請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64320完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹迺立(Nei-Li Chan) | |
| dc.contributor.author | Hung-Yuan Liao | en |
| dc.contributor.author | 廖泓淵 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:40:34Z | - |
| dc.date.available | 2012-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-14 | |
| dc.identifier.citation | 1. X. Z. Ding, R. Hennig, T. E. Adrian, Lipoxygenase and cyclooxygenase metabolism: new insights in treatment and chemoprevention of pancreatic cancer. Molecular cancer 2, 10 (2003).
2. C. D. Funk, Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871 (2001). 3. H. Matsumoto, H. Naraba, M. Murakami, I. Kudo, K. Yamaki, A. Ueno, S. Oh-ishi, Concordant induction of prostaglandin E2 synthase with cyclooxygenase-2 leads to preferred production of prostaglandin E2 over thromboxane and prostaglandin D2 in lipopolysaccharide-stimulated rat peritoneal macrophages. Biochemical and biophysical research communications 230, 110 (1997). 4. S. Bunting, S. Moncada, J. R. Vane, The prostacyclin--thromboxane A2 balance: pathophysiological and therapeutic implications. British medical bulletin 39, 271 (1983). 5. E. M. Smyth, Thromboxane and the thromboxane receptor in cardiovascular disease. Clinical lipidology 5, 209 (2010). 6. K. A. Martin, S. Gleim, L. Elderon, K. Fetalvero, J. Hwa, The human prostacyclin receptor from structure function to disease. Progress in molecular biology and translational science 89, 133 (2009). 7. R. A. Gupta, J. Tan, W. F. Krause, M. W. Geraci, T. M. Willson, S. K. Dey, R. N. DuBois, Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America 97, 13275 (2000). 8. E. J. Christ, D. A. van Dorp, Comparative aspects of prostaglandin biosynthesis in animal tissues. Biochimica et biophysica acta 270, 534 (1972). 9. M. Hamberg, J. Svensson, B. Samuelsson, Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. Proceedings of the National Academy of Sciences of the United States of America 71, 3824 (1974). 10. R. Murray, G. A. FitzGerald, Regulation of thromboxane receptor activation in human platelets. Proceedings of the National Academy of Sciences of the United States of America 86, 124 (1989). 11. S. Moncada, J. R. Vane, Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacological reviews 30, 293 (1978). 12. M. J. Cho, M. A. Allen, Chemical stability of prostacyclin (PGI2) in aqueous solutions. Prostaglandins 15, 943 (1978). 13. E. P. Neve, M. Ingelman-Sundberg, Intracellular transport and localization of microsomal cytochrome P450. Analytical and bioanalytical chemistry 392, 1075 (2008). 14. L. L. Wong, Cytochrome P450 monooxygenases. Current opinion in chemical biology 2, 263 (1998). 15. J. Mestres, Structure conservation in cytochromes P450. Proteins 58, 596 (2005). 16. A. Miyata, C. Yokoyama, H. Ihara, S. Bandoh, O. Takeda, E. Takahashi, T. Tanabe, Characterization of the human gene (TBXAS1) encoding thromboxane synthase. European journal of biochemistry / FEBS 224, 273 (1994). 17. K. Uchida, Current status of acrolein as a lipid peroxidation product. Trends in cardiovascular medicine 9, 109 (1999). 18. V. Ullrich, L. Castle, P. Weber, Spectral evidence for the cytochrome P450 nature of prostacyclin synthetase. Biochemical pharmacology 30, 2033 (1981). 19. A. Miyata, S. Hara, C. Yokoyama, H. Inoue, V. Ullrich, T. Tanabe, Molecular cloning and expression of human prostacyclin synthase. Biochemical and biophysical research communications 200, 1728 (1994). 20. W. L. Smith, D. L. DeWitt, M. L. Allen, Bimodal distribution of the prostaglandin I2 synthase antigen in smooth muscle cells. The Journal of biological chemistry 258, 5922 (1983). 21. S. Hara, A. Miyata, C. Yokoyama, H. Inoue, R. Brugger, F. Lottspeich, V. Ullrich, T. Tanabe, Isolation and molecular cloning of prostacyclin synthase from bovine endothelial cells. The Journal of biological chemistry 269, 19897 (1994). 22. J. L. Mills, R. DerSimonian, E. Raymond, J. D. Morrow, L. J. Roberts, 2nd, J. D. Clemens, J. C. Hauth, P. Catalano, B. Sibai, L. B. Curet, R. J. Levine, Prostacyclin and thromboxane changes predating clinical onset of preeclampsia: a multicenter prospective study. JAMA : the journal of the American Medical Association 282, 356 (1999). 23. M. Kreutzer, T. Fauti, K. Kaddatz, C. Seifart, A. Neubauer, H. Schweer, M. Komhoff, S. Muller-Brusselbach, R. Muller, Specific components of prostanoid-signaling pathways are present in non-small cell lung cancer cells. Oncology reports 18, 497 (2007). 24. R. S. Stearman, L. Dwyer-Nield, L. Zerbe, S. A. Blaine, Z. Chan, P. A. Bunn, Jr., G. L. Johnson, F. R. Hirsch, D. T. Merrick, W. A. Franklin, A. E. Baron, R. L. Keith, R. A. Nemenoff, A. M. Malkinson, M. W. Geraci, Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. The American journal of pathology 167, 1763 (2005). 25. R. Nemenoff, A. M. Meyer, T. M. Hudish, A. B. Mozer, A. Snee, S. Narumiya, R. S. Stearman, R. A. Winn, M. Weiser-Evans, M. W. Geraci, R. L. Keith, Prostacyclin prevents murine lung cancer independent of the membrane receptor by activation of peroxisomal proliferator--activated receptor gamma. Cancer Prev Res (Phila) 1, 349 (2008). 26. O. Moussa, J. S. Yordy, H. Abol-Enein, D. Sinha, N. K. Bissada, P. V. Halushka, M. A. Ghoneim, D. K. Watson, Prognostic and functional significance of thromboxane synthase gene overexpression in invasive bladder cancer. Cancer research 65, 11581 (2005). 27. X. Li, H. H. Tai, Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis 30, 1606 (2009). 28. M. Hecker, V. Ullrich, On the mechanism of prostacyclin and thromboxane A2 biosynthesis. The Journal of biological chemistry 264, 141 (1989). 29. R. Tsai, C. A. Yu, I. C. Gunsalus, J. Peisach, W. Blumberg, W. H. Orme-Johnson, H. Beinert, Spin-state changes in cytochrome P-450cam on binding of specific substrates. Proceedings of the National Academy of Sciences of the United States of America 66, 1157 (1970). 30. C. W. Chiang, H. C. Yeh, L. H. Wang, N. L. Chan, Crystal structure of the human prostacyclin synthase. Journal of molecular biology 364, 266 (2006). 31. Y. C. Li, C. W. Chiang, H. C. Yeh, P. Y. Hsu, F. G. Whitby, L. H. Wang, N. L. Chan, Structures of prostacyclin synthase and its complexes with substrate analog and inhibitor reveal a ligand-specific heme conformation change. The Journal of biological chemistry 283, 2917 (2008). 32. E. J. Topol, Failing the public health--rofecoxib, Merck, and the FDA. The New England journal of medicine 351, 1707 (2004). 33. L. R. Kisley, B. S. Barrett, L. D. Dwyer-Nield, A. K. Bauer, D. C. Thompson, A. M. Malkinson, Celecoxib reduces pulmonary inflammation but not lung tumorigenesis in mice. Carcinogenesis 23, 1653 (2002). 34. C. Kontogiorgis, D. Hadjipavlou-Litina, Thromboxane synthase inhibitors and thromboxane A2 receptor antagonists: a quantitative structure activity relationships (QSARs) analysis. Current medicinal chemistry 17, 3162 (2010). 35. P. Y. Hsu, L. H. Wang, Protein engineering of thromboxane synthase: conversion of membrane-bound to soluble form. Archives of biochemistry and biophysics 416, 38 (2003). 36. V. Ullrich, R. Brugger, Prostacyclin and Thromboxane Synthase : New Aspects of Hemethiolate Catalysis. Angew. Chem. Int. Ed. Engl. 33, 1911 (1994). 37. H. J. Barnes, M. P. Arlotto, M. R. Waterman, Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 88, 5597 (1991). 38. A. Wang, U. Savas, C. D. Stout, E. F. Johnson, Structural characterization of the complex between alpha-naphthoflavone and human cytochrome P450 1B1. The Journal of biological chemistry 286, 5736 (2011). 39. J. K. Yano, M. R. Wester, G. A. Schoch, K. J. Griffin, C. D. Stout, E. F. Johnson, The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. The Journal of biological chemistry 279, 38091 (2004). 40. M. A. White, N. Mast, I. Bjorkhem, E. F. Johnson, C. D. Stout, I. A. Pikuleva, Use of complementary cation and anion heavy-atom salt derivatives to solve the structure of cytochrome P450 46A1. Acta crystallographica. Section D, Biological crystallography 64, 487 (2008). 41. D. Dong, B. Wu, Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling. Drug metabolism reviews 44, 1 (2012). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64320 | - |
| dc.description.abstract | 血栓素合成酶 (thromboxane A2 synthase, TXAS) 與前列環素合成酶 (prostacyclin synthase, PGIS) 屬於帶有血基質 (heme) 的細胞色素P450 (cytochrome P450) 蛋白家族的成員。前者可將前列腺素H2 (prostaglandin H2, PGH2) 異構化,以生成血栓素A2 (thromboxane A2, TXA2)。前列環素合成酶則可使前列腺素H2異構化為前列環素 (prostacyclin, PGI2)。雖然此二酵素皆以前列腺素H2為受質,但產物的生理活性卻互為拮抗,血栓素A2會造成血管收縮與血小板凝集,前列環素則會使血管舒張並抑制凝血。因此這兩種分子在生物體內的比例與心血管系統的運作密切相關;過多的血栓素A2會造成心臟病、中風及血栓等心血管疾病。相反地,若是前列環素過多則會導致一些發炎反應。由之前的研究發現:血栓素合成酶與受質鍵結的位置是在C9-O上,而前列環素合成酶則是鍵結在受質的C11-O上,此差異使得氧自由基形成的位置不同,因而生成不同的產物。
為了探討血栓素合成酶與前列環素合成酶與受質結合之立體特異性,本實驗室已得到前列環素合成酶的晶體結構。而本研究的主要目的就是得到大量且純度高的血栓素合成酶進行結晶學研究並嘗試利用同源蛋白結構模擬找出可能影響受質立體選擇性的胺基酸,再和前列環素合成酶比較以探討活性中心附近之結構差異。此外,若能取得血栓素合成酶的結構,勢必能有效地設計出針對血栓素合成酶專一性抑制的心血管疾病治療藥物。 目前為止人類血栓素合成酶利用基因重組去除N端穿膜序列及使用介面活性劑萃取後,已經能夠取得足量且純度高的蛋白,但是在緩衝液中的穩定性仍欠佳,以致於尚未得到良好的晶體以進行X光繞射分析。雖然如此,利用同源蛋白結構模擬,我們仍然預測了在血栓素合成酶與前列環素合成酶中可能對於受質造成立體選擇性的原因,而這些預測結果或許能利用點突變及活性分析加以證實。 | zh_TW |
| dc.description.abstract | Thromboxane A2 synthase (TXAS) and prostacyclin synthase (PGIS) belong to the heme-containing cytochrome P450 (CYP) enzyme superfamily. TXAS catalyzes an isomerization of prostaglandin H2 (PGH2, an endoperoxide) to form thromboxane A2 (TXA2). On the other hand, PGIS converts the same substrate into a differ product named prostacyclin (PGI2). TXA2 promotes vasoconstriction and platelet aggregation through binding to the TXA2 receptor. The biological functions of TXA2 are antagonized by PGI2, which serves as a potent vasodilator and anticoagulator. The proper balance between TXA2 and PGI2 is crucial for regulating the homeostasis of cardiovascular system. Excess amount of TXA2 is linked to heart attack, stroke, and thrombosis, whereas increasing PGI2 would cause inflammatory effects. Interestingly, both TXA2 and PGI2 are isomers of PGH2, and the isomerization reactions of PGH2 to either PGI2 or TXA2 start from a cleavage of the endoperoxide moiety (the C9-O-O-C11 group) of PGH2. Earlier spectroscopic analysis using a series of PGH2 analogs has revealed that, although TXAS and PGIS both cleave the endoperoxide, they bind PGH2 with stereo-specific distinction: the C9-O and C11-O of PGH2 serve as the heme ligand for TXAS and PGIS, respectively. Our lab has previously determined the crystal structure of PGIS, in this study we hope to understand the structural basis of binding selectivity of TXAS by X-ray crystallography or homology modeling combining with site-directed mutagenesis and kinetic analysis. Furthermore, the crystal structure of TXAS should facilitate the development of small molecule inhibitors which maybe useful for treating cardiovascular diseases.
The recombinant human TXAS protein can be expressed and extracted by detergents, and we are attempting to obtain large amount of high purity protein sample for crystallization. In addition, we have used homology modeling to construct structural model of TXAS and compared it with crystal structure of PGIS by superimposition. This analysis has revealed potential structural differences in the substrate binding pocket that might be important in defining substrate binding selectivity. Site-directed mutagenesis and kinetic analysis will be performed to confirm the functional significance of our observations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:40:34Z (GMT). No. of bitstreams: 1 ntu-101-R99442025-1.pdf: 4346911 bytes, checksum: 986c5a4bed701d02a60edb6bb2519226 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 論文審定書..i
謝誌........ii 中文摘要....iv 英文摘要....vi 目錄........viii 圖目錄......x 表目錄......xii 縮寫表......xiii 一、 引言....................................1 1-1 環氧合酶參與之訊息傳遞途徑與疾病之關連..1 1-2 血栓素與前列環素在生理功能上之意義......1 1-3 血栓素與前列環素在生物體中之合成過程....2 1-4 血栓素與前列環素合成酶皆屬於細胞色素P450蛋白家族成員..3 1-5 血栓素合成酶與前列環素合成酶之基本介紹....4 1-6 血栓素合成酶與前列環素合成酶在體內維持平衡之重要性..5 1-7 血栓素合成酶與前列環素合成酶之作用機制....6 1-8 前列環素合成酶與其受質結合區域之結構研究..7 1-9 標靶血栓素合成酶於醫療應用之困境..........8 1-10 研究目標...9 二、 材料與方法.10 2-1 實驗材料...10 2-2 實驗方法...10 2-2-1 zTXAS及pTXAS表達質體之構築.....................10 2-2-2 血栓素合成酶之小量表現測試方法.................14 2-2-3 人類血栓素合成酶之純化.........................15 2-2-3-1 人類血栓素合成酶之大量表現、破菌及萃取.........15 2-2-3-2 鎳離子親和性管柱...............................16 2-2-3-3 陽離子交換管柱.................................17 2-2-3-4 分子篩膠體過濾管柱.............................17 2-2-4 人類血栓素合成酶之結晶.........................18 2-2-5 血栓素合成酶之同源蛋白模擬與結構分析...........19 三、 實驗結果.......................................21 3-1 人類血栓素合成酶之表現測試.....................21 3-2 人類血栓素合成酶之萃取及純化...................21 3-3 人類血栓素合成酶之均質性分析及結晶.............23 3-4 血栓素合成酶之同源結構模擬與結構分析...........24 3-5 斑馬魚與爪蛙血栓素合成酶之基因重組及表現測試...26 四、 討論..................................27 4-1 以其它物種之血栓素合成酶進行結構解析..27 4-2 人類血栓素合成酶樣品穩定性的改善......27 4-3 人類血栓素合成酶結晶條件之篩選........28 4-4 血栓素合成酶之模擬結構................29 4-5 後續研究..............................30 五、 圖.........31 六、 表.........67 七、 參考文獻...73 八、 附錄.......77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 血栓素合成酶 | zh_TW |
| dc.subject | 前列腺環素合成酶 | zh_TW |
| dc.subject | 細胞色素P450 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | X光繞射分析 | zh_TW |
| dc.subject | 同源蛋白結構模擬 | zh_TW |
| dc.subject | X-ray crystallography | en |
| dc.subject | Thromboxane A2 synthase (TXAS) | en |
| dc.subject | cytochrome P450 | en |
| dc.subject | prostacyclin synthase (PGIS) | en |
| dc.subject | homology modeling | en |
| dc.title | 血栓素合成酶之純化、結晶及結構分析 | zh_TW |
| dc.title | Purification, Crystallization, and Structural Analysis of
Thromboxane A2 synthase | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孔繁璐(Fan-Lu Kung),徐駿森(Chun-Hua Hsu) | |
| dc.subject.keyword | 血栓素合成酶,前列腺環素合成酶,細胞色素P450,心血管疾病,X光繞射分析,同源蛋白結構模擬, | zh_TW |
| dc.subject.keyword | Thromboxane A2 synthase (TXAS),prostacyclin synthase (PGIS),cytochrome P450,X-ray crystallography,homology modeling, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
