Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64360Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 方煒 | |
| dc.contributor.author | Jia-Hao Liang | en |
| dc.contributor.author | 梁家豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:42:46Z | - |
| dc.date.available | 2025-03-02 | |
| dc.date.copyright | 2020-03-02 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-27 | |
| dc.identifier.citation | 方煒。1993。發展本土化精密溫室與植物工廠之可行性分析。國科會計畫編號:NSC 82-0409-B-002-028。
方煒。2011a。自動化植物工廠。設施栽培自動化專輯。103-111 方煒 (譯)。2011b。完全控制型植物工廠 (原作者:高辻正基)。初版。臺北:財團法人豐年社。(原著出版年:2007) 方煒。2012a。台灣植物工廠發展現況與展望。出自〝精密設施工程與植物工場實用化技術研討會專輯〞。台南:行政院農業委員會台南區農改場。 方煒 (譯)。2012b。人工光型植物工廠 (原作者:古在豐樹)。初版。臺北:財團法人豐年社。(原著出版年:2012) 李西娟、漆萍、謝春擇。2006。南美蟛蜞菊的繁殖研究。韶關學院學報-自然科學,27(9): 99-101。 查岱龍。2015。攝護腺癌荷爾蒙治療之現況與未來趨勢。台灣癌症防治網。2016年10月1日,取自:http://web.tccf.org.tw/lib/addon.php?act=post&id=3801 康世緯。2015。植物工廠萵苣量產整合模型與決策支援。國立臺灣大學生物產業機電工程學系博士論文。 游舒淇。2016。虹吸式潮汐淹灌系統應用於植物工廠內萵苣與芝麻菜栽培之研究。國立臺灣大學生物產業機電工程學系碩士論文。 楊其長、魏靈玲、劉文科、程瑞鋒。2012。植物工廠系統與實踐。初版。北京:化學工業出版社。 鄭朝駿。2007。台灣市售中藥及青草藥有機氯農藥殘留之調查研究。中國醫藥大學中國藥學研究所碩士論文。 鍾興穎、張明毅、鄔家琪、方煒。2010。光質與照光健化時間對蘿蔔嬰抗氧化力影響。生機論文發表會。 鍾興穎、張明毅、鄔家琪、方煒。2012。不同光質對紅橡萵苣生長與品質之影響。生機論文發表會。 簡君良。2011。植物工廠環境與養液灌溉監控物聯網之建置。國立臺灣大學生物產業機電工程學系碩士論文。 蕭培文。2010。轉錄調控物組合物。專利編號I324521。台北市:經濟部智慧財產局。 Akula, R., and Ravishankar, G. A. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6(11): 1720-1731. Albright, L. D., Both, A.J., and Chiu, A. J. 2000. Controlling greenhouse light to a consistent daily integral. Transactions of the ASAE 43(2): 421-431 Ballot, C., Kluza, J., Martoriati, A., Nyman, U., Formstecher, P., Joseph, B., Bailly, C., and Marchetti, P. 2009. Essential role of mitochondria in apoptosis of cancer cells induced by the marine alkaloid Lamellarin D. Mol Cancer Ther 8(12): 3307-3317. Brechner, M., and Both, A.-J. 2013. Cornell Controlled Environment Agriculture Hydroponic Lettuce Handbook. Ithaca, NY: Cornell University. Céspedes, C. L., Alarcon, J., Valdez-Morales, M., Paredes-López, O. 2009. Antioxidant activity of an unusual 3-hydroxyindole derivative isolated from fruits of Aristotelia chilensis (Molina) Stuntz. Z Naturforsch C 64(9-10): 759-762. Chen, X.-L., Guo, W.-Z., Xue, X.-Z., Wang, L.-C., and Qiao, X.-J. 2014. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulture 172: 168-175. Dou, H., Niu, G., Gu, M., and Masabni, J. G. 2017. Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae 3: 36. Gharibi, S., Sayed Tabatabaei, B. E., Saeidi, G., Talebi, M., and Matkowski, A. 2019. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry 162: 90-98. Hasan, M. M., Bashir, T., Ghosh, R., Lee, S. K., and Bae, H. 2017. An overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules 22: 1420. Janas, K. M., Cvikrová, M., Pałagiewicz, A., Szafranska, K., and Posmyk, M. M. 2002. Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Sci. 163: 369–373. Johkan, M., Shoji, K., Goto, F., Hahida, S., and Yoshihara, T. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Expt. Botany 75: 128-133. Kempken, F., Jung, C. 2010. Genetic Modification of Plants. Berlin: Springer. Kim, H.-H., Wheeler, R., Sager, J., and Goins, G. 2004. A comparison of growth and photosynthetic characteristics of lettuce grown under red and blue light-emitting diodes (LEDs) with and without supplemental green LEDs. Acta Hortic. 659: 467-475. Kirakosyan, A., Kaufman, P., Warber, S., Zick, S., Aaronson, K., Bolling, S., and Chul Chang, S. 2004. Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiol. Plant. 121: 182–186. Kliewer, W. M. 1977. Influence of temperature, solar radiation and nitrogen on coloration and composition of emperor grapes. Am. J. Enol. Vitic. 28(2): 96-103. Koul, S., Pandurangan, A., and Khosa, R. L. 2012. Wedelia chinensis (Asteraceae) – An overview. Asian Pacific Journal of Tropical Biomedicine: S1169-S1175. Kozai, T., Ohyama, K. and Chun., C. 2005. Commercialized closed systems with artificial lighting for plant production. In “V International Symposium on Artificial Lighting in Horticulture 711”. 61-70. Lee, S., Lee, J. 2015. Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Scientia Horticulturae 195: 206-215. Lee, W.-J., Chen, W.-K., Wang, C.-J., Lin, W.-L., and Tseng, T.-H. 2008. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 226(2): 178-191. Liabakk, N.-B., Talbot, I., Smith, R. A., Wilkinson, K., and Balkwill, F. 1996. Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res 56(1): 190-196. Lily, M. P. 1980. Medicinal plants of east and southeast Asia. The Massachusetts Institute of Technology, U.S.A. Lin, F.-M., Chen, L.-R., Lin, E.-H., Ke, F.-C., Chen, H.-Y., Tsai, M.-J., and Hsiao, P.-W. 2007. Compounds from Wedelia chinensis synergistically suppress androgen activity and growth in prostate cancer cells. Carcinogenesis 28 (12): 2521-2529. Lin, S.-C., Lin, C.-C., Lin, Y.-H., and Shyuu, S.-J. 1994. Hepatoprotective effects of Taiwan folk medicine: Wedelia chinensis on three hepatotoxin-induced hepatotoxicity. Am. J. Chin. Med. 22: 155–168. Lin, T.-J., Yin, S.-Y., Hsiao, P.-W., Yang, N.-S., and Wang, I.-J. 2018. Transcriptomic analysis reveals a controlling mechanism for NLOP3 and IL-17A in dextran sulfate sodium (DSS)-induced colitis. Scientific Reports 8: 14927. Luckner, M. 1990. Secondary Metabolism in Microorganisms, Plants and Animals. 3 ed., p. 12. Springer-Verlag Berlin Heidelberg, Berlin, Germany. Martz, F., Peltola, R., Fontanay, S., Duval, R. E., Julkunen-Tiitto, R., and Stark, S. 2009. Effect of latitude and altitude on the terpenoid and soluble phenolic composition of Juniper (Juniperus communis) Needles and Evaluation of Their Antibacterial Activity in the Boreal Zone. J Agric Food Chem. 57(20): 9575-9584. Mukhopadhyay, G., Kundu, S., Sarkar, A., Sarkar, P., Sengupta, R., and Kumar, C. 2018. A review on physicochemical & pharmacological activity of Eclipta alba. The Pharma Innovation Journal 7(9): 78-83. Nomani, I., Mazumder, A., and Chakraborthy, G. S. 2013. Wedelia chinensis (Asteraceae)- an overview of a potent medicinal herb. Int. J. PharmTech Res. 5(3): 957-964. Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J. A., Stanghellini, C., Marcelis, L. F. M., Orsini, F., and Gianquinto, G. 2019. Unraveling the role of red:blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Front. Plant Sci. 10: 305. Rahman, S., Akbor, M. M., Howlader, A., and Jabbar, A. 2009. Antimicrobial and cytotoxic activity of the alkaloids of Amlaki (Emblica officinalis). Pak J Biol Sci. 12(16): 1152-1155. Regvar, M., Bukovnik, U., Likar, M., and Kreft, I. 2012. UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Open Life Sci. 7: 275–283. Sakalauskaitė, J., Viškelis, P., Duchovskis, P., Dambrauskienė, E., Sakalauskienė, S., Samuolienė, G., and Brazaitytė, A. 2012. Supplementary UV-B irradiation effects on basil (Ocimum basilicum L.) growth and phytochemical properties. J. Food Agric. Environ., 10: 324-346. Sarikurkcu, C., Tepe, B., Daferera, D., Polissiou, M., and Harmandar, M. 2008. Studies on the antioxidant activity of the essential oil and methanol extract of Marrubium globosum subsp. globosum (lamiaceae) by three different chemical assays. Bioresour Technol. 99(10): 4239-4246. Seigler, D. S. 1977. Primary roles for secondary compounds. Biochemical Systematics and Ecology. 5: 195-199. Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., and Zheng, B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 24(13): 2452. Shilpa, K., Varun, K., and Lakshmi, B. S. 2010. An alternate method of natural drug production: eliciting secondary metabolite production using plant cell culture. Journal of Plant Sciences. 5: 222-247. Singh, B., Saxena, A. K., Chandan, B. K., Agarwal, S. G., Anand, K. K. 2001.In vivo hepatoprotective activity of active fraction from ethanolic extract of Eclipta alba leaves. Indian J Physiol Pharmacol. 45: 435–441. Stewart, A. J., Chapman, W., Jenkins, G. I., Graham, I., Martin, T., and Crozier, A. 2001. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ. 24, 1189–1197. Taiz, L., and Zeiger, E. 2010. Plant Physiology. 5th ed. Massachusetts: Sinauer Associates. Tsai, C.-H., Tzeng, S.-F., Hsieh, S.-C., Lin, C.-Y., Tsai, C.-J., Chen, Y.-R., Yang, Y.-C., Chou, Y.-W., Lee, M.-T., and Hsiao, P.-W. 2015. Development of a standardized and effect-optimized herbal extract of Wedelia chinensis for prostate cancer. Phytomedicine 22: 406-414. Yamai, H., Sawada, N., Yoshida, T., Seike, J., Takizawa, H., Kenzaki, K., Miyoshi, T., Kondo, K., Bando, Y., Ohnishi, Y., and Tangoku, A. 2009. Triterpenes augment the inhibitory effects of anticancer drugs on growth of human esophageal carcinoma cells in vitro and suppress experimental metastasis in vivo. Int J Cancer. 125(4): 952-960. Yang, Y., Wen, K.-S., Ruan, X., Zhao, Y.-X., Wei, F., and Wang, Q. 2018. Response of plant secondary metabolites to environmental factors. Molecules 23: 762 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64360 | - |
| dc.description.abstract | 黃花蜜菜 (Wedelia chinensis) 含有三種酚類二次代謝物可以發揮協同作用,抑制前列腺癌細胞的生長,分別為蟛蜞菊內酯 (wedelolactone)、木犀草素 (luteolin) 與芹菜素 (apigenin)。目前黃花蜜菜皆栽種於田間或溫室,其二次代謝物的含量會受戶外環境影響而無法穩定生產,且栽培過程容易受到農藥污染。
本研究旨在探討於植物工廠中運用不同非生物逆境處對黃花蜜菜生成二次代謝物的影響,以建立黃花蜜菜二次代謝物在植物工廠中的量產模式。本研究之試驗皆在全環境控制的植物工廠進行,採完全隨機設計,於黃花蜜菜扦插栽培28天後進行不同的非生物逆境處理,包含不同光質 (FL、FL+UVA、FL+UVB、FL+FR、8R1B、4R5B與1R8B)、缺水逆境與缺肥逆境,並在逆境處理7天後與35天後採收,分析植株的鮮重、乾重與蟛蜞菊內酯、木犀草素、芹菜素的含量,計算各處理組的二次代謝物產能,並建立具備抑制前列腺癌細胞的黃花蜜菜萃取物之綜效指標,以量化評估生產出的黃花蜜菜實際應用於治療的效果。 結果顯示,UV光、藍光、缺水逆境處理皆可以提升黃花蜜菜的木犀草素與芹菜素含量,其中以UVB光的效果最為顯著(木犀草素含量為51.85 µg mL-1與芹菜素含量為28.33 µg mL-1),但是對於蟛蜞菊內酯的含量 (低於檢量極限) 則無顯著影響;缺肥逆境35天可以提高黃花蜜菜的蟛蜞菊內酯含量 (9.85 µg mL-1),但木犀草素含量 (15.84 µg mL-1) 與芹菜素含量 (0.85 µg mL-1) 會下降。以二次代謝物產能的表現上來看,相較於溫室的栽培方式,植物工廠中以白光搭配UVB光逆境處理35天可以提升木犀草素產能6倍與芹菜素產能21倍,缺肥逆境35天可以提升蟛蜞菊內酯產能3.2倍。比較具備抑制前列腺癌細胞的黃花蜜菜萃取物之綜效指標,植物工廠中以白光搭配UVB光逆境處理35天的綜效指標為溫室栽培的8-12倍。本研究證明了植物工廠穩態量產黃花蜜菜的二次代謝物之可行性,也制訂出相關的栽培程序,以供栽種業者作為參考。 | zh_TW |
| dc.description.abstract | Wedelia chinensis contains three secondary metabolites called wedelolactone, luteolin and apigenin, which have synergistic effect on inhibiting the growth of prostate cancer cells. Nowadays, Wedelia chinensis is all cultivated in field or in greenhouses. Hence, the outdoor environment will affect the content of the secondary metabolites of Wedelia chinensis and make the production unstable. Besides, it is readily contaminated by pesticide.
To construct the model of mass production of the three secondary metabolites of Wedelia chinensis in plant factory, the study focused on the effect of different abiotic stresses on the production of secondary metabolites of Wedelia chinensis in plant factory. The study was conducted in the fully-environmental- controlled plant factory and under completely randomized design. At 28 days after cutting, the plants were treated with different abiotic stresses, including different light qualities (FL, FL+UVA, FL+UVB, FL+FR, 8R1B, 4R5B, 1R8B), water stress and nutrient-deficiency stress, harvested after 7 and 35 days of stress treatment respectively. The fresh weight, dry weight, and the content of wedelolactone, luteolin, apigenin of the samples were analyzed. Each treatment of production capacity of the secondary metabolites was calculated. To quantify and evaluate the effect of the plant in practical application on medical treatment, this study established a comprehensive index of the extract that can inhibit prostate cancer cells. The results showed that UV light, blue light, and water stress could increase the content of luteolin and apigenin, and the effect of UVB light was the most significant (luteolin 51.85 µg mL-1, apigenin 28.33 µg mL-1), but theses stresses had no significant effect on the content of wedelolactone (not detectable). Nutrient-deficiency stress for 35 days could increase the content of wedelolactone (9.85 µg mL-1), but the content of luteolin (15.84 µg mL-1) and apigenin (0.85 µg mL-1) decreased. From the view of the production capacity of the secondary metabolites, compared to the cultivation