請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64367完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 石明豐(Ming-Feng Shih) | |
| dc.contributor.author | Po-Yu Chen | en |
| dc.contributor.author | 陳柏宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:43:09Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-14 | |
| dc.identifier.citation | [1] Y. Lamhot, A. Barak, O. Peleg, M. Segev, Phys. Rev. Lett. 105, 163906 (2010).
[2] M. Matuszewski, W. Krolikowski, and S. Kivshar, Opt. Express, vol. 16, 2, 1371 (2008). [3] G. Stegeman and M. Segev, Special Issue on Frontiers in Optics, Science 286, 1518 (1999). [4] Bahaa E.A. Saleh and Marvin Carl Teich, Fundamental of Photonics, (New York: John Wiley & Sons, 1991), sec 17.2. [5] Bahaa E.A. Saleh and Marvin Carl Teich, Fundamental of Photonics, (New York: John Wiley & Sons, 1991), sec 18.1. [6] M. Segev, M. Shih, and G. C. Vallry, J. Opt. Soc. Am. B 13, 706 (1996). [7] M. Shih, C. Jeng, Phys. Rev. Lett. 88, 133902 (2002). [8] K. J. Andrew, J. Phys. D: Appl. Phys. 32(14):R57 (1999). [9] G. H. Weissand A.A. Maradudin, J. Math. Phys. 3, 771 (1962). [10] T. R. Taha and M.J. Ablowitz, J.Comput. Phys. 55, 203 (1984). [11] J. V. Roey, J. van der Donk, and P. E. Lagasse, J. Opt. Soc. Am. 71, 803 (1981). [12] L. Thylén. Opt. Quant. Electron 15, 5, 433 (1983). [13] 王彬維, Observation of One-Dimensional solitons in a non-rest frame,碩士學位論文, 國立台灣大學物理系, (2012). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64367 | - |
| dc.description.abstract | 這篇論文主要探討空間光孤子(optical spatial solitons)是否能在非靜止坐標系中產生。我們先在非即時反應的非線性晶體中(SBN61晶體)中形成一維光孤子,然後再等速橫向移動晶體,藉此觀察一維光孤子在非靜止坐標系中的行為。
第一章我們先回顧光折變屏蔽光孤子(photorefractive screen solitons)和飽和型光折變非線性(photorefractive saturable nonlinearity)的背景知識;第二章我們推導論文中需要解的非線性薛丁格方程式(nonlinear Schrödinger equation)並且介紹數值解用到的傅立葉分段法(nonlinear Schrödinger equation);第三章我們分析數值模擬的結果,並和實驗比較。我們發現一維光孤子可以在非靜止坐標系中產生,並且孤子在晶體中傳播的軌跡是拋物線。另外,光孤子的穩定性和系統的鬆弛時間(relaxation time)以及晶體的橫向移動速率有關。 | zh_TW |
| dc.description.abstract | In this thesis, we attempt to analyze whether spatial solitons can be formed in a non-rest frame. In our simulation, we first form a photorefractive screen soliton in a non-instantaneously nonlinear medium (SBN61 crystal) then shift the medium laterally and observe the dynamics of solitons in this non-rest frame.
In Chapter 1, we review the concept of optical spatial solitons and the photorefractive saturable nonlinearity. In Chapter 2, the derivation of the nonlinear Schrödinger equation and nonlinear Schrödinger equation are introduced. In Chapter 3, we show the simulation results and the comparison to the experiment. We find that solitons can be formed in the non-rest frame and the trajectories are parabolic. The stability of solitons depends on both the relaxation time and laterally shifting speed of the medium. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:43:09Z (GMT). No. of bitstreams: 1 ntu-101-R99222047-1.pdf: 1167076 bytes, checksum: 35004b699acf9418a4a79364f8c0d299 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Contents iii LIST OF FIGURES iv Chapter 1 Introduction 1 1.1 Motivations 1 1.2 Optical Spatial Solitons 2 1.3 Saturable Nonlinearity 4 1.3.1 Electro-Optic Effect 4 1.3.2 Photorefractive Effect 5 1.3.3 Photorefractive Saturable Nonlinearity 6 Chapter 2 Simulation Methods 8 2.1 Nonlinear Schrodinger Equation and Non-instantaneous Media 8 2.2 The Split-Fourier Method 10 2.3 Calculating the Nonlinearity of the Lateral Shifting Non-instantaneous Media 13 Chapter 3 Simulation Results 14 3.1 Simulation Results and Comparison to The Experiment 14 3.2 The Trajectories of Solitons 21 3.3 Explanations of Simulation Results 25 Chapter 4 Summary and Future Work 28 REFERENCE 30 LIST OF FIGURES Fig. 3-1 Lateral displacement of the solition versus time at l = 10 mm with crystal speed of v = 0.5 µm/s 15 Fig. 3-2 Intensity profiles of the solitons after 10mm propagation with v = 0.5 µm/s at (a) t = 0 s, (b) t = 6 s, (c) t = 8 s, (d) t = 12 s, (e) t =18 s, (f) t = 24 s, (g) t = 32 s, (h) t = 44 s. 16 Fig. 3-3 The simulation and experimental results of the displacement of soliton at the output face of the crystal (10 mm of propagation) versus lateral shifting speed. 17 Fig. 3-4 Linear fit of simulation and experimental results with v = 0.1 μm/s ~ 0.7 μm/s. 17 Fig 3-5 Intensity profiles of output beam at different time with v = 2µm/sec. The soliton splits at (d) t = 12 s and converges at (g) t = 18 s then moves slowly to the right and finally remain still at (h) t = 50 s. 19 Fig. 3-6 [13] Intensity profiles of the soliton at the output face of the crystal (v = 1.5μm/s) at different time: (a) the crystal is at rest; (b) 16 s after the crystal begins to shift laterally, the soliton still keeps its shape but move laterally; (c) and (d), at 26 to 29 s, the soliton begin to diverges; (e) at 35 s, the soliton converges again. (f) and (g) at 47 to 57 s, the soliton diverges. (h) it converges. The convergence and divergence of the soliton repeat irregularly after 16s. 20 Fig. 3-7 The intensity profiles of the beam propagates 10 mm in the crystal at (a) v = 17 µm/s and (b) at v = 0 µm/s but with no nonlinearity. 21 Fig. 3-8 Topview trajectories of the beams (left) and intensity profiles after the beam propagates 10 mm (right) with 흉 = 4 s and with (a) v = 0.1 µm/s, (b) v = 0.5 µm/s, (c) v = 0.9 µm/s, (d) v = 1.3 µm/s. 22 Fig. 3-9 FWHMs of solitons vary with propagation length at steady state. 23 Fig. 3-10 Topview of the beam in the crystal with v = 0.5 μm/s, 훕 = 1s, when (a) t = 1 s, (b) t = 3 s, (c) t = 5 s, (d) t = 15 s, (e) t = 25 s, (f) t = 35 s, (g) t = 45 s and (h) t = 60 s. 24 Fig. 3-11 Top-view trajectories of the beams and waveguides with v = 0.1 µm/s, 훕 = 1 s, at (a) t =12 s, (b) t = 60 s; with (c) v = 1.7 µm/s, 훕 = 4 s, l = 1 mm, at t = 56 s. 25 Fig. 3-12 Solions propagate 10 mm without breakup under the maximum speed of crystal versus relaxation time. 27 | |
| dc.language.iso | en | |
| dc.subject | 光孤子在非靜止坐標系 | zh_TW |
| dc.subject | 光折變屏蔽光孤子 | zh_TW |
| dc.subject | 非即時反應非線性材料 | zh_TW |
| dc.subject | SBN61晶體 | zh_TW |
| dc.subject | 鬆弛時間 | zh_TW |
| dc.subject | relaxation time | en |
| dc.subject | solitons in non-rest frame | en |
| dc.subject | photorefractive screen solitons | en |
| dc.subject | non-instantaneously nonlinear medium | en |
| dc.subject | SBN61 crystal | en |
| dc.title | 一維光孤子在非靜止座標系中的模擬分析 | zh_TW |
| dc.title | Simulation of One-Dimensional Optical Solitons
in a Non-rest Frame | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊鴻昌(Hong-Chang Yang),朱士維(Shi-Wei Chu) | |
| dc.subject.keyword | 光孤子在非靜止坐標系,光折變屏蔽光孤子,非即時反應非線性材料,SBN61晶體,鬆弛時間, | zh_TW |
| dc.subject.keyword | solitons in non-rest frame,photorefractive screen solitons,non-instantaneously nonlinear medium,SBN61 crystal,relaxation time, | en |
| dc.relation.page | 30 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
