請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64355完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林坤佑(Kun-You Lin) | |
| dc.contributor.author | Kuan-Wei Chen | en |
| dc.contributor.author | 陳冠維 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:42:28Z | - |
| dc.date.available | 2014-08-17 | |
| dc.date.copyright | 2012-08-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-14 | |
| dc.identifier.citation | [1] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang, “Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487-2496, Jun. 2006.
[2] Y.-C. Hsu, “Research on linearization technique for CMOS power amplifier,” M.S. thesis, National Taiwan University, Taipei, Taiwan, 2010. [3] J.-L. Kuo, Z.-M. Tsai, H. Wang, “A 19.1-dBm fully-integrated 24 GHz power amplifier using 0.18-μm CMOS technology,” in European Microwave Conf., Oct. 2008, pp. 1425-1428. [4] J.-W. Lee and S.-M. Heo, “A 27 GHz, 14 dBm CMOS power amplifier using 0.18 μm common-source MOSFETs,” IEEE Microwave and Wireless Components Letters, vol. 18, pp. 755-757, Nov. 2008. [5] T. LaRocca, and M.-C. F. Chang, “60GHz CMOS differential and transformer-coupled power amplifier for compact design,” in 2008 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, 2008, pp. 65-68. [6] A. Katz, “Linearization: reducing distortion in power amplifiers,” in IEEE Microwave Magazine, vol. 2, pp.37-49, Dec. 2001. [7] J. C. Pedro and N. B. Carvalho, Intermodulation Distortion in Microwave and Wireless Circuits. Norwood, MA: Artech House, 2003. [8] J.-H. Tsai, “Millimeter-wave transmitter linearization and gigabit wireless communication systems, ” Ph.D. dissertation, National Taiwan University, Taipei, Taiwan, 2007. [9] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer—A new power-combining and impedance-transformation technique,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316–331, Jan. 2002. [10] B. Razavi, RF Microelectronics, 2nd edition. Upper Saddle River, NJ: Prentice Hall, 2012. [11] J. Essing and R. Mahmoudi, Y. Pei, A.-V. Roermund, “A fully integrated 60 GHz distributed transformer power amplifier in bulky CMOS 45 nm,” in IEEE RFIC Symp., June 2011, pp. 1–4. [12] C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang,”Analysis of multiconductor coupled-line Marchand Baluns for miniature MMIC design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190-1199, Jun. 2007. [13] Y.-N. Jen, J.-H. Tsai, T.-W. Huang, H. Wang, “Design and analysis of a 55-71 GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1637-1646, July 2009. [14] J. Zhang, M. Bao, D. Kuylenstierna, S. Lai, H. Zirath, “Broadband - Boosted differential HBT doublers with transformer balun,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 11, pp. 2953-2960, Nov 2011. [15] K. Joshin, Y. Kawano, M. Fujita, T. Suzuki, M. Sato, T. Hirose, “A 24 GHz 90-nm CMOS-based power amplifier module with output power of 20 dBm,” in IEEE International Symposium on Radio-Frequency Integration Technology, Singapore, Dec. 2009. [16] P.-C. Huang, J.-L. Kuo, Z.-M. Tsai, K.-Y. Lin, H. Wang, “A 22-dBm 24-GHz power amplifier using 0.18-μm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 248-251. [17] Y.-N. Jen, J.-H. Tsai, C.-T. Peng, T.-W. Huang, “A 20 to 24 GHz +16.8 dBm fully integrated power amplifier using 0.18-μm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 1, pp. 42-44, Jan. 2009. [18] C.-C. Hung, J.-L. Kuo, K.-Y. Lin, H. Wang, “A 22.5-dB gain, 20.1-dBm output power K-band power amplifier in 0.18-μm CMOS process,” IEEE Radio Frequency Integrated Circuits Symposium Digest, 2010, pp. 557-560. [19] N.-C. Kuo, J.-C. Kao, C.-C. Kuo, and H. Wang, “K-band CMOS power amplifier with adaptive bias for enhancement in back-off efficiency,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2011, pp. 1-4. [20] J. X. Liu, C. Y. Hsu, H. R. Chung, and C. Y. Chen, “A 60-GHz millimeter-wave CMOS Marchand balun,” in IEEE RFIC Symp. Dig., Jun.3–5, 2007, pp. 445–448. [21] “Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems,” FCC, Washington, DC, ET Docket 98-153, Feb 14. 2002. [22] “Federal spectrum use summary 30 MHz - 3000 GHz,” FCC, National Telecommunications and Information Administration Office of Spectrum Management, June 21, 2010. [23] A. Komijani, A. Natarajan, A. Hajimiri, “A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1901-1908, Sep. 2005. [24] H. Portela, V. Subramanian, and G. Boeck, “Fully integrated high efficiency K-band PA in 0.18-μm CMOS technology,” in Proc. Microwave and Optical Conference, Nov. 2009, pp. 393-396. [25] J.-H. Tsai, C.-H. Wu, H.-Y. Yang, T.-W. Huang, “ A 60 GHz CMOS power amplifier with build-in pre-distortion linearizer,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 12, pp. 676-678, Dec. 2011. [26] D.-G. Kim, N.-P. Hong, Y.-W. Choi, “A novel linearization method of CMOS drive amplifier using IMD canceller,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 671-673, Oct. 2009. [27] Y.-B. Xiang, G.-M. Wang, “Doherty power amplifier with feedforward linearization,” in IEEE APMC, Dec 2009, pp. 1621-1624. [28] H. Ishihara, M. Hosoya, S. Otaka, and O. Watanabe, “A 10-MHz signal bandwidth cartesian loop transmitter capable of off-chip PA linearization,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2785-2793, Dec. 2010. [29] R.-C Frye, P. Hlaing, K. Liu, “High CMRR in reduced-coupling monolithic baluns,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 1560-1563. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64355 | - |
| dc.description.abstract | 本論文提出一個可以在互補式金氧半導體製程上實現的預先失真技術,它可以改善互補式金氧半導體功率放大器1-dB 功率點的線性度,進而提升功率大器的線性操作範圍。這個預先失真技術是採用一個N型的電晶體來當作線性器,並將差動訊號饋入此電晶體的閘極端和汲極端,使其補償範圍增加。文中分析了此改良式線性器的原理,和一些設計上的考量,並且也說明了線性器在功率放大器中如何達到最佳化。
我們使用180奈米互補式金氧半導體來製作一個使用預先失真技術在K頻段的兩級放大器。量測的結果顯示此功率放大器在靜態直流上消耗了219 毫瓦的功率,而在線性器打開的情況下,1 dB 功率點可以從16 dBm 提升至 17.5 dBm,而此點的功率附加效率也從10.6% 增加至 13.6% 。而此功率放大器的最大輸出飽和功率為19.9 dBm。三階項量測的結果顯示,線性器啟動的作用下,至少在輸出功率為8 dBm時會有6 dB 的線性度改善。 針對不同複雜度的數位調變,我們也以量測來驗證這個線性化的效果,在QPSK、16QAM、64QAM三種調變下,頻譜再生的情況被抑制了7-dB。 與其他發表過的24 GHz功率放大器做比較,本電路利用線性化的方法得到較佳的OP1dB、以及在OP1dB的功率附加效率。 | zh_TW |
| dc.description.abstract | In this thesis, a modified pre-distortion technique is proposed to improve the linear operation region of CMOS power amplifier. The linearizer is implemented by cold-mode FET and modified by a differential signal. This modified technique can increase the compensated ability of the linearizer, thus the proposed linearizer is more suitable for CMOS power amplifier than conventional linearizer. The operation details and the design considerations of the modified linearizer are investigated, and the optimization of the proposed linearizer in power amplifier design is also mentioned in the analysis.
A K-band power amplifier with the pre-distortion technique is fabricated in 180-nm CMOS technology. According to the measurement, the proposed PA consumes 219 mW at quiescent state, and OP1dB is improved from 16 dBm to 17.5 dBm when linearizer is turned on. The PAE at OP1dB is also increase 3%. The Psat of the proposed power amplifier is 19.9 dBm. In two-tone measurement, the IMD3 is improved at least 6 dB with output power 8 dBm. The spectral re-growth of the PA is suppressed 7 dB by the linearizer in the different digital modulations. By utilizing the pre-distortion technique, the proposed PA has better output power and PAE at 1-dB compression point than other reported 24-GHz PA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:42:28Z (GMT). No. of bitstreams: 1 ntu-101-R99942086-1.pdf: 6122429 bytes, checksum: 8acde4501ec1a6e16881cf3a1017239e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 2 1.2.1 Conventional power amplifier 2 1.2.2 Power amplifier with linearization technique 3 1.3 Contributions 4 1.4 Thesis Organization 5 Chapter 2 Overview of Power Amplifier 6 2.1 Introduction 6 2.2 Important Parameters of Power Amplifier 6 2.2.1 Power 7 2.2.2 Efficiency 8 2.2.3 Linearity 9 2.3 Linearization Technique 16 2.3.1 Feedforward technique [6],[8] 16 2.3.2 Feedback technique [6],[8] 17 Chapter 3 Cold-FET Linearizer with Differential Feeding in 0.18-um CMOS 20 3.1 Design Theory 20 3.1.1 Pre-distortion Technique 20 3.1.2 Cold FET Linearizer 22 3.1.3 Challenge of CMOS process in microwave/millimeter-wave Frequency 25 3.1.4 Modified Cold-Mode Linearizer by Differential Feeding 27 3.2 Other Considerations for Linearizer 38 3.2.1 Adding Cold-mode Linearizer in Gain Stage 38 3.2.2 Adaptive Bias Characteristic of Linearizer 39 3.2.3 Imperfect differential signal 40 3.3 Summary 42 Chapter 4 Design of a K-band Transformer Combined Power Amplifier with Differential Cold-Mode Linearizer 43 4.1 Introduction 43 4.1.1 Motivation 43 4.1.2 Objective 44 4.2 Previous Published Literatures 44 4.2.1 Power Amplifier Using Cascode Topology 44 4.2.2 Power Amplifier Using Common Source Topology 45 4.2.3 Power Amplifier Using Transformer Combine Technique 46 4.3 Design of Two-Stage Transformer Combined with Differential Cold-Mode Linearizer 47 4.3.1 Design flow 47 4.3.2 Bias and Device Selection 48 4.3.3 Transformer design of power stage 52 4.3.4 Power Budget Calculation 67 4.3.5 Gain-stage Design 69 4.3.6 Integration of Linearizer to Gain-stage 71 4.3.7 Input Matching Design 76 4.3.8 Two-stage Power Amplifier 80 4.4 Simulation Results 82 4.4.1 Small Signal Simulation 82 4.4.2 Stability Analysis 83 4.4.3 Large-signal Simulation 85 4.5 Measurement Results 89 4.5.1 Small Signal Measurement 89 4.5.2 Large Signal Measurement 91 4.6 Discussion 123 4.6.1 IMD3 Response 123 4.6.2 CMRR of Input and Output Transformer 128 4.7 Summary 130 Chapter 5 Conclusions 132 REFERENCE 133 | |
| dc.language.iso | zh-TW | |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 預先失真 | zh_TW |
| dc.subject | K-頻段 | zh_TW |
| dc.subject | 線性化技術 | zh_TW |
| dc.subject | 數位調變 | zh_TW |
| dc.subject | Power amplifier | en |
| dc.subject | Pre-distortion | en |
| dc.subject | K-band | en |
| dc.subject | Digital modulation | en |
| dc.subject | Linearization technique | en |
| dc.title | K頻段互補式金氧半導體功率放大器之預先失真技術研究 | zh_TW |
| dc.title | Research on Pre-distortion Technique for K-Band CMOS Power Amplifier | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王暉,張鴻埜,蔡政翰,蔡作敏 | |
| dc.subject.keyword | 功率放大器,預先失真,K-頻段,線性化技術,數位調變, | zh_TW |
| dc.subject.keyword | Power amplifier,Pre-distortion,K-band,Linearization technique,Digital modulation, | en |
| dc.relation.page | 136 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
