Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64351
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李雨
dc.contributor.authorChia-Ching Huangen
dc.contributor.author黃佳慶zh_TW
dc.date.accessioned2021-06-16T17:42:14Z-
dc.date.available2022-08-14
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-14
dc.identifier.citation(1) Arnold, W. M., and Zimmermann, U., “Electro-rotation: development of a technique for dielectric measurements on individual cells and particles,” J. Electrostat., 21, 151-191, 1988.
(2) Ashkin, A. “Acceleration and trapping of particles by radiation pressure”, Phys. Rev. Lett., 24,156 – 159, 1970.
(3) Ashkin, A., “Forces of single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J., 61, 569 - 582, 1992.
(4) Ashkin, A. and Dziedzic J. M., “Optical Levitation by Radiation pressure” Appl. Phys. Lett, 19, 283 - 285, 1971.
(5) Ashkin, A., Dziedzicm, J. M., Bjorkholm, J.E and Chu, S., “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics. Lett., 11, 288, 1986.
(6) Ashkin A. and Dziedzic, J. M., “Optical Trapping and Manipulation of Viruses and Bacteria”, Science 235, 1517 - 1520, 1987.
(7) Bowden F. P. and Lord, R. G., “The aerodynamic resistance to a sphere rotating at high speed,” Proc. R. Soc. Lond. A, 271, 143-153, 1963.
(8) Goater and Pethig, “Electrorotation and dielectrophoresis ,”Parasitology, 117,S,177-189,1998
(9) Happel, J. and Brenner, H., “Low Reynolds number hydrodynamics,” Kluwer Academic Publishers, 1986.
(10) Hanai, T., Ishikawa, A., and Koizumi, N., “Systematic analysis to determine the dielectric phase parameters from dielectric relaxations caused by diphasic structure of disperse systems,” Bull. Inst. Chem. Res., Kyoto Univ., 55, 376-393, 1977
(11) Hughes, M. P., “Nanoelectromechanics in Engineering and Biology,” CRC Press, Boca Raton, Flordia, 2003.
(12) Ishikawa, A., Hanai, T. and Koizumi, N., “Dielectric properties of gel Sephadex G-25 dispersed in aqueous phases,” Japanese J. of Appl. Phys., 21, 1762-1768, 1982.
(13) Jones T. B., “Electromechanics of particles,” Cambridge University Press, Cambridge, 1995.
(14) Kunesh, J. G., Brenner, H., O’neill, M. E. and Falade, A., “Torque measurements on stationary axially positioned sphere partially and fully submerged beneath the free surface of a slowly rotating viscous fluid,” J. Fluid Mech. 154, 29 - 42, 1985.
(15) Lei, U. and Lo, Y. J., “Review of the theory of generalised dielectrophoresis,” IET Nanobiotechnology, 5, 86-106, 2011.
(16) Lo Y. J.,” Generalized Dielectrophoresis near Walls Theory, Experiment and Application ”, Doctoral Dissertation, Institute of Applied Mechanics, National Taiwan University, 2010
(17) Lo Y. J. and Lei, U., “Quasi-static force and torque on spherical particles under generalized dielectrophoresis in the vicinity of walls”, Appl. Phys. Lett., 95, 253701, 2009.
(18) Masuda, S., Washizu, M. and Iwadare, M., “Separation of small particles suspended in liquid by nonuniform traveling field’, IEEE Trans. Ind. Appl., 23, 474-480, 1987.
(19) Masuda, S., Washizu, M. and Kawabata, I., “Movement of blood-cells in liquid by nonuniform traveling field’, IEEE Trans. Ind. Appl., 24, 217-222, 1998.
(20) Pethig, R., “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics, 4, 022811, 2010.
(21) Pethig R., Ying Huang, Wang Xiao-bo and Burt J P H., “Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes, ” J. Phys. D: Appl. Phys. , 25, 881-888, 1992.
(22) Pohl H. A., “The Motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22, 869-871,1951
(23) Pohl H. A., “Dielectrophoresis,” Cambridge University Press, Cambridge, 1978.
(24) Reichle, C., Schnelle, T., Muller, T., Leya, T. and Fuhr, G., “A new microsystem for automated electrorotation measurements using laser tweezers,” Biochimica et Biophysica Acta 1459, 218-229, 2000.
(25) Sawatzki, O., “Flow field around a rotating sphere,” Acta Mech., 9, 159-214, 1970.
(26) Wang X.-B., Huang Y., Becker F. F. and Gascoyne, P. C. R., “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D: Appl. Phys., 27, 1571-1574, 1994.
(27) Yang, C. Y. and Lei, U., “Quasistatic force and torque on ellipsoidal particles under generalized dielectrophoresis,” J. Appl. Phys., 102, 094702, 2007.
(28) 林豐勝, “光學懸浮之軸向與橫向作用力之探討(Axial and Transverse Trapping Forces In Optical Levitation,” 國立東華大學電機工程研究所碩士論文, 2002.
(29) 陳建夫, “一項電旋轉設備的設計、模擬及實驗,” 國立台灣大學應用力學研究所碩士論文, 2008.
(30) 黃俊傑, “電熱力微混合器的研究,” 國立台灣大學應用力學研究所碩士論文, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64351-
dc.description.abstract本論文的目標是建立一項實驗的方法來量測及驗證球形粒子在近牆效應下的黏性阻力阻。將採用兩種非接觸方法,光鉗與廣義介電泳(含介電泳力與電旋轉)應用在由微機電製程技術製作出來的四相位電旋轉槽來進行實驗。吾人使用半徑約為10zh_TW
dc.description.abstractThe goal of this thesis is to propose a method for the experimental validation of the theory of wall effect on the viscous torque of a spherical particle. Two non-contact techniques, optical tweezer and generalized dielectrophoresis (includes dielectrophoresis and electrorotation here), are employed for the experiment in a four-phase electrorotation chamber fabricated using MEMS techniques. The experiment was performed using Sephadex particles with radius (r) around 10 μm in KCl solution. Such a particle behaves negative dielectrophoresis and settles at a height on the vertical centreline of the chamber (equilibrium position of force balance) when a constant rotating electric field is turned on. Meanwhile, the particle rotates steadily with a constant speed (Ω) around it own axis. The particle wanders away frequency when its settling height (h) is sufficiently large, and an optical tweezer is thus employed to confine the particle to stay on the centreline of the chamber during the experiment. The tweezer also exerts a downward optical force to the particle and thus lowers its settling height. The settling height is altered mainly by changing the applied electric voltage and frequency in the present experiment, and is determined through the differences of the scales of the focus screw of the microscope when it is focused at the particle and at the bottom wall of the chamber, respectively. The horizontal particle position is determined easily through the view of a microscope. With the particle position known, the dielectrophoretic torque on the particle can be evaluated using the simulated electric field of the chamber, and thus the viscous torque (which equals the dielectrophoretic torque) is determined. The wall effect on the viscous torque, T, is characterized by comparing it with the theoretical viscous torque in an infinite medium, . The ratio, T/8πμr^3Ω , is evaluated here by measuring Ω, which is derived from the motion of the particle rotation recorded through a CCD camera mounted on a microscope along the centreline of the chamber. It is found that the present measurement agree with the theoretical result in the literature within 0.5%-38% discrepancy.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:42:14Z (GMT). No. of bitstreams: 1
ntu-101-R99543072-1.pdf: 3211310 bytes, checksum: 26c7b30415e2b9ffbb5b9996673f35e0 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
誌 謝 i
中文摘要 ii
Abstract iii
第一章 導論 1
1-1 研究背景與動機 1
1-2文獻回顧 1
第二章 理論背景 5
2-1 光鉗 5
2-2 靜電場 5
2-3 廣義介電泳 6
2-4 作用在球體的黏滯力與黏性阻力矩 9
2-5其他影響力之探討 10
2-6 電旋轉槽 11
第三章 實驗方法與設備 13
3-1 電極設計與製作 13
3-2 MEMS製作流程 15
3-3 微流道母模製作 19
3-4 PDMS翻模製作 19
3-5 光鉗系統架設 20
3-6 實驗設備 22
3-7 溶液與導電度的選取 23
第四章 實驗結果與討論 24
4-1 模擬 24
4-2 實驗 25
4-3 實驗數據 25
第五章 結論與未來工作 27
5-1 結論 27
dc.language.isozh-TW
dc.subject光鉗zh_TW
dc.subject旋轉球體的力矩zh_TW
dc.subject牆效應zh_TW
dc.subject電旋轉zh_TW
dc.subjectelectrorotationen
dc.subjectviscous torque on a rotating sphereen
dc.subjectwall effecten
dc.subjectoptical tweezeren
dc.subjectdielectroporesisen
dc.title利用光鉗與廣義介電泳量測近牆效應下圓球的黏性阻力矩zh_TW
dc.titleMeasurement of the viscous resistive torque on a sphere near wall using generalized dielectrophoresis and optical tweezeren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃信富,江宏仁
dc.subject.keyword旋轉球體的力矩,牆效應,電旋轉,光鉗,zh_TW
dc.subject.keywordviscous torque on a rotating sphere,wall effect,electrorotation,dielectroporesis,optical tweezer,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2012-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved