., Merad M., Ley K. (2010) Development of monocytes, macrophages, and dendritic cells. Science, 327, 656-661.
Haas C.J., Leeuwen E.M., Bommel T., Verhoef J., Kessel K.P., Strijp J.A. (2000) Serum amyloid P component bound to gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation. Infect Immun, 68, 1753-1759.
Hodgins H.O., Wendling F.L., Braaten B.A., Weiser R.S. (1973) Two molecular species of agglutinins in rainbow trout(Salmo gaideri)serum and their relation to antigenic exposure. Comp Biochem Physiol, 45, 975-977.
Imperi M., Pataracchia M., Alfarone G., Baldassarri L., Orefici G., Creti R. (2010) A multiplex PCR assay for the direct identification of the capsular type (Ia to IX) of Streptococcus agalactiae. J Microbiol Methods, 80, 212-214.
Inocente Filho C., Muller E.E., Pretto-Giordano L.G., Bracarense A.P.F.R.L (2009) Histological findings of experimental Streptococcus agalactiae infection in Nile tilapias (Oreochromis niloticus). Braz J Vet Pathol, 2, 12-15.
Jaso-Friedmann L., Ruiz J., Bishop GR., Evans DL. (2000) Regulation of innate immunity in tilapia: activation of nonspecific cytotoxic cells by cytokine-like factors.
Dev Comp Immunol, 24, 25-36.
Kang S.H., Shin G.W., Shin Y.S., J P.K., Kim Y.R., Yang H.H., Lee E.Y., Lee E.G., Huh N.E., Ju O.M., Jung T.S. (2004) Experimental evaluation of pathogenicity of Lactococcus garvieae in black rockfish (Sebastes schlegeli). J Vet Sci, 5, 387–390.
Keefe G.P. (1997) Streptococcus agalactiae mastitis: A review. Can Vet J, 38, 429-437.
Laing K.J., Zou J.J., Purcell M., Phillips R, Secombes C., Hansen J. (2006) Evolution of the CD4 Family: Teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-31. J Immunol, 177, 3939-3951.
Lancefield R.C. (1934) A Serological differentiation of specific types of bovine hemolytic Strpetococci (Group B). J Exp Med, 59, 441-458.
Lancefield R.C., McCarty M., Everly W.N. (1975) Multiple mouse-protective antibodies directed against group B streptococci. Special reference to antibodies effective against protein antigens. J Exp Med, 142, 165-179.
Li J., Kasper D.L., Ausubel F.M., Rosner B., Michel J.L. (1997) Inactivation of the α C protein antigen gene, bca, by a novel shuttle / suicide vector results in attenuation of virulence and immunity in group B Streptococcus. Proc Natl Acad Sci USA, 94, 13251-13256.
Limbago B., Penumalli V., Weinrick B., Scott J.R. (2000) Role of streptolysin O in a mouse model of invasive group A streptococcal disease. Infect Immun, 68, 6384-6390.
Locke J.B., Colvin K.M., Datta A.K., Patel S.K., Naidu N.N., Neely M.N., Nizet V., Buchanan J.T. (2007) Streptococcus iniae capsule impairs phagocytic clearance and contributes to virulence in fish. J Bacteriol, 189, 1279-1287.
Magarinos B., Romalde J.L., Barja J.L., Toranzo A.E. (1994) Evidence of a dormant but infective state of the fish pathogen Pasteurella piscicida in seawater and sediment. Appl Environ Microbiol, 60, 180-186.
Magnadottir B. (2006) Innate immunity of fish (overview). Fish Shelfish Immunol, 20, 137-151.
Mavenyengwa R.T., Maeland J.A., Moyo S.R. (2010) Serotype markers in a Streptococcus agalactiae strain collection from Zimbabwe. Indian J Med Microbiol, 28, 313-319.
Mian G.F., Godoy D.T., Leal C.A.G., Yuhara T.Y., Costa G.M., Figueiredo H.C.P. (2009) Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Vet Microbiol, 136, 180-183.
Miliotis M. (1991) Acridine orange stain for determining intracellular enteropathogens in HeLa cells. J Clin Microbiol, 29, 830-831.
Molinari G., Talay S.R., Valentin-Weigand P., Rohde M., Chhatwal G.S. (1997) The fibronectin-binding protein of Streptococcus pyogenes, SfbI, is involved in the internalization of group A streptococci by epithelial cells. Infect Immun, 65, 1357-1363.
Murray P.R., Rosenthal K.S., Kobayashi G.S., Pfaller M.A. (2005) Medical Microbiology 5 Edn, 291-296.
Musa N., Wei L.S., Musa N., Hamdan R.H., Leong L.K., Wee W., Amal M.N., Kutty B.M., Abdullah S.Z. (2009) Short communication: Streptococcosis in red hybrid tilapia (Oreochromis niloticus) commercial farms in Malaysia. Aquacult Res, 40, 630-632.
Nagelkerke L.A.J., Pannevis M.C., Houlihan D.F., Secombes C.J. (1990) Oxygen uptake of rainbow trout Oncorhynchus mykiss phagocytes following stimulation of the respiratory burst. J Exp Biol, 154, 339-353.
Nakanishi Y., Kodama H., Murai T., Milami T., Izawa H. (1991) Activation of rainbow trout complement by C-reactive protein. Am J Vet, 52, 397-401.
Nakanishi T., Fischer U., Dijkstra J.M., Hasegawa S., Somamoto T., Okamoto N., Ototake M. (2002) Cytotoxic T cell function in fish. Dev Comp Immunol, 26, 131-139.
Nithikulworawong N., Yakupitiyage A., Rakshit S., Srisapoome P. (2012) Molecular characterization and increased expression of the Nile tilapia, Orechromis niloticus (L.), T-cell receptor beta chain in the response to Streptococcus agalactiae infection. J Fish Dis, 35, 343-358.
Nizet V., Kim K.S., Stins M., Jonas M., Chi E.Y., Nguyen D., Rubens C.E. (1997) Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun, 65, 5074-5081.
Nizet V., Beall B., Bast D.J., Datta V., Kilburn L., Low D.E., Azavedo J.C. (2000) Genetic locus for streptolysin S production by group A streptococcus. Infect Immun, 68, 4245-4254.
Nizet V., Rubens C. (2000) Pathogenic mechanisms and virulence factors of group B Streptococci. Amer Soc Micro, 125-136.
Nonaka M., Iwaki M., Nakai C., Nozaki M., Kaidoh T., Natsuume-Sakai S., Takahashi M. (1984) Purification of a major serum protein of rainbow trout (Salmo gairdneri) homologous to the third component of mammalian complement. J Biol Chem, 259, 6327-6333.
Okamoto S., Kawabata S., Terao Y., Fujitaka H., Okuno Y., Hamada S. (2004) The Streptococcus pyogenes capsule is required for adhesion of bacteria to virus-infected alveolar epithelial cells and lethal bacterial-viral superinfection. Infect Immun, 72, 6068-6075.
Partula S., Guerra A., Fellah J.S., Charlemagne J. (1996) Structure and diversity of the TCR α-chain in a teleost fish. J Immunol, 157, 207-212.
Perez T., Balcazar J.L., Peix A., Valverde A., Velazquez E., de Blas I., Ruiz-Zaruela I. (2011) Lactococcus latis subsp. tructae subsp. Nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol, 61, 1894-1898.
Picchietti S., Guerra L., Buonocore F., Randelli E., Fausto A. M., Abelli L. (2009) Lymphocyte differentiation in sea bass thymus: CD4 and CD8-α gene expression studies. Fish Shellfish Immunol, 27, 50-56.
Plumb J.A., Schachte J.H., Gaines J.L., Peltier W., Carroll B. (1974) Streptococcus sp. from marine fishes along the Alabama and northeast Florida coast of the gulf of Mexico. Trans Am Fish Sco, 103, 358-361.
Poyart C., Tazi A., Reglier-Poupet H., Billoet A., Tavares N., Raymond J., Trieu-Cuot P. (2007) Multiplex PCR assay for rapid and accurate capsular typing of group B Streptococci. J Clin Microbiol, 45, 1985-1988.
Poyart C., Reglier-Poupet H., Tazi A., Billoet A., Dmytruk N., Bidet P., Bingen E.,
Pretto-Giordano L.G., Muller E.E., Freitas J.C., Silva V.G. (2010) Evaluation on the pathogenesis of Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). Braz Arch Biol Technol, 53, 87-92.
Rasheed V., Plumb J.A. (1984) Pathogenicity of a non-hemolytic group B Streptococcus sp. in gulf killifish(Fundulus grandis Baird and Girard). Aquaculture, 37, 97-105.
Rattanachaikunsopon P., Phumkhachorn P. (2009) Prophylactic effect of Andrographis paniculata extracts against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). J Biosci Bioeng, 107, 579-582.
Ray C., Ryan K.J. (2004) Sherris Medical Microbiology: An Introduction to Infectious Diseases, McGraw Hill, 237.
Raymond J., Trieu-Cuot P. (2008) Invasive Group B streptococcal infections in infants, France. Emerg Infect Dis, 14, 1647-1649.
Roach J.C., Levett P.N., Lavoie M.C. (2006) Identification of Streptococcus iniae by commercial bacterial identification systems. J Microbiol Methods, 67, 20-26.
Robertsen B. (1999) Modulation of the non-specific defence of fish by structurally conserved microbial polymers. Fish Shellfish Immunol, 9, 269-290.
Robinson J.A., Meyer F.P. (1966) Streptococcal fish pathogen. J Bacteriol, 92, 512.
Saurabh S., Sahoo P.K. (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquacult Res, 39, 223-239.
Secombes C.J., Fletcher T.C. (1992) The role of phagocytes in the protective mechanisms of fish. Annu Rev Fish Dis, 2, 53-71.
Sendi P., Johansson L., Dahesh S., Van Sorge N., Darenberg J., Norgren M., Sjolin J., Nizet V., Norrby-Teglund A. (2009) Bacterial phenotype variants in group B streptococcal toxic shock syndrome. Emerg Infect Dis, 15, 223-232.
Shaala A.Y., Dhaliwal H.S., Bishop S., Ling N.R. (1979) Ingestion of dyed-opsonised yeasts as a simple way of detecting phagocytes in lymphocyte preparations. Cytophilic binding of immunoglobulins by ingesting cells. J Immunol Methods, 27, 175-187.
Shimizu C, Shike H, Malicki D.M., Breisch E., Westerman M., Buchanan J., Ligman H.R., Phillips R.B., Carlberg J.M., Van O.J., Burns J.C. (2003) Characterization of a white bass (Morone chrysops) embryonic cell line with epithelial features. In Vitro Cell Dev Biol Anim, 39, 29-35.
Slotved H.C., Kong F., Lambertsen L., Sauer S., Gilbert G.L. (2007) Serotype IX, a proposed new Streptococcus agalactiae serotype. J Clin Microbiol, 45, 2929-2936.
Stafford J.L., Belosevic M. (2003) Transferrin and the innate immune response of fish: identification of a novel mechanism of macrophage activation. Dev Comp Immunol, 27, 539-554.
Stupak A., Kwasniewska A., Semczuk M., Zdzienicka G., Malm A. (2010) The colonization of women genital tract by Streptococcus agalactiae. Arch Perinat Med, 16, 48-50.
Suanyuk N., Kong F., Ko D., Gilbert G.L., Supamattaya K. (2008) Occurrence of rare genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus in Thailand-relationship to human isolates? Aquaculture, 284, 35-40.
Suzuki Y., Iida T. (1992) Fish granulocytes in the process of inflammation. Annu Rev Fish Dis, 149-160.
Tanabe S.I., Bonifait L., Fittipaldi N., Grignon L., Gottschalk M., Grenier D. (2008) Pleiotropic effects of polysaccharide capsule loss on selected biological properties of Streptococcus suis. Can J Vet Res, 74, 65-70.
Takeuchi H., Figueroa F., O'hUigin C., Klein J. (1995) Cloning and characterization of class I Mhc genes of the zebrafish, Brachydanio rerio. Immunogenetics, 42, 77-84.
Todd E.W., Hewitt L.F. (1932) A new culture medium for the production of antigenic streptococcal hamolysin. J Path Bact, 35, 973-974.
Vandamme P., Devriese L.A., Pot B., Kersters K., Melin P.(1997) Streptococcus difficile is a nonhemolytic group B, type Ib streptococcus. Int J Syst Bacteriol, 47, 81-85.
Vallejo A.N., Miller N.W., Jorgensen T., Clem L.W. (1990) Phylogeny of immune recognition: antigen processing/presentation in channel catfish immune responses to hemocyanins. Cell Immunol, 130, 364-377.
Wessels M.R., Moses A.E., Goldberg J.B., Dicesare T.J. (1991) Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc Natl Acad Sci USA, 88, 8317-8321.
Wessels M.R., Rubens C.E., Benedi V.J., Kasper D.L. (1989) Definition of a bacterial virulence factor: sialylation of the group B streptococcal capsule. Proc Natl Acad Sci USA, 86, 8983-8987.
Wilkinson H.W., Thacker L.G., Facklam R.R. (1973) Nonhemolytic Group B Streptococci of Human, Bovine, and Ichthyic Origin. Infect Immun, 7, 496-498.
Winkelhake J.L., Vodicnik M.J., Taylor J.L.(1983)Induction in rainbow trout of an acute phase (C-reactive) protein by chemicals of environmental concern. Comp Biochem Physiol, 74, 55-58.
Woltjes J., Graaff J. (1983) Virulence of beta-hemolytic and non-hemolytic Streptococcus mutans: lethal dose determinations in neonatal mice. Antonie Van Leeuwenhoek, 49, 353-360.
Xing S., Waddell J.E., Boynton E.L. (2002) Changes in macrophage morphology and prolonged cell viability following exposure to polyethylene particulate in vitro. Microsc Res Tech, 57, 523-529.
Ye X, Li J., Lu M., Deng G., Jiang X., Tian Y., Quan Y., Jian Q. (2011) Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China Fish Sci, 77, 623-632.
Yoshida T., Yamada Y., Sakai M. (1996) Association of the cell capsule with anti-opsonophagocytosis in β-hemolytic Streptococcus spp. isolated from rainbow trout. J Aquat Anim Health, 8, 223-228.
Zappulli V., Mazzariol S., Cavicchiolo L., Petterino C., Bargelloni L., Castagnaro M. (2005) Fatal necrotizing fasciitis and myositis in a captive common bottlenose dophin (Tursiops truncates) associated with Streptococcus agalactiae. J Vet Diagn Invest, 17, 617-622.
Zamri-Saad M., Amal M.M.A., Siti-Zahrah A. (2010) Pathological changes in red tilapia (Oreochromis spp.) naturally infected by Streptococcus agalactiae. J Comp Path, 143, 227-229.
Zlotkin A., Chilmonczyk S., Eyngor M., Hurvitz A., Ghittino C., Eldar A. (2003) Trojan horse effect: phagocyte-mediated Streptococcus iniae infection of fish. Infect Immun, 71, 2318-2325.
Zou J., Secombes C.J. (2011) Teleost fish interferons and their role in immunity. Dev Comp Immunol, 35, 1376-1387.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64380-
dc.description.abstract本實驗室於2010年接獲尼羅紅魚(Oreochromis sp.)的病例,魚隻臨床症狀為死前迴游等神經症狀及體表出血情形,臟器未見明顯異常,從血液及臟器分離到鏈球菌,經indian ink染色證實具有莢膜,16S rDNA gene鑑定為無乳鏈球菌Streptococcus agalactiae。但同時在其他吳郭魚神經症狀及體表出血的病例中,我們亦分離到無莢膜的S. agalactiae,故本研究將比較有莢膜及無莢膜的S. agalactiae在吳郭魚(O. niloticus, tilapia)的病原性,包括二者之生存條件、貼附及侵入吳郭魚細胞的能力、半致死劑量、宿主免疫清除力上的差異,並鑑定S. agalactiae莢膜血清型。
本實驗收集台灣各地由尼羅紅魚、吳郭魚、數種鱸魚等魚種來源之S. agalactiae分離株,以S. agalactiae莢膜抗血清Ia及Ib進行血清型鑑定,結果顯示收集到的37株S. agalactiae莢膜血清型多為type Ia及Ib。Ia共24株,皆為無莢膜、β溶血性;Ib共13株,有莢膜佔5株,為γ溶血,無莢膜8株,為β溶血性。魚種方面,在吳郭魚、尼羅紅魚、鱸魚、烏魚皆可分離到Ia及Ib型,顯示無感染魚種差異。
由收集到的分離株中,挑選一株有莢膜株990906及無莢膜株990823進行實驗,進行生存條件包括培養基(BHIA、TSA、THA)、鹽度(0.1%~10%)、pH值(4.5~12)、溫度(28℃、32℃、35℃、37℃、40℃、43℃)及比較兩株菌於最適合溫度(25℃、28℃)下的生長曲線,結果顯示兩株菌可生長於常見三種培養基; 990823的最適鹽度在3.5%,高於990906的範圍(0.1~1%),而其最適pH值在7~8.5,一樣高於990906的範圍(6~8);最高耐受溫度以990823較高可耐到40℃,990906僅可耐高溫到35℃;最適生長溫度(25℃、28℃)下的生長曲線以990823生長速率較快且OD值較高。
兩株菌在貼附及侵入吳郭魚細胞(卵巢細胞株及腦細胞)的能力部分,在未經攻毒回魚體,毒力回復前,以無莢膜株990823對吳郭魚卵巢細胞株及吳郭魚腦細胞有較明顯的貼附及侵入能力,有莢膜株990906未見侵入吳郭魚卵巢細胞;而毒力回復後,有莢膜株990906對吳郭魚腦細胞的貼附、侵入能力有明顯提升;半致死劑量部分,兩株菌於高濃度(6 × 107、107、6 × 106 cfu/mL)組攻毒魚隻皆於攻毒前3天達到50%以上的死亡率,攻毒有莢膜株990906的高濃度組於48小時後開始有魚隻大量死亡,無莢膜株於攻毒後72小時有魚隻大量死亡,計算結果兩株菌濃度相似,無莢膜株990823稍高於990906;吞噬能力部分,有莢膜株990906對吳郭魚吞噬細胞(周邊血液單核細胞、頭腎巨噬細胞)有較強的抗吞噬能力,與吞噬細胞作用後能於細胞內存活較長時間,而巨噬細胞吞噬了有莢膜株990906後於觀察時間內存活的細胞數比吞了無莢膜株990823後存活的細胞數來得少。
zh_TW
dc.description.abstractIn 2010, capsulated Streptococcus agalactiae have been isolated from Red Tilapia’s(Oreochromis sp.)blood, which presented erratic swimming and hemorrhage in skin and fins. Other non-capsulated S. agalactiae have been isolated from other Nile Tilapia(O. niloticus)cases. The goal was to compare the difference between capsulated and non capsulated S. agalactiae in pathogenecity such as adhesion and invasion ability to tilapia cells, anti-phagocytosis ability to tilapia’s macrophages, median lethal dose(LD50).
37 strains of S. agalactiae have been isolated from Red tilapia, Nile tilapia and many species of bass. We identified the capsular polysaccharide serotype about all isolates and their were 24 isolates belonged to type Ia, all of them were non capsulated and β-hemolytic. Other 13 isolates belonged to type Ib including capsulated, γ-hemolytic isolates (5 isolates)and non capsulated, β-hemolytic isolates(8 isolates). They were no significant difference in host species.
Two isolates grew on BHIA, TSA and THA plate. 990823’s optimal salinity was 3.5%, higher than 990906 (0.1~1%). 990823’s optimal pH was 7~8.5, also higher than 990906 (pH 6~8). The tolerance temperature of non capsulated isolate 990823 was 40℃, higher than capsulated isolate 990906 (35℃). In addition, the growth curve of 990823 grew faster than 990906.
In adhesion and invasion test, non capsulated isolate 990823 had higher ability to adhere and invade to tilapia ovary cell line (TO) and tilapia brain cell (TB) than capsulated isolate 990906. After virulence evolution, the invasion of capsulated isolate 990906 to TB was higher than non capsulated isolate 990823.
In LD50, the results of three high concentration(6 × 107、107、6 × 106 cfu/mL)groups showed that fish death started at 48hr post-injection(p.i), and 72hr p.i in 990823. However, cumulative mortality of fish was higher in non capsulated isolated 990823.
In phagocytosis assay, capsulated isolate 990906 had higher ability to suppress phagocytosis and survival rate both in peripheral blood mononuclear cell (PBMC)and head kidney macrophage(HKM).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:43:54Z (GMT). No. of bitstreams: 1
ntu-101-R99629017-1.pdf: 1566390 bytes, checksum: ef91a7d9e253112911fc03e687823c54 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝………………………………………………………………………………….....i
中文摘要……………………………………………………………………………....ii
Abstract……………………………………………………………………………….iv
目錄…………………………………………………………………………………...vi
圖目錄………………………………………………………………………………...xi
表目錄………………………………………………………………………………..xv
第一章 序言…………………………………………………………………………..1
第二章 文獻回顧……………………………………………………………………..3
2.1 鏈球菌病……..……………………………………………………………..3
2.1.1常見的魚類鏈球菌…………………………………………………….3
2.1.2 台灣鏈球菌分佈概況及感染魚種……………………………...…….3
2.1.3無乳鏈球菌感染宿主………………………………………………….4
2.1.4 魚隻感染無乳鏈球菌的臨床症狀、剖檢及組織病變..…………….4
2.1.5 無乳鏈球菌與人畜共通疾病的關係…………………………..…….5
2.1.6 鏈球菌生理生化特性分析………………………………………..….5
2.1.7 溶血型態………………………………………………………….......6
2.1.8 毒力因子……………………………………………………………...6
2.2 莢膜的介紹…………………………………..……………………………..7
2.2.1莢膜的成分………………………………………………………….....7
2.2.2莢膜血清分型方法及第十型莢膜血清型………………………….....8
2.2.3莢膜的型態………………………………………………………….....9
2.2.4莢膜的特性…………………………………………………………...10
2.2.5不溶血型無乳鏈球菌…………………………………………….......10
2.2.6無乳鏈球菌在人類及魚類常見的分型……………………………...11
2.3魚類的免疫學………………………………………………………………12
2.3.1非特異性免疫反應…………………………..………….…………....12
2.3.2特異性免疫反應……………………………..………………….…....14
2.3.3細菌入侵宿主後的免疫反應………………………………………...14
2.4莢膜與免疫反應……………………………………………………………15
2.5巨噬細胞吞噬鏈球菌後產生的反應………………………………………17
第三章 材料與方法…………………………………………………………………18
3.1實驗設計……………………………………………………………………18
3.2實驗流程……………………………………………………………………19
3.3水產動物來源鏈球菌株收集與菌株鑑定…………………………………20
3.3.1 溶血型判定………………………….……………………………....20
3.3.2 革蘭氏染色(Gram stain)………………………………….……...20
3.3.3 觸媒試驗及氧化酶試驗…………………………………………….21
3.3.4 聚合酶鏈鎖反應(Polymerase chain reaction, PCR)……………...21
3.4判別莢膜是否表現………………………………………...…………..…..24
3.5莢膜血清型分類………………………………………………...…………24
3.6實驗室培養條件…………………………………………………...………25
3.6.1 不同生長環境測試……………………………….….……………...25
3.6.1.1不同培養液及溫度…………………………………………….26
3.6.1.2細菌數定量-稀釋平板培養法……………………………….26
3.6.1.3不同鹽度及pH值………………………………………………27
3.6.2 生長曲線…………………………………….…………….………...28
3.6.2.1 990906 (莢膜)株生長曲線…………………………………….28
3.6.2.2比較莢膜不表現型990823株生長曲線………………………29
3.6.2.3做為補充之4株分離株……………………………………….29
3.7貼附及侵入能力分析………………………………...……………………29
3.7.1 貼附試驗…………………………………………………….……....29
3.7.2 侵入試驗……………………………………………….…………....31
3.8半數致死劑量測定(median lethal dose, LD50)………………………...31
3.8.1 鏈球菌毒力提升試驗………………………………………..……...31
3.8.2 鏈球菌半數致死劑量(LD50)……………………….…….……..32
3.9抗吞噬能力分析……………………………………...……………………33
3.9.1 分離吳郭魚周邊血液白血球細胞……………………………….....33
3.9.2 分離吳郭魚頭腎巨噬細胞……………………….……….………...34
3.9.3抗吞噬能力分析……………………………………………..……....35
3.9.4細胞內存活測試……………………………………………..……....36
3.9.4.1-細胞內存活測試(補充之4株)..........................................37
3.9.5細胞存活量…………………………………………………...……...38
3.9.5.1-細胞存活量與細胞內存活細菌數(補充之4株)..............39
第四章 實驗結果……………………………………………………………………40
4.1水產動物練球菌株收集與菌株鑑定………………………………………40
4.1.1溶血型判定…………………………………………………………...40
4.1.2革蘭氏染色、觸媒試驗及氧化酶試驗……………………..……….40
4.1.3聚合酶鏈鎖反應及定序結果………………………………………..40
4.2莢膜表現……………………………………………………………………40
4.2.1 Indian ink染色…………………………..………….…………….….40
4.2.2 Lancefield test………………………………………………………..41
4.3生長環境與生長曲線………………………………………………………41
4.3.1 不同培養基及溫度………………………….……………….……...41
4.3.2 不同鹽度及pH值…………………………………..……….………41
4.3.3 生長曲線……………………………………………….…….……...42
4.3.3.1生長曲線-補充4株…………………..……….……………..43
4.4貼附及侵入能力分析………………………………………………………43
4.4.1 貼附能力分析…………………………………………..…………....43
4.4.2 侵入能力分析…………………………………………………….....44
4.4.3 90906(莢膜株)及990823(無莢膜株)毒力提升後於吳郭魚卵巢細胞及吳郭魚腦細胞之貼附、侵入能力分析…………………….……45
4.4.3.1毒力提升後的貼附能力分析………………………………….45
4.4.3.2毒力提升後的侵入能力分析………………………………….46
4.4.3.3 兩株菌魚毒力提升前後比較…………………………………46
4.5半數致死劑量測定……………………………………………...…………47
4.5.1 毒力提升試驗……………………………………….……………....47
4.5.2 半數致死劑量測定(median lethal dose, LD50)……………….…....49
4.6 抗吞噬能力分析………………………………..…………………………49
4.6.1 990906株及990823株與細胞作用之抗吞噬能力…………………49
4.6.2 990906株及990823株於細胞內存活試驗…………………………51
4.6.3吳郭魚(Oreochromis niloticus)頭腎巨噬細胞(HKM)吞噬990906 (莢膜)株及990823(無莢膜)株後細胞存活數量試驗及細胞內存活細菌數…………………………………………………………………...53
4.6.4補充4株:吳郭魚(Oreochromis niloticus)頭腎巨噬細胞(HKM)吞噬T2G、CY0815-3 (莢膜) 株及CY0809-10、CY0809-11 (無莢膜)株後細胞存活數量試驗及細胞內存活細菌數…………………………………………………………….……....54
第五章 討論…………………………………………………………………………56
5.1 水產動物來源鏈球菌株收集與菌株鑑定………………………..………56
5.2 生長環境及生長曲線……………………………………………..………57
5.3 貼附及侵入能力分析……………………………………………..………59
5.4 半數致死劑量測定……………………………………..…………………60
5.5 抗吞噬能力分析……………………………………………..……………62參考文獻………………………………………………………………...………...…64
dc.language.isozh-TW
dc.subject無乳鏈球菌zh_TW
dc.subject莢膜zh_TW
dc.subject生長曲線zh_TW
dc.subject貼附及侵入能力zh_TW
dc.subject吞噬能力zh_TW
dc.subjectphagocytosisen
dc.subjectStreptococcus agalactiaeen
dc.subjectcapsuleen
dc.subjectgrowth curveen
dc.subjectadhesion and invasion testen
dc.title比較吳郭魚來源分離之莢膜型及不含莢膜型無乳鏈球菌之病原性zh_TW
dc.titleThe Comparison about pathogenicity between capsulated and non capsulated Streptococcus agalactiae isolated from tilapia (Oreochromis niloticus).en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee潘銘正(Ming-Jeng Pan),李國誥(Kuo-Kau Lee),張本恆(Pen-Heng Chang)
dc.subject.keyword無乳鏈球菌,莢膜,生長曲線,貼附及侵入能力,吞噬能力,zh_TW
dc.subject.keywordStreptococcus agalactiae,capsule,growth curve,adhesion and invasion test,phagocytosis,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2012-08-14
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved