請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64312
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林育誼(Yu-Yi Lin) | |
dc.contributor.author | Wen-Hsin Lu | en |
dc.contributor.author | 盧玟心 | zh_TW |
dc.date.accessioned | 2021-06-16T17:40:09Z | - |
dc.date.available | 2022-08-14 | |
dc.date.copyright | 2012-09-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-15 | |
dc.identifier.citation | Ahima, R. S., D. Prabakaran, et al. (1998). 'Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function.' J Clin Invest101(5): 1020-1027.
Akhtar, R. A., A. B. Reddy, et al. (2002). 'Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus.' Curr Biol12(7): 540-550. Ando, H., H. Yanagihara, et al. (2005). 'Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue.' Endocrinology146(12): 5631-5636. Arden, S. D., T. Zahn, et al. (1999). 'Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein.' Diabetes48(3): 531-542. Baggs, J. E. and C. B. Green (2003). 'Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA.' Curr Biol13(3): 189-198. Baroukh, N., M. A. Ravier, et al. (2007). 'MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines.' J Biol Chem282(27): 19575-19588. Bartel, D. P. (2004). 'MicroRNAs: genomics, biogenesis, mechanism, and function.' Cell116(2): 281-297. Bartel, D. P. (2009). 'MicroRNAs: target recognition and regulatory functions.' Cell136(2): 215-233. Bass, J. and J. S. Takahashi (2010). 'Circadian integration of metabolism and energetics.' Science330(6009): 1349-1354. Behm-Ansmant, I., J. Rehwinkel, et al. (2006). 'mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes.' Genes Dev20(14): 1885-1898. Billy, E., V. Brondani, et al. (2001). 'Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines.' Proc Natl Acad Sci U S A98(25): 14428-14433. Boztug, K., G. Appaswamy, et al. (2009). 'A syndrome with congenital neutropenia and mutations in G6PC3.' N Engl J Med360(1): 32-43. Brodersen, P., L. Sakvarelidze-Achard, et al. (2008). 'Widespread translational inhibition by plant miRNAs and siRNAs.' Science320(5880): 1185-1190. Bushati, N. and S. M. Cohen (2007). 'microRNA functions.' Annu Rev Cell Dev Biol23: 175-205. Ceriani, M. F., J. B. Hogenesch, et al. (2002). 'Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior.' J Neurosci22(21): 9305-9319. Chen, C. Z., L. Li, et al. (2004). 'MicroRNAs modulate hematopoietic lineage differentiation.' Science303(5654): 83-86. Chen, J., Y. C. Chiang, et al. (2002). 'CCR4, a 3'-5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase.' EMBO J21(6): 1414-1426. Cheng, H. Y., J. W. Papp, et al. (2007). 'microRNA modulation of circadian-clock period and entrainment.' Neuron54(5): 813-829. Cherrington, A. D. (1999). 'Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo.' Diabetes48(5): 1198-1214. Chou, J. Y. and B. C. Mansfield (2008). 'Mutations in the glucose-6-phosphatase-alpha (G6PC) gene that cause type Ia glycogen storage disease.' Hum Mutat29(7): 921-930. Damiola, F., N. Le Minh, et al. (2000). 'Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus.' Genes Dev14(23): 2950-2961. Davalos, A., L. Goedeke, et al. (2011). 'miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling.' Proc Natl Acad Sci U S A108(22): 9232-9237. De Boer, S. F. and J. Van der Gugten (1987). 'Daily variations in plasma noradrenaline, adrenaline and corticosterone concentrations in rats.' Physiol Behav40(3): 323-328. Denli, A. M., B. B. Tops, et al. (2004). 'Processing of primary microRNAs by the Microprocessor complex.' Nature432(7014): 231-235. Doench, J. G. and P. A. Sharp (2004). 'Specificity of microRNA target selection in translational repression.' Genes Dev18(5): 504-511. Duan, H., Y. Jiang, et al. (2010). 'MiR-320 and miR-494 affect cell cycles of primary murine bronchial epithelial cells exposed to benzo[a]pyrene.' Toxicol In Vitro24(3): 928-935. Duffield, G. E. (2003). 'DNA microarray analyses of circadian timing: the genomic basis of biological time.' J Neuroendocrinol15(10): 991-1002. Eckel-Mahan, K. and P. Sassone-Corsi (2009). 'Metabolism control by the circadian clock and vice versa.' Nat Struct Mol Biol16(5): 462-467. Elmen, J., M. Lindow, et al. (2008). 'LNA-mediated microRNA silencing in non-human primates.' Nature452(7189): 896-899. Esau, C., S. Davis, et al. (2006). 'miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting.' Cell Metab3(2): 87-98. Fernandez-Hernando, C., Y. Suarez, et al. (2011). 'MicroRNAs in lipid metabolism.' Curr Opin Lipidol22(2): 86-92. Filipowicz, W. (2005). 'RNAi: the nuts and bolts of the RISC machine.' Cell122(1): 17-20. Froy, O. (2010). 'Metabolism and circadian rhythms--implications for obesity.' Endocr Rev31(1): 1-24. Garbarino-Pico, E. and C. B. Green (2007). 'Posttranscriptional regulation of mammalian circadian clock output.' Cold Spring Harb Symp Quant Biol72: 145-156. Gardner, M. J., K. E. Hubbard, et al. (2006). 'How plants tell the time.' Biochem J397(1): 15-24. Gerich, J. E. (2010). 'Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications.' Diabet Med27(2): 136-142. Green, C. B. and J. C. Besharse (1996). 'Identification of a novel vertebrate circadian clock-regulated gene encoding the protein nocturnin.' Proc Natl Acad Sci U S A93(25): 14884-14888. Green, C. B., N. Douris, et al. (2007). 'Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity.' Proc Natl Acad Sci U S A104(23): 9888-9893. Green, C. B., J. S. Takahashi, et al. (2008). 'The meter of metabolism.' Cell134(5): 728-742. Grimson, A., K. K. Farh, et al. (2007). 'MicroRNA targeting specificity in mammals: determinants beyond seed pairing.' Mol Cell27(1): 91-105. Guionie, O., E. Clottes, et al. (2003). 'Identification and characterisation of a new human glucose-6-phosphatase isoform.' FEBS Lett551(1-3): 159-164. Gwizdek, C., B. Ossareh-Nazari, et al. (2003). 'Exportin-5 mediates nuclear export of minihelix-containing RNAs.' J Biol Chem278(8): 5505-5508. Han, J., Y. Lee, et al. (2004). 'The Drosha-DGCR8 complex in primary microRNA processing.' Genes Dev18(24): 3016-3027. Han, S., T. D. Kim, et al. (2005). 'Rhythmic expression of adenylyl cyclase VI contributes to the differential regulation of serotonin N-acetyltransferase by bradykinin in rat pineal glands.' J Biol Chem280(46): 38228-38234. Hanson, R. W. and L. Reshef (1997). 'Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression.' Annu Rev Biochem66: 581-611. Hasan, N. M., M. J. Longacre, et al. (2008). 'Impaired anaplerosis and insulin secretion in insulinoma cells caused by small interfering RNA-mediated suppression of pyruvate carboxylase.' J Biol Chem283(42): 28048-28059. Hatori, M. and S. Panda (2010). 'CRY links the circadian clock and CREB-mediated gluconeogenesis.' Cell Res20(12): 1285-1288. He, A., L. Zhu, et al. (2007). 'Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes.' Mol Endocrinol21(11): 2785-2794. He, L. and G. J. Hannon (2004). 'MicroRNAs: small RNAs with a big role in gene regulation.' Nat Rev Genet5(7): 522-531. Hertz, L., R. Dringen, et al. (1999). 'Astrocytes: glutamate producers for neurons.' J Neurosci Res57(4): 417-428. Hirota, T. and Y. Fukada (2004). 'Resetting mechanism of central and peripheral circadian clocks in mammals.' Zoolog Sci21(4): 359-368. Horton, J. D., J. L. Goldstein, et al. (2002). 'SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver.' J Clin Invest109(9): 1125-1131. Hutton, J. C. and R. M. O'Brien (2009). 'Glucose-6-phosphatase catalytic subunit gene family.' J Biol Chem284(43): 29241-29245. Jitrapakdee, S. (2012). 'Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis.' Int J Biochem Cell Biol44(1): 33-45. Kawai, M. and C. J. Rosen (2010). 'PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis.' Nat Rev Endocrinol6(11): 629-636. Kida, K., T. Nishio, et al. (1980). 'The circadian change of gluconeogenesis in the liver in vivo in fed rats.' J Biochem88(4): 1009-1013. Kim, W. K., M. Park, et al. (2011). 'MicroRNA-494 downregulates KIT and inhibits gastrointestinal stromal tumor cell proliferation.' Clin Cancer Res17(24): 7584-7594. Kojima, S., D. Gatfield, et al. (2010). 'MicroRNA-122 modulates the rhythmic expression profile of the circadian deadenylase Nocturnin in mouse liver.' PLoS One5(6): e11264. Konopka, R. J. and S. Benzer (1971). 'Clock mutants of Drosophila melanogaster.' Proc Natl Acad Sci U S A68(9): 2112-2116. Krutzfeldt, J., N. Rajewsky, et al. (2005). 'Silencing of microRNAs in vivo with 'antagomirs'.' Nature438(7068): 685-689. Kusenda, B., M. Mraz, et al. (2006). 'MicroRNA biogenesis, functionality and cancer relevance.' Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub150(2): 205-215. La Fleur, S. E., A. Kalsbeek, et al. (1999). 'A suprachiasmatic nucleus generated rhythm in basal glucose concentrations.' J Neuroendocrinol11(8): 643-652. Lai, E. C. (2002). 'Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation.' Nat Genet30(4): 363-364. Landthaler, M., A. Yalcin, et al. (2004). 'The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis.' Curr Biol14(23): 2162-2167. Lee, R. C., R. L. Feinbaum, et al. (1993). 'The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.' Cell75(5): 843-854. Lee, Y., I. Hur, et al. (2006). 'The role of PACT in the RNA silencing pathway.' EMBO J25(3): 522-532. Lee, Y., K. Jeon, et al. (2002). 'MicroRNA maturation: stepwise processing and subcellular localization.' EMBO J21(17): 4663-4670. Lehrke, M. and M. A. Lazar (2005). 'The many faces of PPARgamma.' Cell123(6): 993-999. Lewis, A. P. and C. L. Jopling (2010). 'Regulation and biological function of the liver-specific miR-122.' Biochem Soc Trans38(6): 1553-1557. Liao, J. K. (2007). 'Secondary prevention of stroke and transient ischemic attack: is more platelet inhibition the answer?' Circulation115(12): 1615-1621. Lieberman, S. M., A. M. Evans, et al. (2003). 'Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes.' Proc Natl Acad Sci U S A100(14): 8384-8388. Lim, L. P., M. E. Glasner, et al. (2003). 'Vertebrate microRNA genes.' Science299(5612): 1540. Liu, C., S. Li, et al. (2007). 'Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism.' Nature447(7143): 477-481. Lu, H., R. J. Buchan, et al. (2010). 'MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism.' Cardiovasc Res86(3): 410-420. Macrae, I. J., K. Zhou, et al. (2006). 'Structural basis for double-stranded RNA processing by Dicer.' Science311(5758): 195-198. Martin, C. C., J. K. Oeser, et al. (2002). 'Identification and characterization of a human cDNA and gene encoding a ubiquitously expressed glucose-6-phosphatase catalytic subunit-related protein.' J Mol Endocrinol29(2): 205-222. Mayr, B. and M. Montminy (2001). 'Transcriptional regulation by the phosphorylation-dependent factor CREB.' Nat Rev Mol Cell Biol2(8): 599-609. Merrow, M., K. Spoelstra, et al. (2005). 'The circadian cycle: daily rhythms from behaviour to genes.' EMBO Rep6(10): 930-935. Mithieux, G., F. Rajas, et al. (2004). 'A novel role for glucose 6-phosphatase in the small intestine in the control of glucose homeostasis.' J Biol Chem279(43): 44231-44234. Molina, C. A., N. S. Foulkes, et al. (1993). 'Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor.' Cell75(5): 875-886. Moore, K. J., K. J. Rayner, et al. (2010). 'microRNAs and cholesterol metabolism.' Trends Endocrinol Metab21(12): 699-706. Moore, R. Y. and V. B. Eichler (1972). 'Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat.' Brain Res42(1): 201-206. Na, Y. J., J. H. Sung, et al. (2009). 'Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm.' Exp Mol Med41(9): 638-647. Nakae, J., M. Oki, et al. (2008). 'The FoxO transcription factors and metabolic regulation.' FEBS Lett582(1): 54-67. Nordlie, R. C., J. D. Foster, et al. (1999). 'Regulation of glucose production by the liver.' Annu Rev Nutr19: 379-406. O'Brien, R. M. and D. K. Granner (1996). 'Regulation of gene expression by insulin.' Physiol Rev76(4): 1109-1161. Ohdaira, H., M. Sekiguchi, et al. (2012). 'MicroRNA-494 suppresses cell proliferation and induces senescence in A549 lung cancer cells.' Cell Prolif45(1): 32-38. Pegoraro, M. and E. Tauber (2008). 'The role of microRNAs (miRNA) in circadian rhythmicity.' J Genet87(5): 505-511. Petrolonis, A. J., Q. Yang, et al. (2004). 'Enzymatic characterization of the pancreatic islet-specific glucose-6-phosphatase-related protein (IGRP).' J Biol Chem279(14): 13976-13983. Poy, M. N., L. Eliasson, et al. (2004). 'A pancreatic islet-specific microRNA regulates insulin secretion.' Nature432(7014): 226-230. Poy, M. N., J. Hausser, et al. (2009). 'miR-375 maintains normal pancreatic alpha- and beta-cell mass.' Proc Natl Acad Sci U S A106(14): 5813-5818. Provost, P., D. Dishart, et al. (2002). 'Ribonuclease activity and RNA binding of recombinant human Dicer.' EMBO J21(21): 5864-5874. Ralph, M. R., R. G. Foster, et al. (1990). 'Transplanted suprachiasmatic nucleus determines circadian period.' Science247(4945): 975-978. Ramachandran, D., U. Roy, et al. (2011). 'Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets.' FEBS J278(7): 1167-1174. Reddy, A. B., N. A. Karp, et al. (2006). 'Circadian orchestration of the hepatic proteome.' Curr Biol16(11): 1107-1115. Reppert, S. M. and D. R. Weaver (2002). 'Coordination of circadian timing in mammals.' Nature418(6901): 935-941. Reshef, L., Y. Olswang, et al. (2003). 'Glyceroneogenesis and the triglyceride/fatty acid cycle.' J Biol Chem278(33): 30413-30416. Rodriguez, A., S. Griffiths-Jones, et al. (2004). 'Identification of mammalian microRNA host genes and transcription units.' Genome Res14(10A): 1902-1910. Rottiers, V. and A. M. Naar (2012). 'MicroRNAs in metabolism and metabolic disorders.' Nat Rev Mol Cell Biol13(4): 239-250. Ruiter, M., S. E. La Fleur, et al. (2003). 'The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior.' Diabetes52(7): 1709-1715. Rusak, B. and I. Zucker (1979). 'Neural regulation of circadian rhythms.' Physiol Rev59(3): 449-526. Sahar, S. and P. Sassone-Corsi (2009). 'Metabolism and cancer: the circadian clock connection.' Nat Rev Cancer9(12): 886-896. Sassone-Corsi, P. (1998). 'Coupling gene expression to cAMP signalling: role of CREB and CREM.' Int J Biochem Cell Biol30(1): 27-38. Scheer, F. A., M. F. Hilton, et al. (2009). 'Adverse metabolic and cardiovascular consequences of circadian misalignment.' Proc Natl Acad Sci U S A106(11): 4453-4458. Schibler, U. and P. Sassone-Corsi (2002). 'A web of circadian pacemakers.' Cell111(7): 919-922. Scrutton, M. C., D. B. Keech, et al. (1965). 'Pyruvate Carboxylase. Iv. Partial Reactions and the Locus of Activation by Acetyl Coenzyme A.' J Biol Chem240: 574-581. Shaywitz, A. J. and M. E. Greenberg (1999). 'CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals.' Annu Rev Biochem68: 821-861. Shende, V. R., M. M. Goldrick, et al. (2011). 'Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice.' PLoS One6(7): e22586. Siddle, K. (2011). 'Signalling by insulin and IGF receptors: supporting acts and new players.' J Mol Endocrinol47(1): R1-10. Simpson, S. and J. J. Galbraith (1905). 'An investigation into the diurnal variation of the body temperature of nocturnal and other birds, and a few mammals.' J Physiol33(3): 225-238. Stephan, F. K. and I. Zucker (1972). 'Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions.' Proc Natl Acad Sci U S A69(6): 1583-1586. Topol, E. J. (2003). 'Current status and future prospects for acute myocardial infarction therapy.' Circulation108(16 Suppl 1): III6-13. Tucker, M., R. R. Staples, et al. (2002). 'Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae.' EMBO J21(6): 1427-1436. Turek, F. W., C. Joshu, et al. (2005). 'Obesity and metabolic syndrome in circadian Clock mutant mice.' Science308(5724): 1043-1045. Utter, M. F. and D. B. Keech (1960). 'Formation of oxaloacetate from pyruvate and carbon dioxide.' J Biol Chem235: PC17-18. Vasudevan, S., Y. Tong, et al. (2007). 'Switching from repression to activation: microRNAs can up-regulate translation.' Science318(5858): 1931-1934. Vidnes, J. and O. Sovik (1976). 'Gluconeogenesis in infancy and childhood. III. Deficiency of the extramitochondrial form of hepatic phosphoenolpyruvate carboxykinase in a case of persistent neonatal hypoglycaemia.' Acta Paediatr Scand65(3): 307-312. Vitaterna, M. H., D. P. King, et al. (1994). 'Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior.' Science264(5159): 719-725. Waddell, I. D. and A. Burchell (1988). 'The microsomal glucose-6-phosphatase enzyme of pancreatic islets.' Biochem J255(2): 471-476. Wang, X., X. Zhang, et al. (2010). 'MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury.' Circulation122(13): 1308-1318. Wang, Y., C. C. Martin, et al. (2007). 'Deletion of the gene encoding the islet-specific glucose-6-phosphatase catalytic subunit-related protein autoantigen results in a mild metabolic phenotype.' Diabetologia50(4): 774-778. Wang, Y., D. L. Osterbur, et al. (2001). 'Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse.' BMC Dev Biol1: 9. Wu, L., J. Fan, et al. (2006). 'MicroRNAs direct rapid deadenylation of mRNA.' Proc Natl Acad Sci U S A103(11): 4034-4039. Yang, J., N. A. Danke, et al. (2006). 'Islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD4+ T cells in human subjects.' J Immunol176(5): 2781-2789. Yang, S., A. Liu, et al. (2009). 'The role of mPer2 clock gene in glucocorticoid and feeding rhythms.' Endocrinology150(5): 2153-2160. Yang, X., M. Downes, et al. (2006). 'Nuclear receptor expression links the circadian clock to metabolism.' Cell126(4): 801-810. Young, M. W. and S. A. Kay (2001). 'Time zones: a comparative genetics of circadian clocks.' Nat Rev Genet2(9): 702-715. Zeng, Y. (2006). 'Principles of micro-RNA production and maturation.' Oncogene25(46): 6156-6162. Zhang, E. E., Y. Liu, et al. (2010). 'Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis.' Nat Med16(10): 1152-1156. Zhang, H., F. A. Kolb, et al. (2004). 'Single processing center models for human Dicer and bacterial RNase III.' Cell118(1): 57-68. Zhang, J., F. Zhang, et al. (2009). 'Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring.' BMC Genomics10: 478. Zhang, R. and B. Su (2009). 'Small but influential: the role of microRNAs on gene regulatory network and 3'UTR evolution.' J Genet Genomics36(1): 1-6. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64312 | - |
dc.description.abstract | 為了適應外在環境的變化,生物體內存在著一個內化的生理時鐘,精細調控生物體一天的生理變化,使生物更能適應外在環境變化。哺乳類動物的中央節律時鐘位於上視交叉神經核,驅動生物體的晝夜節律、整合生理與行為模式,如睡眠周期。中央節律時鐘可以自發性的產生,然而環境線索,如光線、溫度等,也可以重置中央節律時鐘。大部分哺乳動物的周邊組織如肝臟、胰臟等器官,亦存在著節律時鐘,其可透過血液訊號,如荷爾蒙,達成與中央節律時鐘同步的生理狀態。節律時鐘的失調會影響生物體生理行為並產生代謝疾病甚至是癌症的產生,所以節律時鐘的調控對於生物體的健康是相當重要。
從分子的角度來探討,晝夜節律的現象是源自細胞中存在一個自動的轉錄與後轉譯回饋路徑,許多轉錄因子參與其中的核心部分,其表現量呈現晝夜節律變化且下游的基因表現也呈現節律變化。其中一個下游基因產物稱做Nocturnin,具有去腺嘧啶酶(deadenylase)的活性,藉由去除標的mRNA尾巴上的聚腺嘧啶(poly (A) tail)影響下游基因的表現。許多文獻指Nocturnin會影響生物體內葡萄糖與脂肪的代謝。 微型核醣核酸(miRNA),一群大小約22個鹼基且無法被轉譯成蛋白質的核糖核酸。微型核醣核酸扮演調控基因與蛋白質表現的重要角色,並且近年來亦被發現參與在晝夜節律的調控。釐清這些詳細的分子機制有助於我們獲得更多的訊息,期望對於預防或治療代謝相關疾病能有更多突破性的發展。 此篇論文中有兩個目的:一個是想要探討Nocturnin對於下游基因的調控機制。Nocturnin調控標的mRNA尾巴上的聚腺嘧啶(poly(A) tail)的機制尚未明瞭。Nocturnin與酵母菌轉錄因子yCCR4很相像,且yCCR4可以藉由結合RNA沉默複合體(RISC)去調控下游基因表現,所以我們假設Nocturnin同樣可藉由結合RNA沉默複合體(RISC)去調控下游基因表現,但在我們共同免疫沉澱的實驗結果裡,Nocturnin與AGO2是無法結合形成複合物。另一個主要的目的是希望在老鼠的肝臟中找到具有晝夜節律變化的微型核醣核酸,並且進一步想了解此微型核醣核酸於肝臟中所扮演的調控角色為何。首先我們利用了微型核醣核酸微陣列的方法分析了約700個微型核醣核酸,找到日夜變化大於一點五倍變化的微型核醣核酸,並進一步利用及時定量聚合酶連鎖反應做確認。在此我們找到了miR-494,其晚上的表現比白天的表現來的高。後續並找到miR-494的標的基因「PCK1、G6PC、G6PC2」亦呈現日夜節律的變化。這些標的基因分別參與在肝臟與胰臟的醣類代謝中。實驗結果發現,不同的醣類濃度會影響miR-494以及PCK1、G6PC、G6PC2的表現。穩定表現miR-494的細胞株,細胞產生葡萄糖的濃度相較於對照組來得低,以及降低老鼠肝臟中CREB的表現量會使miR-494表現量增加。我們發現miR-494可能藉由影響PCK1、G6PC、G6PC2的表現進而調控體內的醣類代謝。未來可以在老鼠體內加以應證具有日夜節律變化的miR-494對於糖類代謝的影響 | zh_TW |
dc.description.abstract | Circadian rhythm is an endogenously driven cycle with a roughly 24-hour period in various biochemical, physiological, and behavioral processes. The rhythm is generated by a transcriptional feedback loop existing in cells. There are two major types of circadian clocks, one is the “central clock” that is expressed within the pacemaker neurons in the suprachiasmatic nucleus (SCN), and the other is the “peripheral clock” that exists in almost all other tissue types. Central clock provides “standard time” to maintain proper phase alignment of peripheral tissue clocks.
Nocturnin (Noc), a proteinwith the circadian pattern, is abundant in liver and has deadenylase activity. Moreover, there are studies indicating thatNoc KO mice have abnormal glucose regulations and insulin sensitivity etc. Hence,Noc is thought to link circadian clock and metabolism by affectingtarget mRNA stability through post-transcriptional regulations. MicroRNAs (miRNAs) are a group of about 22 nucleotides-long non-coding small RNA molecules that play significant roles in regulating gene and protein expressions. Recently, many studies suggested that miRNA might also be important regulators of circadian rhythm. In this study, we have two goals. One is to figure out the mechanism Noc regulates target mRNA stability. We hypothesize that Noc regulates target mRNA stability through binding to RISC complex, but we couldn’t detect such binding using co-immunoprecititation. The other one is to identify miRNAswith circadian rhythm and to investigate the functions of these rhythmic miRNAsin the mammalian liver. We identified several rhythmic miRNAs by microarray experiments, and focused on mmu-miR-494 because its predicted targets, PCK1, G6PC and G6PC2, also display rhythmic expression patterns with a phase opposite to mmu-miR-494. G6PC and PCK1areboth critical enzymesin gluconeogenesis.We further proved that G6PC and PCK1 expression level can be suppressed by overexpression of mmu-miR-494 in BNLCL2 cells, and also confirmed the post-transcriptional regulation of mmu-miR-494 on the two genes by luciferase reporter assays. Furthermore, glucose production rate is lower in stable miR-494 overexpression BNLCL2 cell. To identify upstream transcription factors controlling the rhythmic expression of mmu-miR-494, we used the transcription binding site prediction website, TFSEARCH, and searched out ttwo nearly perfect CREB binding sites. Knockdown of CREB actually increased miR-494 expression, we hypothesized that CREB might directly inhibits miR-494 expression or indirectly by promoting expressions of other repressors. According to these data, we found a rhythmic miR-494 in mouse liver and also identified PCK1, G6PC, and G6PC2 might to be the targets of miR-494. We also found that miR-494 expression would be up-regulated after knockdown CREB. We consider that this rhythmic miR-494 may play an important role in regulating glucose metabolisms. In the future, we can perform in vivo experiments to further confirmthe role of rhythmic miR-494 in glucose metabolisms. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:40:09Z (GMT). No. of bitstreams: 1 ntu-101-R99442034-1.pdf: 1120214 bytes, checksum: 782e6bc510417407cdf37fb01b5b476f (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Table of contents
口試委員審定書……………………………………………………………………….I Acknowledgments……………………………………………………………………. II 中文摘要 ……………………………………………………………………………...III Abstract …………….……………………………………………………………..……V Chapter1. Introduction………………………………………………………………….1 1.1 Circadian rhythm……………………………………………………………………1 1.2 The connection between circadian rhythm and metabolism………………………..4 1.3 Nocturnin in circadian clock and cellular metabolism………………………..….…6 1.4 Overview of miRNAs……………………………………………………………….7 1.5 Interlock between circadian rhythm and miRNA………………………………….9 1.6 The roles of miRNAs in metabolism………………………………………………11 1.7Gluconeogenesis ……………………………………………………………………12 1.8 Specific Aim……………………….………………………………………………13 Chapter2. Materials and Methods…………………………..………………………….15 2.1 Western Blotting……………………………………………………………...……15 2.2 Co-immunoprecipitation………………………………..………………………….15 2.3 Animals and tissue collection………………………….…………………………..16 2.4 RNA extraction………………………………...…………………………………..16 2.5 Quantitative real-time PCR analysis (RT-qPCR)………………………………….16 2.6 Cell culture……………………………………………………………….………..17 2.7 Pre-miR-494 construction…………………………………………………………17 2.8 Luciferase assay (3’UTR mutation)……………………………………………….17 2.9Lentiviral production and lentiviral infection………………………….……….....18 2.10 Glucose production assay……………………………………….…………….….18 2.11 Statistical analysis……………………………………………………….………..19 Chapter3. Results…………………………………………………………….….……..20 3.1 Detect interactions between Nocturnin and AGO2 by co-immunoprecipitation…..20 3.2 Use TaqMan quantitative real-time PCR to confirm the microarray data…………20 3.3 Use SYBR quantitative real-time PCR to validate the targets of mmu-miR-494….21 3.4 Collect more time points and use quantitative real-time PCR to confirm mmu-miR-494 and its targets expression……………………………………………...22 3.5 Detect PCK1 and G6PC expression changes by overexpressing miR-494 in the mouse liver cell line……………………………………………………………………23 3.6 Confirm PCK1 and G6PC are miR-494 direct targets by luciferase assay……..…24 3.7 Detect miR-494, PCK1, and G6PC expression changes after treating glucose and no glucose medium…………………………………………………………………..……24 3.8 Detect the glucose concentration in miR-494 stable clone……………………...…25 3.9 MiR-494 expression level would be altered by CREB in BNL CL2……………....25 3.10 Detect G6PC2 expression changes by overexpressing miR-494 in the mouse pancreatic beta cell line………………………………………………………………..26 3.11 Confirm G6PC2 are miR-494 direct targets by luciferase assay…………………26 3.12 Detect G6PC2 expression in No.3 mouse pancreatic samples……...……………26 3.13Detect miR-494 and G6PC2 expression changes after treating glucose and no glucose medium………………………………………………………………………..27 Chapter4.Disscusion………………………………………………………………..….28 List of Figures…………………………………………………………………………32 Figure1. Co-immunoprecipitation experiments did not detect binding between Nocturnin and AGO2………………………………………………………………….32 Figure2. MiR-494 and miR-451 have circadian expression ………………………….33 Figure3. G6PC and G6PC2 are miR-494 probable targets ……………………….…..34 Figure4. Collect more mice liver samples to check miR-494 expression …………….35 Figure5. PCK1 and G6PC have circadian rhythm patterns which are opposite to miR-494 in NO.3 mouse liver samples ……………………………………………….36 Figure6. PCK1 and G6PC mRNA expression level are down-regulated after overexpressing miR-494 in BNL CL2 …….…………………………………………..37 Figure7. PCK1 can be down-regulated by miR-494 in NIH3T3 and BNL CL2 …...….38 Figure8. PCK1, G6PC, and miR-494 expression would be up-regulated after treating no glucose medium ………………………………………………………………………..40 Figure9. Glucose production rate is lower in miR-494 stable clone ………………….41 Figure10. MiR-494 expression can be upregulated after knockdown CREB by shCREB in mouse liver cell line…………………………………………………………….……42 Figure11. G6PC2 mRNA expression level are down-regulated after overexpressing miR-494 in Min6……………………………………………………………………….43 Figure12. G6PC2 expression can be down-regulated by miR-494 in NIH3T3………..44 Figure13. Detect G6PC2 expression change in NO.3 mouse pancreas sample……….45 Figure14. G6PC2 and miR-494 expression would be affected by different glucose concentrations………………………………………………………………………….46 Figure15. MiR-494 expression would not be altered after knockdown CREB by shCREB in mouse pancreatic βcell line……………………………………………….47 List of Tables…………………………………………………………..……………….48 Table1. Primers of Real-Time PCR…………….………………………………………48 Table2. Primers of mmu-miR-494 construct …………………………..………………49 Table3. Primers of miR-494 targets 3’UTR construct…………………………………50 Table4. miRNAs with rhythmic expression patterns………………….……………….51 References……………………………………………………………………………52 | |
dc.language.iso | en | |
dc.title | 探索日夜節律微型核醣核酸在哺乳類動物醣類代謝的角色 | zh_TW |
dc.title | Explore the regulatory roles of circadian rhythmic microRNAs (miRNAs) in mammalian glucose metabolism | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 莊立民,張?仁 | |
dc.subject.keyword | 節律時鐘,微型核醣核酸,醣類代謝,去腺嘧啶酶,肝臟, | zh_TW |
dc.subject.keyword | circadian rhythm,miRNA,glucose metabolism,deadenylase,liver, | en |
dc.relation.page | 64 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-15 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。