Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64310
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐立中(Li-Chung Hsu)
dc.contributor.authorChi Chih Changen
dc.contributor.author張綺芝zh_TW
dc.date.accessioned2021-06-16T17:40:02Z-
dc.date.available2017-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-14
dc.identifier.citation1. Janeway, C.A., Jr., Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol, 1989. 54 Pt 1: p. 1-13.
2. Murphy, K., Janeway's Immunobiology. 8th ed. 2012, New York: Garland Science. 868.
3. Shen, H.N., C.L. Lu, and H.H. Yang, Epidemiologic trend of severe sepsis in Taiwan from 1997 through 2006. Chest, 2010. 138(2): p. 298-304.
4. Donath, M.Y. and S.E. Shoelson, Type 2 diabetes as an inflammatory disease. Nat Rev Immunol, 2011. 11(2): p. 98-107.
5. Franks, A.L. and J.E. Slansky, Multiple associations between a broad spectrum of autoimmune diseases, chronic inflammatory diseases and cancer. Anticancer Res, 2012. 32(4): p. 1119-36.
6. Medzhitov, R., P. Preston-Hurlburt, and C.A. Janeway, Jr., A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997. 388(6640): p. 394-7.
7. Chow, J.C., et al., Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem, 1999. 274(16): p. 10689-92.
8. Miyake, K., Roles for accessory molecules in microbial recognition by Toll-like receptors. J Endotoxin Res, 2006. 12(4): p. 195-204.
9. Park, B.S., et al., The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature, 2009. 458(7242): p. 1191-5.
10. Wang, C., et al., TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001. 412(6844): p. 346-51.
11. Shibuya, H., et al., TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science, 1996. 272(5265): p. 1179-82.
12. Takaesu, G., et al., TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell, 2000. 5(4): p. 649-58.
13. Kanayama, A., et al., TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell, 2004. 15(4): p. 535-48.
14. Hacker, H. and M. Karin, Regulation and function of IKK and IKK-related kinases. Sci STKE, 2006. 2006(357): p. re13.
15. Oganesyan, G., et al., Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature, 2006. 439(7073): p. 208-11.
16. Meylan, E., et al., RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol, 2004. 5(5): p. 503-7.
17. Chang, M., W. Jin, and S.C. Sun, Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat Immunol, 2009. 10(10): p. 1089-95.
18. Iwami, K.I., et al., Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol, 2000. 165(12): p. 6682-6.
19. Qureshi, S.T., et al., Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med, 1999. 189(4): p. 615-25.
20. Shen, W., et al., Inhibition of TLR activation and up-regulation of IL-1R-associated kinase-M expression by exogenous gangliosides. J Immunol, 2008. 180(7): p. 4425-32.
21. Ehrchen, J.M., et al., The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol, 2009. 86(3): p. 557-66.
22. Brint, E.K., et al., ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol, 2004. 5(4): p. 373-9.
23. Diehl, G.E., et al., TRAIL-R as a negative regulator of innate immune cell responses. Immunity, 2004. 21(6): p. 877-89.
24. Burns, K., et al., Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med, 2003. 197(2): p. 263-8.
25. Janssens, S., et al., MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB- and AP-1-dependent gene expression. FEBS Lett, 2003. 548(1-3): p. 103-7.
26. Kobayashi, K., et al., IRAK-M is a negative regulator of Toll-like receptor signaling. Cell, 2002. 110(2): p. 191-202.
27. Hardy, M.P. and L.A. O'Neill, The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J Biol Chem, 2004. 279(26): p. 27699-708.
28. Janssens, S. and R. Beyaert, Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell, 2003. 11(2): p. 293-302.
29. Heyninck, K. and R. Beyaert, The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6. FEBS Lett, 1999. 442(2-3): p. 147-50.
30. Boone, D.L., et al., The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol, 2004. 5(10): p. 1052-60.
31. Harhaj, E.W. and V.M. Dixit, Regulation of NF-kappaB by deubiquitinases. Immunol Rev, 2012. 246(1): p. 107-24.
32. Abraham, S.M. and A.R. Clark, Dual-specificity phosphatase 1: a critical regulator of innate immune responses. Biochem Soc Trans, 2006. 34(Pt 6): p. 1018-23.
33. Whitmore, M.M., et al., Negative regulation of TLR-signaling pathways by activating transcription factor-3. J Immunol, 2007. 179(6): p. 3622-30.
34. Litvak, V., et al., Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol, 2009. 10(4): p. 437-43.
35. Mahtani, K.R., et al., Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol, 2001. 21(19): p. 6461-9.
36. Tudor, C., et al., The p38 MAPK pathway inhibits tristetraprolin-directed decay of interleukin-10 and pro-inflammatory mediator mRNAs in murine macrophages. FEBS Lett, 2009. 583(12): p. 1933-8.
37. Matsushita, K., et al., Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature, 2009. 458(7242): p. 1185-90.
38. Contreras, J. and D.S. Rao, MicroRNAs in inflammation and immune responses. Leukemia, 2012. 26(3): p. 404-13.
39. O'Neill, L.A., F.J. Sheedy, and C.E. McCoy, MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol, 2011. 11(3): p. 163-75.
40. Jones, M.R., et al., Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol, 2009. 11(9): p. 1157-63.
41. Huang, H., et al., Sensitivity of mice to lipopolysaccharide is increased by a high saturated fat and cholesterol diet. J Inflamm (Lond), 2007. 4: p. 22.
42. Kovacs, E.J., et al., Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol, 2009. 30(7): p. 319-24.
43. Valins, W., S. Amini, and B. Berman, The Expression of Toll-like Receptors in Dermatological Diseases and the Therapeutic Effect of Current and Newer Topical Toll-like Receptor Modulators. J Clin Aesthet Dermatol, 2010. 3(9): p. 20-9.
44. Martin, G. and W. Keller, RNA-specific ribonucleotidyl transferases. RNA, 2007. 13(11): p. 1834-49.
45. Wilusz, J.E., et al., tRNAs marked with CCACCA are targeted for degradation. Science, 2011. 334(6057): p. 817-21.
46. Sadler, A.J. and B.R. Williams, Interferon-inducible antiviral effectors. Nat Rev Immunol, 2008. 8(7): p. 559-68.
47. Rissland, O.S., A. Mikulasova, and C.J. Norbury, Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol Cell Biol, 2007. 27(10): p. 3612-24.
48. Kwak, J.E. and M. Wickens, A family of poly(U) polymerases. RNA, 2007. 13(6): p. 860-7.
49. Chang, J.H. and L. Tong, Mitochondrial poly(A) polymerase and polyadenylation. Biochim Biophys Acta, 2011.
50. Nagaike, T., et al., Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria-specific poly(A) polymerase and polynucleotide phosphorylase. J Biol Chem, 2005. 280(20): p. 19721-7.
51. Berndt, H., et al., Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming. RNA, 2012. 18(5): p. 958-72.
52. Rammelt, C., et al., PAPD5, a noncanonical poly(A) polymerase with an unusual RNA-binding motif. RNA, 2011. 17(9): p. 1737-46.
53. Mullen, T.E. and W.F. Marzluff, Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5' to 3' and 3' to 5'. Genes Dev, 2008. 22(1): p. 50-65.
54. Schmidt, M.J., S. West, and C.J. Norbury, The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation. RNA, 2011. 17(1): p. 39-44.
55. Burroughs, A.M., et al., A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. Genome Res, 2010. 20(10): p. 1398-410.
56. Wyman, S.K., et al., Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res, 2011. 21(9): p. 1450-61.
57. Hagan, J.P., E. Piskounova, and R.I. Gregory, Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol, 2009. 16(10): p. 1021-5.
58. Heo, I., et al., TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell, 2009. 138(4): p. 696-708.
59. Wickens, M. and J.E. Kwak, Molecular biology. A tail tale for U. Science, 2008. 319(5868): p. 1344-5.
60. Stevenson, A.L. and C.J. Norbury, The Cid1 family of non-canonical poly(A) polymerases. Yeast, 2006. 23(13): p. 991-1000.
61. Mosser, D.M. and X. Zhang, Interleukin-10: new perspectives on an old cytokine. Immunol Rev, 2008. 226: p. 205-18.
62. Kubo, M., T. Hanada, and A. Yoshimura, Suppressors of cytokine signaling and immunity. Nat Immunol, 2003. 4(12): p. 1169-76.
63. Gao, B., Hepatoprotective and anti-inflammatory cytokines in alcoholic liver disease. J Gastroenterol Hepatol, 2012. 27 Suppl 2: p. 89-93.
64. Okamoto, A., et al., Regulatory T-cell-associated cytokines in systemic lupus erythematosus. J Biomed Biotechnol, 2011. 2011: p. 463412.
65. Bouma, G. and W. Strober, The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol, 2003. 3(7): p. 521-33.
66. Ranatunga, D.C., et al., A Protective Role for Human IL-10-Expressing CD4+ T Cells in Colitis. J Immunol, 2012. 189(3): p. 1243-52.
67. Hofmann, S.R., et al., Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. Clin Immunol, 2012. 143(2): p. 116-27.
68. Unterberger, C., et al., Role of STAT3 in glucocorticoid-induced expression of the human IL-10 gene. Mol Immunol, 2008. 45(11): p. 3230-7.
69. Cao, S., et al., NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem, 2006. 281(36): p. 26041-50.
70. Brenner, S., et al., cAMP-induced Interleukin-10 promoter activation depends on CCAAT/enhancer-binding protein expression and monocytic differentiation. J Biol Chem, 2003. 278(8): p. 5597-604.
71. Brightbill, H.D., et al., A prominent role for Sp1 during lipopolysaccharide-mediated induction of the IL-10 promoter in macrophages. J Immunol, 2000. 164(4): p. 1940-51.
72. Chiang, B.T., et al., Direct interaction of C/EBPdelta and Sp1 at the GC-enriched promoter region synergizes the IL-10 gene transcription in mouse macrophage. J Biomed Sci, 2006. 13(5): p. 621-35.
73. Look, D.C., et al., Stat1 depends on transcriptional synergy with Sp1. J Biol Chem, 1995. 270(51): p. 30264-7.
74. Cao, S., et al., The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J Immunol, 2005. 174(6): p. 3484-92.
75. Cao, S., et al., Differential regulation of IL-12 and IL-10 gene expression in macrophages by the basic leucine zipper transcription factor c-Maf fibrosarcoma. J Immunol, 2002. 169(10): p. 5715-25.
76. Dikstein, R., Transcription and translation in a package deal: the TISU paradigm. Gene, 2012. 491(1): p. 1-4.
77. Bugaut, A. and S. Balasubramanian, 5'-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res, 2012. 40(11): p. 4727-41.
78. Chatterjee, S. and J.K. Pal, Role of 5'- and 3'-untranslated regions of mRNAs in human diseases. Biol Cell, 2009. 101(5): p. 251-62.
79. Olovnikov, I.A., et al., [A key role of the internal region of the 5'-untranslated region in the human L1 retrotransposon transcription activity]. Mol Biol (Mosk), 2007. 41(3): p. 508-14.
80. van der Stoep, N., E. Quinten, and P.J. van den Elsen, Transcriptional regulation of the MHC class II trans-activator (CIITA) promoter III: identification of a novel regulatory region in the 5'-untranslated region and an important role for cAMP-responsive element binding protein 1 and activating transcription factor-1 in CIITA-promoter III transcriptional activation in B lymphocytes. J Immunol, 2002. 169(9): p. 5061-71.
81. Medzhitov, R. and T. Horng, Transcriptional control of the inflammatory response. Nat Rev Immunol, 2009. 9(10): p. 692-703.
82. Kawai, T. and S. Akira, The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol, 2010. 11(5): p. 373-84.
83. Kondo, T., T. Kawai, and S. Akira, Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol, 2012.
84. Iyer, S.S., A.A. Ghaffari, and G. Cheng, Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages. J Immunol, 2010. 185(11): p. 6599-607.
85. VanDeusen, J.B., et al., STAT-1-mediated repression of monocyte interleukin-10 gene expression in vivo. Eur J Immunol, 2006. 36(3): p. 623-30.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64310-
dc.description.abstract先天性免疫系統是身體防禦的第一道防線。當人體被感染時,它提供即時的保護功能,進而有利於病原體的清除和調節適應性免疫系統。Toll-like Receptors(TLRs) 是先天性免疫系統的重要組成之一。在遭受微生物感染時,它們扮演著重要的角色,會去辨識pathogen associated molecular patterns,然後啟動下游的發炎和抗病毒反應。然而,炎症反應失調與多種疾病息息相關,如癌症、代謝性疾病和發炎性腸道疾病。因此,TLR所媒介的免疫反應必須受到嚴密的調控。在先前的研究中,我們的實驗室發現了”Zcchc6”,它屬於Terminal Uridylyl Transferase (TUTase)的成員,其表現量可在小鼠巨噬細胞中被LPS誘導提升。TUTase已知是調控RNA穩定性的酵素,其可藉由對 RNA受體末端加U,進而促進RNA 穩定或降解。我們的研究結果顯示,在Zcchc6-缺失的RAW264.7 巨噬細胞中, TLRs ligands刺激會導致許多細胞激素的失調。IL-10 是其中受影響的細胞激素之一,它是一種抗發炎細胞激素,且參與許多免疫調節功能。在TLRs活化4小時後, Zcchc6 缺失的 RAW264.7 巨噬細胞會有較高的IL-10 表現量。在這項研究中,我們進一步的探討了Zcchc6調控IL-10的機制,利用Luciferase reporter assays和primary transcript analysis,我們發現Zcchc6調控LPS所誘導的IL-10表現量,是通過其啟動子-355到+103的區域。此外,在Zcchc6缺失的 RAW264.7細胞中, LPS 增強STAT1的mRNA和蛋白質表現量,而先前的研究中STAT1已被推測參與IL-10的轉錄反應,這表示Zcchc6調節IL-10表現量,可能部分是通過調解STAT1的mRNA穩定性。由於IL-10是一種抗發炎細胞激素,在病原體攻擊時,IL-10的調控對於平衡發炎的影響是非常重要的,以確保清除病原體,並減少炎症導致的組織損傷。我們的研究證實Zcchc6可能會通過改變IL-10的轉錄因子的mRNA穩定度,以調控TLR4所媒介的IL-10表現量。因此,這項研究應可進一步幫助了解炎症反應和感染性疾病之間的調節。zh_TW
dc.description.abstractThe innate immunity is the first line of defense in the body. This system is vital as it provides immediate protective functions when the body is under infection and thus contributes to the clearance of pathogens and the regulation of the adaptive immunity. Toll-like receptors (TLRs) are an essential component of the innate immunity. They play a vital role in the recognition of pathogen associated molecular patterns upon infection and then initiate the downstream pro-inflammatory and antiviral responses. Dysregulation of the inflammatory response has been associated with a variety of diseases, such as cancer, metabolic diseases and inflammatory bowel disease. Thus, the TLR-mediated responses must be tightly controlled. In the previous study, our lab identified a Terminal Uridylyl Transferase (TUTase) member, Zcchc6, which is upregulated in murine macrophages upon LPS stimulation. TUTases are enzymes that are known to be involved in the regulation of RNA stability by adding uridine tails to the end of their RNA substrates. They have been implicated in both RNA stabilization and destabilization. We found that the deletion of Zcchc6 in RAW 264.7 macrophage cells led to the dysregulation of many cytokines after the stimulation of TLRs ligands. One of the cytokines that was affected was IL-10, which is a potent anti-inflammatory cytokine with many important immunoregulatory functions. Zcchc6-deleted RAW 264.7 macrophages had increased IL-10 expression at 4 hours after TLRs activation. In this study we looked at the underlying mechanisms by which Zcchc6 regulated the expression of IL-10 in response to LPS. Analysis using Luciferase reporter assays and primary transcript analysis, we found that Zcchc6 mediated the LPS-induced IL-10 expression through the -355/+103 region of its promoter. In addition, LPS enhanced the mRNA and protein levels of STAT1, that has been speculated to be involved in Il10 transcription, in the Zcchc6-deleted cells suggesting that Zcchc6 partially regulated IL-10 expression by mediating the STAT1 mRNA stability. Since IL-10 is an anti-inflammatory cytokine, its regulation upon pathogen attack is important in balancing the effects of inflammation to ensure pathogen clearance and to minimize inflammatory-associated tissue damage. Our findings strongly suggests that Zcchc6 plays a crucial role in the regulation of TLR4-mediated IL-10 expression and this possibly occurs through the alteration of the mRNA stability of transcription factors involved in Il10 transcription. Thus, this research can help further the knowledge in the fine-tuning of inflammatory responses and infectious diseases.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:40:02Z (GMT). No. of bitstreams: 1
ntu-101-R99448015-1.pdf: 18524631 bytes, checksum: 86dfc7b995915e7343516b8b72edfd75 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAcknowledgments 3
摘要 4
Abstract 6
Contents 8
Introduction 11
Toll-Like Receptors (TLRs) 14
Table 1. PRRs and their Ligands 16
The TLR4 signaling pathway 17
The MyD88-dependent pathway 18
The TRIF-dependent pathway 19
Regulating the TLR4 signaling 20
Extracellular regulation of TLR4 signaling 21
Regulation at the level of signal transduction 21
Post-transcriptional modifications in TLR4 regulation 22
Regulation at the level of transcription 23
Regulation at the post-transcriptional level 23
Terminal Uridylyl Transferases 25
Zcchc6 27
The role of Zcchc6 in the regulation of a variety of cytokines upon LPS stimulation 28
Specific Aim 30
Materials and Methods 31
Reagents 31
Plasmids 32
Site-directed mutagenesis 33
Cell Culture 34
Transfection 35
Generation of Zcchc6-silenced RAW 264.7 cells 36
Bone Marrow Derived Macrophages (BMDM) culture 37
Preparation of whole cell lysates 37
Nuclear and cytosolic extract fractionation 38
Immunoprecipitation 39
Immunoblotting 40
Total RNA extraction 41
Reverse Transcription quantitative PCR (RT-QPCR) 41
Primary Transcript assay 43
mRNA stability assay 44
Luciferase Assay 44
Enzyme-linked immunosorbent assay (ELISA) 45
Immunofluorescence 47
Purification of His-tagged Zcchc6 Antigen 48
Zcchc6 Antibody Production 49
Purification of Zcchc6 Antibody 50
Statistical analysis 51
Results 52
The generation of the Zcchc6 antibody 52
Zcchc6 regulated the expression of the TLR4-mediated cytokines without altering the TLR4 signaling 54
Zcchc6 was induced by TLR agonists 55
The increase in IL-10 in Zcchc6-deleted RAW 264.7 cells was attributed to the increase in IL-10 transcription 57
The regulatory role of Zcchc6 in IL-10 transcription was attributed to elements in the -355 to +103 region of IL-10 promoter. 60
The dual roles of Zcchc6 in regulating IL-10 upon LPS stimulation 65
Discussion 67
Figure 1 76
Figure 2 78
Figure 3 80
Figure 4 82
Figure 5 85
Figure 6 87
Figure 7 90
Figure 8 92
Figure 9 93
Figure 10 95
Figure 11 97
Figure 12 99
Figure 13 101
Figure 14 102
Figure 15 104
Figure 16 105
Figure 17 107
Supplementary Figure 1 108
Supplementary Figure 2 110
References 112
dc.language.isoen
dc.subject發炎反應zh_TW
dc.subject先天免疫zh_TW
dc.subjectinnate immunityen
dc.subjectinflammationen
dc.titleZcchc6在先天免疫反應中的角色zh_TW
dc.titleThe role of Zcchc6 in the innate immune responseen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee譚婉玉(Woan-Yuh Tarn),盧主欽(Juu-Chin Lu)
dc.subject.keyword先天免疫,發炎反應,zh_TW
dc.subject.keywordinnate immunity,inflammation,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2012-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
18.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved