請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64314完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
| dc.contributor.author | CHIEN-RU SU | en |
| dc.contributor.author | 蘇建儒 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:40:15Z | - |
| dc.date.available | 2013-08-19 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-14 | |
| dc.identifier.citation | 1. Auyeung, J., Picosecond Optical Pulse Generation at Gigahertz Rates by Direct Modulation of a Semiconductor-Laser. Applied Physics Letters, 1981. 38(5): p. 308-310.
2. Ito, H., et al., Picosecond Optical Pulse Generation from an Rf Modulated Algaas Dh Diode-Laser. Electronics Letters, 1979. 15(23): p. 738-740. 3. Agrawal, G.P., Fiber-Optic Communications Systems, 2002, John Wiley & Sons, Inc. p. 11-12. 4. Ohta, H., et al., Measurement of 200Gbit/s optical eye diagram by optical sampling with gain-switched optical pulse. Electronics Letters, 2000. 36(8): p. 737-739. 5. Taylor, A.J., et al., Timing Jitter in Mode-Locked and Gain-Switched Ingaasp Injection-Lasers. Applied Physics Letters, 1986. 49(12): p. 681-683. 6. Williams, K.A., et al., Jitter reduction through feedback for picosecond pulsed InGaAsP lasers. Ieee Journal of Quantum Electronics, 1996. 32(11): p. 1988-1994. 7. Vonderlinde, D., Characterization of the Noise in Continuously Operating Mode-Locked Lasers. Applied Physics B-Photophysics and Laser Chemistry, 1986. 39(4): p. 201-217. 8. Leep, D.A. and D.A. Holm, Spectral Measurement of Timing Jitter in Gain-Switched Semiconductor-Lasers. Applied Physics Letters, 1992. 60(20): p. 2451-2453. 9. Tourrenc, J.P., et al., Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at 1.55 mu m. Optics Express, 2008. 16(22): p. 17706-17713. 10. Lin, C.Y., et al., Microwave Characterization and Stabilization of Timing Jitter in a Quantum-Dot Passively Mode-Locked Laser via External Optical Feedback. Ieee Journal of Selected Topics in Quantum Electronics, 2011. 17(5): p. 1311-1317. 11. Eliyahu, D., R.A. Salvatore, and A. Yariv, Effect of noise on the power spectrum of passively mode-locked lasers. Journal of the Optical Society of America B-Optical Physics, 1997. 14(1): p. 167-174. 12. Zhu, B., et al., Ultralow timing jitter picosecond pulse generation from electrically gain-switched oxidized vertical-cavity surface-emitting lasers. Ieee Photonics Technology Letters, 1997. 9(10): p. 1307-1309. 13. Schell, M., et al., Low Jitter Single-Mode Pulse Generation by a Self-Seeded, Gain-Switched Fabry-Perot Semiconductor-Laser. Applied Physics Letters, 1994. 65(24): p. 3045-3047. 14. Jinno, M., Correlated and Uncorrelated Timing Jitter in Gain-Switched Laser-Diodes. Ieee Photonics Technology Letters, 1993. 5(10): p. 1140-1143. 15. Martinez, A. and S. Yamashita, Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Optics Express, 2011. 19(7): p. 6155-6163. 16. Ng, W., et al., Characterization of the jitter in a mode-locked Er-fiber laser and its application in photonic sampling for analog-to-digital conversion at 10 Gsample/s. Journal of Lightwave Technology, 2004. 22(8): p. 1953-1961. 17. Yoshida, E. and M. Nakazawa, Measurement of the timing jitter and pulse energy fluctuation of a PLL regeneratively mode-locked fiber laser. Ieee Photonics Technology Letters, 1999. 11(5): p. 548-550. 18. Spuhler, G.J., et al., Soliton mode-locked Er : Yb : glass laser. Optics Letters, 2005. 30(3): p. 263-265. 19. Gupta, K.K., D. Novak, and H.F. Liu, Noise characterization of a regeneratively mode-locked fiber ring laser. Ieee Journal of Quantum Electronics, 2000. 36(1): p. 70-78. 20. Rodwell, M.J.W., D.M. Bloom, and K.J. Weingarten, Subpicosecond Laser Timing Stabilization. Ieee Journal of Quantum Electronics, 1989. 25(4): p. 817-827. 21. Keller, U., et al., Noise Characterization of Femtosecond Fiber Raman Soliton Lasers. Ieee Journal of Quantum Electronics, 1989. 