in greenhouse, white light with UVB light treatment for 35 days in plant factory could increase the production of luteolin and apigenin by 6 times and 21 times respectively, and nutrient-deficiency stress for 35 days could increase the production capacity of wedelolactone by 3.2 times. Besides, the comprehensive index of 35 days of white light with UVB light stress treatment for 35 days in plant factory was 8-12 times higher than the index of cultivation in greenhouse. Demonstrating the feasibility of mass production of the secondary metabolites of Wedelia chinensis in plant factory, this study also established the cultivation procedures for industrial reference. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:42:46Z (GMT). No. of bitstreams: 1 ntu-109-R06631018-1.pdf: 153037592 bytes, checksum: beb127279f457ad025e62f985032384c (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v 目錄 vii 圖目錄 xi 表目錄 xiii 附錄目錄 xv 第一章 前言與研究目的 1 1.1 前言 1 1.2 研究目的 3 第二章 文獻探討 5 2.1 植物工廠 5 2.1.1 植物工廠的發展 5 2.1.2 植物工廠的定義 7 2.1.3 植物工廠的分類 8 2.1.4 水耕栽培系統 10 2.2 黃花蜜菜 15 2.2.1 黃花蜜菜簡介 15 2.2.2 黃花蜜菜二次代謝物 15 2.3 植物逆境 18 2.3.1 光質逆境 19 2.3.2 缺水逆境 20 2.3.3 缺肥逆境 20 第三章 材料與方法 21 3.1 試驗環境 21 3.1.1 環境控制 22 3.1.2 栽培系統 23 3.1.3 試驗設備與儀器 23 3.2 栽培作物 24 3.3 養液成份 25 3.4 分析藥品與試劑 26 3.5 量測方法 27 3.5.1 地上部鮮重 (fresh weight, FW) 27 3.5.2 地上部乾重 (dry weight, DW) 27 3.5.3 乾重比例 27 3.5.4 二次代謝物Wed.、Lut. 與 Api. 含量之分析方法 27 3.6 統計分析 29 3.7 研究方法 30 3.7.1 不同光質處理栽培黃花蜜菜 30 3.7.2 不同淹灌週期之潮汐淹灌系統栽培黃花蜜菜 34 3.7.3 缺肥環境栽培黃花蜜菜 36 3.7.4 缺肥栽培黃花蜜菜之再探討 38 3.7.5 不同逆境栽培黃花蜜菜二次代謝物之產能比較 39 3.7.6 合作業者之栽培方式 41 第四章 結果與討論 43 4.1 不同光質處理栽培黃花蜜菜 43 4.2 不同淹灌週期之潮汐淹灌系統栽培黃花蜜菜 50 4.3 缺肥環境栽培黃花蜜菜 56 4.4 缺肥環境栽培黃花蜜菜之再探討 61 4.5 不同逆境栽培黃花蜜菜二次代謝物之產能比較 68 第五章 結論 73 參考文獻 77 附錄 85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 植物工廠 | zh_TW |
| dc.subject | 芹菜素 | zh_TW |
| dc.subject | 木犀草素 | zh_TW |
| dc.subject | 蟛蜞菊內酯 | zh_TW |
| dc.subject | 二次代謝物 | zh_TW |
| dc.subject | 植物非生物逆境 | zh_TW |
| dc.subject | 黃花蜜菜 | zh_TW |
| dc.subject | apigenin | en |
| dc.subject | plant abiotic stress | en |
| dc.subject | Wedelia chinensis | en |
| dc.subject | secondary metabolite | en |
| dc.subject | wedelolactone | en |
| dc.subject | luteolin | en |
| dc.subject | plant factory | en |
| dc.title | 植物工廠內不同非生物逆境對黃花蜜菜生成三種二次代謝物之影響 | zh_TW |
| dc.title | Effects of Different Abiotic Stresses in Plant Factory on Producing Three Secondary Metabolites of Wedelia chinensis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅筱鳳,林盈仲 | |
| dc.subject.keyword | 植物工廠,植物非生物逆境,黃花蜜菜,二次代謝物,蟛蜞菊內酯,木犀草素,芹菜素, | zh_TW |
| dc.subject.keyword | plant factory,plant abiotic stress,Wedelia chinensis,secondary metabolite,wedelolactone,luteolin,apigenin, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU202000612 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物機電工程學系 | zh_TW |
| Appears in Collections: | 生物機電工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-109-1.pdf Restricted Access | 149.45 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
