Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64355
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林坤佑(Kun-You Lin)
dc.contributor.authorKuan-Wei Chenen
dc.contributor.author陳冠維zh_TW
dc.date.accessioned2021-06-16T17:42:28Z-
dc.date.available2014-08-17
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-14
dc.identifier.citation[1] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang, “Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487-2496, Jun. 2006.
[2] Y.-C. Hsu, “Research on linearization technique for CMOS power amplifier,” M.S. thesis, National Taiwan University, Taipei, Taiwan, 2010.
[3] J.-L. Kuo, Z.-M. Tsai, H. Wang, “A 19.1-dBm fully-integrated 24 GHz power amplifier using 0.18-μm CMOS technology,” in European Microwave Conf., Oct. 2008, pp. 1425-1428.
[4] J.-W. Lee and S.-M. Heo, “A 27 GHz, 14 dBm CMOS power amplifier using 0.18 μm common-source MOSFETs,” IEEE Microwave and Wireless Components Letters, vol. 18, pp. 755-757, Nov. 2008.
[5] T. LaRocca, and M.-C. F. Chang, “60GHz CMOS differential and transformer-coupled power amplifier for compact design,” in 2008 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, 2008, pp. 65-68.
[6] A. Katz, “Linearization: reducing distortion in power amplifiers,” in IEEE Microwave Magazine, vol. 2, pp.37-49, Dec. 2001.
[7] J. C. Pedro and N. B. Carvalho, Intermodulation Distortion in Microwave and Wireless Circuits. Norwood, MA: Artech House, 2003.
[8] J.-H. Tsai, “Millimeter-wave transmitter linearization and gigabit wireless communication systems, ” Ph.D. dissertation, National Taiwan University, Taipei, Taiwan, 2007.
[9] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer—A new power-combining and impedance-transformation technique,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316–331, Jan. 2002.
[10] B. Razavi, RF Microelectronics, 2nd edition. Upper Saddle River, NJ: Prentice Hall, 2012.
[11] J. Essing and R. Mahmoudi, Y. Pei, A.-V. Roermund, “A fully integrated 60 GHz distributed transformer power amplifier in bulky CMOS 45 nm,” in IEEE RFIC Symp., June 2011, pp. 1–4.
[12] C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang,”Analysis of multiconductor coupled-line Marchand Baluns for miniature MMIC design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190-1199, Jun. 2007.
[13] Y.-N. Jen, J.-H. Tsai, T.-W. Huang, H. Wang, “Design and analysis of a 55-71 GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1637-1646, July 2009.
[14] J. Zhang, M. Bao, D. Kuylenstierna, S. Lai, H. Zirath, “Broadband - Boosted differential HBT doublers with transformer balun,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 11, pp. 2953-2960, Nov 2011.
[15] K. Joshin, Y. Kawano, M. Fujita, T. Suzuki, M. Sato, T. Hirose, “A 24 GHz 90-nm CMOS-based power amplifier module with output power of 20 dBm,” in IEEE International Symposium on Radio-Frequency Integration Technology, Singapore, Dec. 2009.
[16] P.-C. Huang, J.-L. Kuo, Z.-M. Tsai, K.-Y. Lin, H. Wang, “A 22-dBm 24-GHz power amplifier using 0.18-μm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 248-251.
[17] Y.-N. Jen, J.-H. Tsai, C.-T. Peng, T.-W. Huang, “A 20 to 24 GHz +16.8 dBm fully integrated power amplifier using 0.18-μm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 1, pp. 42-44, Jan. 2009.
[18] C.-C. Hung, J.-L. Kuo, K.-Y. Lin, H. Wang, “A 22.5-dB gain, 20.1-dBm output power K-band power amplifier in 0.18-μm CMOS process,” IEEE Radio Frequency Integrated Circuits Symposium Digest, 2010, pp. 557-560.
[19] N.-C. Kuo, J.-C. Kao, C.-C. Kuo, and H. Wang, “K-band CMOS power amplifier with adaptive bias for enhancement in back-off efficiency,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2011, pp. 1-4.
[20] J. X. Liu, C. Y. Hsu, H. R. Chung, and C. Y. Chen, “A 60-GHz millimeter-wave CMOS Marchand balun,” in IEEE RFIC Symp. Dig., Jun.3–5, 2007, pp. 445–448.
[21] “Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems,” FCC, Washington, DC, ET Docket 98-153, Feb 14. 2002.
[22] “Federal spectrum use summary 30 MHz - 3000 GHz,” FCC, National Telecommunications and Information Administration Office of Spectrum Management, June 21, 2010.
[23] A. Komijani, A. Natarajan, A. Hajimiri, “A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1901-1908, Sep. 2005.
[24] H. Portela, V. Subramanian, and G. Boeck, “Fully integrated high efficiency K-band PA in 0.18-μm CMOS technology,” in Proc. Microwave and Optical Conference, Nov. 2009, pp. 393-396.
[25] J.-H. Tsai, C.-H. Wu, H.-Y. Yang, T.-W. Huang, “ A 60 GHz CMOS power amplifier with build-in pre-distortion linearizer,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 12, pp. 676-678, Dec. 2011.
[26] D.-G. Kim, N.-P. Hong, Y.-W. Choi, “A novel linearization method of CMOS drive amplifier using IMD canceller,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 671-673, Oct. 2009.
[27] Y.-B. Xiang, G.-M. Wang, “Doherty power amplifier with feedforward linearization,” in IEEE APMC, Dec 2009, pp. 1621-1624.
[28] H. Ishihara, M. Hosoya, S. Otaka, and O. Watanabe, “A 10-MHz signal bandwidth cartesian loop transmitter capable of off-chip PA linearization,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2785-2793, Dec. 2010.
[29] R.-C Frye, P. Hlaing, K. Liu, “High CMRR in reduced-coupling monolithic baluns,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 1560-1563.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64355-
dc.description.abstract本論文提出一個可以在互補式金氧半導體製程上實現的預先失真技術,它可以改善互補式金氧半導體功率放大器1-dB 功率點的線性度,進而提升功率大器的線性操作範圍。這個預先失真技術是採用一個N型的電晶體來當作線性器,並將差動訊號饋入此電晶體的閘極端和汲極端,使其補償範圍增加。文中分析了此改良式線性器的原理,和一些設計上的考量,並且也說明了線性器在功率放大器中如何達到最佳化。
我們使用180奈米互補式金氧半導體來製作一個使用預先失真技術在K頻段的兩級放大器。量測的結果顯示此功率放大器在靜態直流上消耗了219 毫瓦的功率,而在線性器打開的情況下,1 dB 功率點可以從16 dBm 提升至 17.5 dBm,而此點的功率附加效率也從10.6% 增加至 13.6% 。而此功率放大器的最大輸出飽和功率為19.9 dBm。三階項量測的結果顯示,線性器啟動的作用下,至少在輸出功率為8 dBm時會有6 dB 的線性度改善。 針對不同複雜度的數位調變,我們也以量測來驗證這個線性化的效果,在QPSK、16QAM、64QAM三種調變下,頻譜再生的情況被抑制了7-dB。
與其他發表過的24 GHz功率放大器做比較,本電路利用線性化的方法得到較佳的OP1dB、以及在OP1dB的功率附加效率。
zh_TW
dc.description.abstractIn this thesis, a modified pre-distortion technique is proposed to improve the linear operation region of CMOS power amplifier. The linearizer is implemented by cold-mode FET and modified by a differential signal. This modified technique can increase the compensated ability of the linearizer, thus the proposed linearizer is more suitable for CMOS power amplifier than conventional linearizer. The operation details and the design considerations of the modified linearizer are investigated, and the optimization of the proposed linearizer in power amplifier design is also mentioned in the analysis.
A K-band power amplifier with the pre-distortion technique is fabricated in 180-nm CMOS technology. According to the measurement, the proposed PA consumes 219 mW at quiescent state, and OP1dB is improved from 16 dBm to 17.5 dBm when linearizer is turned on. The PAE at OP1dB is also increase 3%. The Psat of the proposed power amplifier is 19.9 dBm. In two-tone measurement, the IMD3 is improved at least 6 dB with output power 8 dBm. The spectral re-growth of the PA is suppressed 7 dB by the linearizer in the different digital modulations.
By utilizing the pre-distortion technique, the proposed PA has better output power and PAE at 1-dB compression point than other reported 24-GHz PA.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:42:28Z (GMT). No. of bitstreams: 1
ntu-101-R99942086-1.pdf: 6122429 bytes, checksum: 8acde4501ec1a6e16881cf3a1017239e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 2
1.2.1 Conventional power amplifier 2
1.2.2 Power amplifier with linearization technique 3
1.3 Contributions 4
1.4 Thesis Organization 5
Chapter 2 Overview of Power Amplifier 6
2.1 Introduction 6
2.2 Important Parameters of Power Amplifier 6
2.2.1 Power 7
2.2.2 Efficiency 8
2.2.3 Linearity 9
2.3 Linearization Technique 16
2.3.1 Feedforward technique [6],[8] 16
2.3.2 Feedback technique [6],[8] 17
Chapter 3 Cold-FET Linearizer with Differential Feeding in 0.18-um CMOS 20
3.1 Design Theory 20
3.1.1 Pre-distortion Technique 20
3.1.2 Cold FET Linearizer 22
3.1.3 Challenge of CMOS process in microwave/millimeter-wave Frequency 25
3.1.4 Modified Cold-Mode Linearizer by Differential Feeding 27
3.2 Other Considerations for Linearizer 38
3.2.1 Adding Cold-mode Linearizer in Gain Stage 38
3.2.2 Adaptive Bias Characteristic of Linearizer 39
3.2.3 Imperfect differential signal 40
3.3 Summary 42
Chapter 4 Design of a K-band Transformer Combined Power Amplifier with Differential Cold-Mode Linearizer 43
4.1 Introduction 43
4.1.1 Motivation 43
4.1.2 Objective 44
4.2 Previous Published Literatures 44
4.2.1 Power Amplifier Using Cascode Topology 44
4.2.2 Power Amplifier Using Common Source Topology 45
4.2.3 Power Amplifier Using Transformer Combine Technique 46
4.3 Design of Two-Stage Transformer Combined with Differential Cold-Mode Linearizer 47
4.3.1 Design flow 47
4.3.2 Bias and Device Selection 48
4.3.3 Transformer design of power stage 52
4.3.4 Power Budget Calculation 67
4.3.5 Gain-stage Design 69
4.3.6 Integration of Linearizer to Gain-stage 71
4.3.7 Input Matching Design 76
4.3.8 Two-stage Power Amplifier 80
4.4 Simulation Results 82
4.4.1 Small Signal Simulation 82
4.4.2 Stability Analysis 83
4.4.3 Large-signal Simulation 85
4.5 Measurement Results 89
4.5.1 Small Signal Measurement 89
4.5.2 Large Signal Measurement 91
4.6 Discussion 123
4.6.1 IMD3 Response 123
4.6.2 CMRR of Input and Output Transformer 128
4.7 Summary 130
Chapter 5 Conclusions 132
REFERENCE 133
dc.language.isozh-TW
dc.subject功率放大器zh_TW
dc.subject預先失真zh_TW
dc.subjectK-頻段zh_TW
dc.subject線性化技術zh_TW
dc.subject數位調變zh_TW
dc.subjectPower amplifieren
dc.subjectPre-distortionen
dc.subjectK-banden
dc.subjectDigital modulationen
dc.subjectLinearization techniqueen
dc.titleK頻段互補式金氧半導體功率放大器之預先失真技術研究zh_TW
dc.titleResearch on Pre-distortion Technique for K-Band CMOS Power Amplifieren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王暉,張鴻埜,蔡政翰,蔡作敏
dc.subject.keyword功率放大器,預先失真,K-頻段,線性化技術,數位調變,zh_TW
dc.subject.keywordPower amplifier,Pre-distortion,K-band,Linearization technique,Digital modulation,en
dc.relation.page136
dc.rights.note有償授權
dc.date.accepted2012-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
5.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved