請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64309完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張倉榮(Tsang-Jung Chang) | |
| dc.contributor.author | Wan-Chi Wang | en |
| dc.contributor.author | 王婉綺 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:39:59Z | - |
| dc.date.available | 2022-08-14 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-14 | |
| dc.identifier.citation | 1.朱佳仁,2003。「環境流體力學」,科技圖書出版公司,臺北市。
2.謝怡芳,2004。「三維度紊流大渦模擬在多區間建築物室內環境風場之應用研究」,國立台灣大學生物環境系統工程學研究所碩士論文。 3.黃進坤,2006。「橋墩保護新工法之研究」,台灣公路工程,第32卷第8期,頁39-44。 4.傅家揚,2006。「筐網結構物在不同水流攻角對橋墩沖刷保護之影響」,國立成功大學水利及海洋工程研究所碩士論文。 5.石武融,2007。「透水性筐網圓柱之流場試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。 6.黃婉筑,2007。「明渠通過孔隙方塊之三維流場模擬分析」,國立成功大學水利及海洋工程研究所碩士論文。 7.梁景俊,2009。「透水性筐網圓柱群之流場試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。 8.許少華,經濟部水利署水利規劃試驗所,2010。「研發透水性結構物以防治河岸沖刷之實驗與數值模擬」,台中市。 9.許少華,經濟部水利署水利規劃試驗所,2011。「研發透水性結構物以防治河岸沖刷之實驗與數值模擬」,台中市。 10.張家銘,2011。「孔隙消能結構物之三維度流場數值研析」,國立台灣大學生物環境系統工程學研究所碩士論文。 11.Ahmed, F. and Rajaratnam, N., 1998. “Flow around bridge piers”, Journal of Hydraulic Engineering, 124(3): 288-300. 12.Bhattacharyya, S., Dhinakaran, S. and Khalili, A., 2006. ” Fluid motion around and through a porous cylinder”, Chemical Engineering Science, 61: 4451-4461. 13.Braga, E.J. and Lemos, M.J.S., 2006. “Simulation of turbulent natural convection in a porous cylindrical annulus using a macroscopic two-equation model”, Journal of Heat and Mass Transfer, 49: 4340-4351. 14.Cuhadaroglu, B., 2009. “A numerical study on turbulent flow around a square cylinder with uniform injection or suction”, Journal of Numerical Methods for Heat & Fluid Flow, 19(6): 708-727. 15.Chan, E.C. and Lien, F.S., 2005. “Permeability effects of turbulent flow through a porous insert in a backward-facing-step channel”, Journal of Transport Porous Media, 59: 47-71. 16.Dalpe, B. and Masson, C., 2009. “Numerical simulation of wind flow near a forest edge”, Journal of Wind Engineering and Industrial Aerodynamics, 97: 228-241. 17.Dong, Z., Luo, W., Qian, G., Lu, P., Wang, H., 2007. “A wind tunnel simulation of the mean velocity fields behind upright porous fences”, Journal of Arid Environments, 74: 193-207. 18.FLUENT 6.1 User’s Guide, 2003. 19.Franssona, J.H.M., Koniecznyb, P. and Alfredssona, P.H., 2004. “Flow around a porous cylinder subject to continuous suction or blowing”, Journal of Fluids and Structures, 19: 1031-1048. 20.Hirt, C.W. and Nicholes, B.D., 1981. ”Volume of fluid (VOF) method for the dynamics of free boundaries”, Journal of Computational Physics, 39: 201-225. 21.Gansel, L.C., McClimans, T.A. and Myrhaug, D., 2012. “The effects of fish cages on ambient currents”, Journal of Offshore Mechanics and Arctic Engineering, 134: 1-5. 22.Jue, T.C., 2004, “Numerical analysis of vortex shedding behind a porous square cylinder”, Journal of International Journal of Numerical Methods for Heat & Fluid Flow, 14: 649-663. 23.Laws, E.M. and Livesey, J.L., 1978. “Flow through screen”, Annual Review of Fluid Mechanics, 10: 247-266. 24.Lu, J.Y., Hong, J.H., Wang, C.Y., Lee, K.Z., Yang, H.C., 2003. “Measurement and simulation of turbulent flow in a steep open-channel with smooth boundary”, Journal of the Chinese Institute of Engineers, 26(2): 201-210. 25.Mathelin, L. and Bataille, F., 2002. “The effect of uniform blowing on the flow past a circular cylinder”, Journal of Fluids Engineering, 124: 452-464. 26.Munshi, S. R. , Modi, V. J. and Yokomizo,T. ,1997. “Aerodynamics and dynamics of rectangular prisms with momentum injection”, Journal of Fluids and Structures, 11: 873-892. 27.Perera, M.D.A.E.S., 1981. “Shelter behind two-dimensional solid and porous fences”, Journal of Wind Engineering and Industrial Aerodynamics, 8: 93-104. 28.Pinker, R.A. and Herbert, M. V., 1967. “Pressure loss associated with compressible flow through square-mesh wire gauzes”, Journal of Mechanical Engineering Science, 9(1): 11-23. 29.Prinos, P., Sofialidis, D. and Keramaris, E., 2003. “Turbulent flow over and within a porous bed”, Journal of Hydraulic Engineering, 129(9): 720-733. 30.Rahman, M.M., Karim, M.M. and Alim, M.A., 2007. “Numerical investigation of unsteady flow past a circular cylinder using 2-D finite volume method”, Journal of Naval Architecture and Marine Engineering, 4: 27-42. 31.Reynolds, J., 1969. “Flow deflection by gauze screens”, Journal of Mechanical Engineering Science, 11(3): 290-294. 32.Salaheldin, T.M., Imran, J. and Chaudhry, M.H., 2004. “Numerical modeling of three-dimensional flow field around circular piers”, Journal of Hydraulic Engineering, 130(2): 91-100. 33.Santiago, J.L., Martin, F., Cuerva, A., Bezdenejnykh, N., Sanz-Andre’s, A., 2007. “Experimental and numerical study of wind flow behind windbreaks”, Journal of Atmospheric Environment, 41: 6406-6420. 34.Shih, T.H., Liou, W.W., Shabbir A., Yang, Z., Zhu, J., 1995. “A new k-ε eddy viscosity mode for high Reynolds number turbulent flows”, Computers & Fluids, 24(3): 227-238. 35.Sobera, M.P. and Kleijn, C.R., 2008. “T-RANS simulations of subcritical flow with heat transfer past a circular cylinder surrounded by a thin porous layer”, Journal of Flow Turbulence Combust, 80: 531-546. 36.Versteeg, H.K. and Malalasekera, W., 2007. “An introduction to computational fluid dynamic: the finite volume method (2nd edition)”. England: Pearson Education. 37.Wilson, J.D., 1985. “Numerical studies of flow through a windbreak”. Journal of Wind Engineering and Industrial Aerodynamics, 21: 119-154. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64309 | - |
| dc.description.abstract | 本研究針對透水性圓柱體進行三維度流場的數值模擬與分析,進而瞭解圓柱體的受力情形。模式理論方面,係採用有限體積法離散控制方程式,而以k–ε標準紊流模式搭配體積分率法計算含自由液面之紊流流場。此外,孔隙介質流模式被用以呈現水流通過透水性圓柱時的阻水效應。將模擬結果與物理試驗結果相比較發現兩者結果趨勢一致,顯示本研究採用之模式具有一定的適用性與準確性。
經模式驗證後,將應用此模式於不同透水性的單根圓柱體之流場模擬並探討其受力情形,結果顯示圓柱體透水性越大者,其受力越小。在單排透水性圓柱群案例中,將進行不同擺置情境的流場模擬,分別為不同根數、不同間距及不同角度之案例。比較不同擺設之流場流速分佈圖,在各別情境下,發現根數越多、間距越小及角度越小之案例,圓柱群導流效果較明顯,柱後低速區範圍較大,及圓柱群受力程度較小之差異性。另外,比較各情境下圓柱群之受力情形,角度為最顯著的因子。 | zh_TW |
| dc.description.abstract | In the research, it is aimed to investigate the effect of flow through porous cylinders by using the numerical method. A three-dimensional commercial computational fluid dynamic (CFD) software FLUENT is used to simulate the separated turbulent flows around porous cylinders. The standard k–ε turbulence model and the volume of fluid method (VOF) are involved in the simulation. To present the resistance on the fluid by porous cylinders, the porous media theory is adopted herein. It is shown that the simulated results have good agreement with the experimental results.
Furthermore, to discuss the resistant force on the cylinders, flows past single porous cylinder with various porosities are tested. It is found that the resistant force is in adverse proportion to the porosity. Finally, a series of single-row of cylinders with various arrangements, i.e. the number of cylinders, the interval between cylinders and the angle between one row of cylinders and one channel sidewall, are discussed. It can be concluded that the resistant forces on the cylinders decrease as the cylinder number increased, the interval between two cylinders decreased and the angle decreased, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:39:59Z (GMT). No. of bitstreams: 1 ntu-101-R99622044-1.pdf: 3840694 bytes, checksum: e2bd40d1c46d8d5fcea4e226c85f935e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3研究目的 6 第二章 理論模式 11 2.1流場控制方程式 11 2.2紊流模式k–ε 13 2.3近壁處理 14 2.4孔隙介質流模式 15 2.5體積分率法 16 第三章 數值步驟與方法 18 3.1 數值模擬架構 18 3.2 離散方法 19 3.3控制方程式的離散 20 3.4收斂條件 20 3.5邊界條件設定 21 3.6阻力計算 23 第四章 模式驗證 27 4.1驗證案例介紹 27 4.2 驗證結果與討論 28 4.2.1 各方向速度變化之探討 28 4.2.2 影響區域之探討 29 第五章 應用案例與結果討論 36 5.1單排透水圓柱群流場的探討 36 5.1.1不同透水圓柱擺設根數之比較 37 5.1.2不同透水圓柱擺設間距之比較 38 5.1.3不同透水圓柱擺設角度之比較 39 5.2單根不同孔隙率圓柱之受力分析 39 5.3不同排列之透水性圓柱群受力情形 43 5.3.1不同透水圓柱擺設根數之受力比較 43 5.3.2不同透水圓柱擺設間距之受力比較 44 5.3.3不同透水圓柱擺設角度之受力比較 45 第六章 結論與建議 60 6.1結論 60 6.2建議 61 參考文獻 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 孔隙介質流模式 | zh_TW |
| dc.subject | 透水性圓柱 | zh_TW |
| dc.subject | k–ε標準紊流模式 | zh_TW |
| dc.subject | 體積分率法 | zh_TW |
| dc.subject | porous cylinder | en |
| dc.subject | standard k–ε turbulence model | en |
| dc.subject | volume of fluid | en |
| dc.subject | porous media theory | en |
| dc.title | 透水性圓柱群之三維度流場數值模擬 | zh_TW |
| dc.title | Numerical Investigation of 3D Flows through Porous Cylinders | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳明志(Ming-Chih Chen),葉克家(Ke-Chia Yeh),許少華(Shao-Hua Hsu),賴進松(Chin-Sung Lai) | |
| dc.subject.keyword | 透水性圓柱,k–ε標準紊流模式,體積分率法,孔隙介質流模式, | zh_TW |
| dc.subject.keyword | porous cylinder,standard k–ε turbulence model,volume of fluid,porous media theory, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