25(3): p. 280-288. 22. Finch, A., et al., Noise Characterization of Mode-Locked Color-Center Laser Sources. Ieee Journal of Quantum Electronics, 1990. 26(6): p. 1115-1123. 23. WEINER, A.M., ULTRAFAST OPTICS, 2009, John Wiley & Sons, Inc., Hoboken, New Jersey.: the United States of America. p. 142. 24. Eliyahu, D. and A. Yariv, Noise in passively mode-locked lasers. Electronics Letters, 1998. 34(8): p. 779-780. 25. Delfyett, P.J., et al., High-Power Ultrafast Laser-Diodes. Ieee Journal of Quantum Electronics, 1992. 28(10): p. 2203-2219. 26. Williams, K.A., et al., Jitter in Picosecond Q-Switched Multicontact Lasers. Leos '94 - Conference Proceedings, Vol 2, 1994: p. 192-193. 27. Rana, F., et al., Characterization of the noise and correlations in harmonically mode-locked lasers. Journal of the Optical Society of America B-Optical Physics, 2002. 19(11): p. 2609-2621. 28. Honninger, C., et al., Q-switching stability limits of continuous-wave passive mode locking. Journal of the Optical Society of America B-Optical Physics, 1999. 16(1): p. 46-56. 29. Delfyett, P.J., High-Power Ultrafast Semiconductor-Laser Diodes. Ultrafast Pulse Generation and Spectroscopy, 1993. 1861: p. 72-83. 30. Paschotta, R., Noise of mode-locked lasers (Part II): timing jitter and other fluctuations. Applied Physics B-Lasers and Optics, 2004. 79(2): p. 163-173. 31. Serafino, G., et al., Phase and Amplitude Stability of EHF-Band Radar Carriers Generated From an Active Mode-Locked Laser. Journal of Lightwave Technology, 2011. 29(23): p. 3551-3559. 32. Salik, E., N. Yu, and L. Maleki, An ultralow phase noise coupled optoelectronic oscillator. Ieee Photonics Technology Letters, 2007. 19(5-8): p. 444-446. 33. Eliyahu, D., R.A. Salvatore, and A. Yariv, Noise characterization of a pulse train generated by actively mode-locked lasers. Journal of the Optical Society of America B-Optical Physics, 1996. 13(7): p. 1619-1626. 34. Kefelian, F., et al., RF linewidth in monolithic passively mode-locked semiconductor laser. Ieee Photonics Technology Letters, 2008. 20(13-16): p. 1405-1407. 35. Bottcher, E.H. and D. Bimberg, Detection of Pulse to Pulse Timing Jitter in Periodically Gain-Switched Semiconductor-Lasers. Applied Physics Letters, 1989. 54(20): p. 1971-1973. 36. Daza, M.R.H. and C.A. Saloma, Jitter dynamics of a gainswitched semiconductor laser under self-feedback and external optical injection. Ieee Journal of Quantum Electronics, 2001. 37(2): p. 254-264. 37. Lagatsky, A.A., et al., Highly efficient femtosecond Yb : KYW laser pumped by single narrow-stripe laser diode. Electronics Letters, 2003. 39(15): p. 1108-1110. 38. Agrawal, G.P., Nonlinear fiber optics: its history and recent progress [Invited]. Journal of the Optical Society of America B-Optical Physics, 2011. 28(12): p. A1-A10. 39. Derickson, D.J., et al., Comparison of Timing Jitter in External and Monolithic Cavity Mode-Locked Semiconductor-Lasers. Applied Physics Letters, 1991. 59(26): p. 3372-3374. 40. Tsuchida, H., Pulse timing stabilization of a mode-locked Cr : LiSAF laser. Optics Letters, 1999. 24(22): p. 1641-1643. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64314 | - |
| dc.description.abstract | 兩種有關於增益調製的雷射二極體之時序跳動特性的方法將被實現比較於理論和實驗。積分法使用了單邊帶(SSB)相位雜訊頻譜的頻譜面積來計算方均根(rms)的時序跳動。另一種方法,諧波分析,則是利用高次諧波的最高雜訊功率來得到時序跳動。儘管這兩種方法皆被證實是準確的,但是還沒有人做過其完整的比較。本論文首先展現出強度雜訊和時序跳動皆可藉著把兩種方法實現於Labview程式來有效地被特性化。結果表現出積分法(1.1ps)和諧波分析法(1.25ps)得到一致的時序跳動值於擁有外腔的增益調製雷射二極體。此兩種方法也被比較討論於二極體增益的Yb:KY(WO4)2 (Yb:KYW)被動鎖模雷射雜訊量測且都得到2ps的方均根時序跳動值。此結果表示無論是諧波分析法或積分法皆可以成功地用來計算時序跳動。 | zh_TW |
| dc.description.abstract | A theoretical and experimental comparison between two methods of timing jitter calculation in the gain-switched laser diode is made. The integral method utilizes spectral area of the single side-band (SSB) phase noise spectrum to calculate root mean square (rms) timing jitter. Another approach, harmonic analysis, exploits the uppermost noise power in high harmonics to retrieve timing fluctuation instead. Even though both methods have been verified to be accurate, a full comparison has yet to be performed. This thesis will first demonstrate that both amplitude noise and timing jitter fluctuation can be characterized efficiently by implementing two methods with Labview programs. Results show that a consistent timing jitter is found by the integral method (1.1ps) and harmonic analysis (1.25ps) in gain-switched laser diodes with an external cavity scheme. A comparison of the two approaches in noise measurement of diode-pumped Yb:KY(WO4)2 (Yb:KYW) passive mode-locked laser is also discussed, which both give an outcome of 2ps rms timing jitter. The results indicate that either harmonic analysis or integral method can be successfully utilized to calculate timing jitter. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:40:15Z (GMT). No. of bitstreams: 1 ntu-101-R99941053-1.pdf: 626875 bytes, checksum: 87659ae25567a1386d72ceeb8e9c0461 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II Acknowledgement III List of Graphs VII Chapter 1 Introduction 1 1.1 Objective 1 1.2 An Overview of Theoretical Framework 5 Chapter 2 Characterizing Laser Noise through RFSA 13 2.1 Gain-switched laser diode 13 2.1.1 Operating Condition 14 2.1.2 Noise Measurement of RFSA 16 2.2 A Realization of Harmonic Analysis and Integral Method 18 2.2.1 Harmonic Analysis 19 2.2.1.1 The Noisy RFSA Trace 19 2.2.1.2 Find The Uppermost Noise Power 21 2.2.2 Integral Method 24 2.2.2.1 The SSB Phase Noise Spectrum 24 2.2.2.2 The Calculation of Spectral Area 25 2.2.3 Amplitude Fluctuations 26 Chapter 3 Verification of Two Algorithms 28 3.1 Introduction 28 3.2 Verification of Harmonic Approaches 29 3.2.1 The Inspection of Algorithm in Pure Gain-switched Laser Diode 29 3.2.2 The Inspection of the Algorithm in a Hybrid Gain-switched Laser Diode 31 3.2.3 Amplitude Fluctuation Calculated by Harmonic Analysis 36 3.2.4 Summary 37 3.3 Verification of Integral Method 37 3.3.1 Determination of Integration Boundaries 39 3.3.2 Implementation of Integral Method 40 Chapter 4 Comparison of Harmonic Analysis and Integral Method on Timing Jitter 43 4.1 Timing Jitter Evaluation in Gain-switched Semiconductor Laser Diodes 43 4.1.1 Discussion of Controlling Measurement Parameters 43 4.1.2 Comparison between Two Approaches 45 4.2 Jitter Evaluation of Passive Mode-locked Laser 49 4.2.1 Femtosecond Yb:KYW Solid State Laser 49 4.2.2 Comparison between Two Approaches 51 Chapter 5 Conclusion and Future Work 57 Bibliography 59 Appendix: MatLab Programs for the Timing Jitter Calculation 63 A1 Parameters in the RFSA Trace 63 A2 The Harmonic Algorithm for the Energy Fluctuation and Timing Jitter Calculation 63 A3 The Integral Algorithm for the Timing Jitter Calculation 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雷射二極體 | zh_TW |
| dc.subject | 單邊帶相位雜訊頻譜 | zh_TW |
| dc.subject | 時序跳動 | zh_TW |
| dc.subject | 積分法 | zh_TW |
| dc.subject | 諧波分析法 | zh_TW |
| dc.subject | Timing jitter | en |
| dc.subject | Single side-band phase noise spectrum | en |
| dc.subject | Laser diodes | en |
| dc.subject | Harmonic analysis | en |
| dc.subject | Integral method | en |
| dc.title | 利用積分法與諧波分析於增益調製半導體雷射二極體
之時序跳動特性比較 | zh_TW |
| dc.title | Comparison between Integral Method and Harmonic Analysis on the Timing Jitter Characteristics of Gain-Switched Semiconductor Laser Diodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | Tom Brown(Tom Brown) | |
| dc.contributor.oralexamcommittee | 吳志毅(Chih-I Wu) | |
| dc.subject.keyword | 雷射二極體,單邊帶相位雜訊頻譜,時序跳動,積分法,諧波分析法, | zh_TW |
| dc.subject.keyword | Laser diodes,Single side-band phase noise spectrum,Timing jitter,Integral method,Harmonic analysis, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 612.18 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
