Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64302
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芳仁
dc.contributor.authorYu-Chun Tsengen
dc.contributor.author曾鈺純zh_TW
dc.date.accessioned2021-06-16T17:39:37Z-
dc.date.available2017-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citationAlbuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., and Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7, 1389-1396.
Anders, N., and Jürgens, G. (2008). Large ARF guanine nucleotide exchange factors in membrane trafficking. Cellular and Molecular Life Sciences 65, 3433-3445.
Anders, N., Nielsen, M., Keicher, J., Stierhof, Y.D., Furutani, M., Tasaka, M., Skriver, K., and Jurgens, G. (2008). Membrane Association of the Arabidopsis ARF Exchange Factor GNOM Involves Interaction of Conserved Domains. The Plant Cell Online 20, 142-151.
Behnia, R., and Munro, S. (2005). Organelle identity and the signposts for membrane traffic. Nature 438, 597-604.
Behnia, R., Panic, B., Whyte, J.R.C., and Munro, S. (2004). Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nature Cell Biology 6, 405-413.
Bensen, E.S., Yeung, B.G., and Payne, G.S. (2001). Ric1p and the Ypt6p GTPase function in a common pathway required for localization of trans-Golgi network membrane proteins. Mol Biol Cell 12, 13-26.
Bock, J.B., Matern, H.T., Peden, A.A., and Scheller, R.H. (2001). A genomic perspective on membrane compartment organization. Nature 409, 839-841.
Burd, C.G., Strochlic, T.I., and Gangi Setty, S.R. (2004). Arf-like GTPases: not so Arf-like after all. Trends in Cell Biology 14, 687-694.
Casanova, J.E. (2007). Regulation of arf activation: the sec7 family of guanine nucleotide exchange factors. Traffic 8, 1476-1485.
Chantalat, S., Courbeyrette, R., Senic-Matuglia, F., Jackson, C.L., Goud, B., and Peyroche, A. (2003). A novel Golgi membrane protein is a partner of the ARF exchange factors Gea1p and Gea2p. Mol Biol Cell 14, 2357-2371.
Chardin, P., Paris, S., Antonny, B., Robineau, S., Beraud-Dufour, S., Jackson, C.L., and Chabre, M. (1996). A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384, 481-484.
Chavrier, P., and Ménétrey, J. (2010). Toward a Structural Understanding of Arf Family:Effector Specificity. Structure 18, 1552-1558.
Chen, K.Y., Tsai, P.C., Hsu, J.W., Hsu, H.C., Fang, C.Y., Chang, L.C., Tsai, Y.T., Yu, C.J., and Lee, F.J.S. (2010). Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. Journal of Cell Science 123, 3478-3489.
Chi, A., Huttenhower, C., Geer, L.Y., Coon, J.J., Syka, J.E.P., Bai, D.L., Shabanowitz, J., Burke, D.J., Troyanskaya, O.G., and Hunt, D.F. (2007). Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proceedings of the National Academy of Sciences 104, 2193-2198.
Cox, R., Mason-Gamer, R.J., Jackson, C.L., and Segev, N. (2004). Phylogenetic analysis of Sec7-domain-containing Arf nucleotide exchangers. Mol Biol Cell 15, 1487-1505.
D'Souza-Schorey, C., and Chavrier, P. (2006). ARF proteins: roles in membrane traffic and beyond. Nature Reviews Molecular Cell Biology 7, 347-358.
DiNitto, J.P., Delprato, A., Gabe Lee, M.T., Cronin, T.C., Huang, S., Guilherme, A., Czech, M.P., and Lambright, D.G. (2007). Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors. Mol Cell 28, 569-583.
Donaldson, J.G., and Jackson, C.L. (2011). ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nature Reviews Molecular Cell Biology 12, 362-375.
Enns, C. (2001). Overview of protein trafficking in the secretory and endocytic pathways. Curr Protoc Cell Biol Chapter 15, Unit 15 11.
Gillingham, A.K., and Munro, S. (2007a). Identification of a Guanine Nucleotide Exchange Factor for Arf3, the Yeast Orthologue of Mammalian Arf6. Plos One 2.
Gillingham, A.K., and Munro, S. (2007b). The Small G Proteins of the Arf Family and Their Regulators. Annual Review of Cell and Developmental Biology 23, 579-611.
Graham, T.R. (2004). Membrane Targeting: Getting Arl to the Golgi. Current Biology 14, R483-R485.
Gulli, M.P. (2001). Temporal and spatial regulation of Rho-type guanine-nucleotide exchange factors: the yeast perspective. Genes & Development 15, 365-379.
Jones, S., Jedd, G., Kahn, R.A., Franzusoff, A., Bartolini, F., and Segev, N. (1999). Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers. Genetics 152, 1543-1556.
Kawasaki, M., Nakayama, K., and Wakatsuki, S. (2005). Membrane recruitment of effector proteins by Arf and Rab GTPases. Current Opinion in Structural Biology 15, 681-689.
Liu, Y.W. (2005). Role for Gcs1p in Regulation of Arl1p at Trans-Golgi Compartments. Molecular Biology of the Cell 16, 4024-4033.
Lowy, D.R., and Willumsen, B.M. (1989). Protein modification: new clue to Ras lipid glue. Nature 341, 384-385.
Morohashi, Y., Balklava, Z., Ball, M., Hughes, H., and Lowe, M. (2010). Phosphorylation and membrane dissociation of the ARF exchange factor GBF1 in mitosis. Biochemical Journal 427, 401-412.
Peyroche, A., Courbeyrette, R., Rambourg, A., and Jackson, C.L. (2001). The ARF exchange factors Gea1p and Gea2p regulate Golgi structure and function in yeast. J Cell Sci 114, 2241-2253.
Ramaen, O., Joubert, A., Simister, P., Belgareh-Touze, N., Olivares-Sanchez, M.C., Zeeh, J.C., Chantalat, S., Golinelli-Cohen, M.P., Jackson, C.L., Biou, V., et al. (2007). Interactions between Conserved Domains within Homodimers in the BIG1, BIG2, and GBF1 Arf Guanine Nucleotide Exchange Factors. Journal of Biological Chemistry 282, 28834-28842.
Richardson, Brian C., McDonold, Caitlin M., and Fromme, J.C. (2012). The Sec7 Arf-GEF Is Recruited to the trans-Golgi Network by Positive Feedback. Developmental Cell 22, 799-810.
Robineau, S., Chabre, M., and Antonny, B. (2000). Binding site of brefeldin A at the interface between the small G protein ADP-ribosylation factor 1 (ARF1) and the nucleotide-exchange factor Sec7 domain. Proc Natl Acad Sci U S A 97, 9913-9918.
Schmidt, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes & Development 16, 1587-1609.
Sewell, J.L., and Kahn, R.A. (1988). Sequences of the Bovine and Yeast Adp-Ribosylation Factor and Comparison to Other Gtp-Binding Proteins. P Natl Acad Sci USA 85, 4620-4624.
Takai, Y., Sasaki, T., and Matozaki, T. (2001). Small GTP-binding proteins. Physiol Rev 81, 153-208.
Tsukada, M., Will, E., and Gallwitz, D. (1999). Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast. Mol Biol Cell 10, 63-75.
Zeeh, J.C., Zeghouf, M., Grauffel, C., Guibert, B., Martin, E., Dejaegere, A., and Cherfils, J. (2006). Dual specificity of the interfacial inhibitor brefeldin a for arf proteins and sec7 domains. J Biol Chem 281, 11805-11814.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64302-
dc.description.abstract腺嘌呤核苷二磷酸核醣化因子(ADP-ribosylation factors)家族中的小鳥糞嘌呤核苷三磷酸結合蛋白主要在胞膜蛋白運輸的調節與細胞骨架的動態平衡中扮演著很重要的角色。腺嘌呤核苷二磷酸核醣化因子可進一步被活化,藉由鳥糞嘌呤核苷酸交換因子(GEF)來協助他從鳥糞嘌呤核苷二磷酸結合的形式轉換為鳥糞嘌呤核苷三磷酸結合的形式。在之前的報告指出鳥糞嘌呤核苷酸交換因子利用蛋白間的交互作用或是形成寡聚體進行活化,進而參與在調節本身的活性或是改變細胞內座落的位置。近來在我們實驗室的研究中也發現鳥糞嘌呤核苷酸交換因子Syt1p也可幫助第一腺嘌呤核苷二磷酸核糖化相似因子(Arl1p)的活化,進而募集下游的Imh1p到反式高基氏體上,且共同參與在Ypt6p調節液胞型態的能力。在此篇研究中,我們利用活體外結合試驗發現Syt1p能夠利用SEC7區域與pleckstrin同源結構域之間的其中一個羧基端片段(Syt1pC1)來進行分子間的結合。在細胞內若將此羧基端片段去除後確實會影響Syt1p的自相互作用,表示Syt1p確實能夠利用此羧基端片段相互結合形成二聚體(dimer)或寡聚體(oligomer)。而此種不能自相互作用的Syt1p並不影響到下游的Arl1p和Imh1p在細胞中的位置,但是在去除SYT1及YPT6基因的酵母菌中卻會影響到Ypt6p調節液胞型態的能力,且在剔除YPT6基因的細胞中對於溫度的敏感性也有些微的影響。這些發現都暗示著Syt1p形成二聚體(dimer)可能也參與在本身催化鳥糞嘌呤核苷酸交換的活性以外的重要功能。此外Syt1p可藉由胺基端片段的磷酸化進而調控二聚體(dimer)的形成,而這些磷酸化的位置可調節鳥糞嘌呤核苷酸交換因子的活性。所以我們認為Syt1p透過一羧基端片段(Syt1pC1)形成二聚體並參與在Ypt6p調節液胞型態的路徑之中。另一方面,Syt1p的磷酸化幫助形成二聚體,進而活化第一腺嘌呤核苷二磷酸核糖化相似因子並募集下游的Imh1p。zh_TW
dc.description.abstractADP-ribosylation factor (ARF) family proteins are small G proteins required for the regulation of membrane traffic and cytoskeletal dynamics. They are activated by guanine nucleotide exchange factor (GEF) that can stimulate the exchange of GDP for GTP. Previous reports show that GEF activation through protein–protein interactions or oligomerization, and its regulation can affect GEF activity or alter intracellular localization. Recently, our lab has reported that Syt1p function as a GEF that activates the Arl1p to recruit Imh1p to the late Golgi, which is subsequently involved in synthetic enhancement of Ypt6p-dependent vacuole fragmentation. Here, we identify Syt1p intermolecular interaction region located between SEC7 and PH domain (Syt1pC1) by in vitro pull down. Syt1p∆C1 defined the mutant here affects Syt1p self-interaction in vivo, which indicates that Syt1p can form dimers or oligomers through the C1 region. This mutant Syt1p∆C1 does not affect Arl1p and Imh1p localization. However, Syt1p∆C1 affects Ypt6p-dependent vacuolar fragmentation in syt1∆ypt6∆ strain and causes the inability to complement the temperature sensitivity of ypt6∆. These finding indicates that Syt1p homodimer has another essential functions rather than regulating its GEF activity. Besides, Syt1p forms dimer through its N-terminal phosphorylation, and the phosphorylation sites are required for the GEF activity. Thus, we suggest that Syt1pC1 is involved in the synthetic enhancement of Ypt6p-dependent pathway, and Syt1p dimer formation may be modulated by phosphorylation , which regulates Arl1p activation and Imh1p recruitment.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:39:37Z (GMT). No. of bitstreams: 1
ntu-101-R99448003-1.pdf: 1850399 bytes, checksum: a4b500e42e4f40aa32582d8be4619ddf (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents 3
中文摘要 5
Abstract 6
Abbreviation 8
Introduction 9
ADP-ribosylation factors (ARFs) 9
Guanine nucleotide exchange factors (GEF) 13
ARF-like proteins (ARLs) 14
Regulation of GEF 17
Syt1p function in Arl3p-Arl1p-Imh1p pathway 19
Materials and Methods 23
Strains and Media 23
Construct and Primers 23
Polymerase chain reaction 24
Western blotting 24
Yeast extracts preparation 25
Expression and purification of recombinant proteins 26
6× His-Tagged Proteins 27
GST-tagged proteins 28
In vitro GST pull-down assay 28
In vivo pull-down assay 29
Fluorescent microscopy 30
Gel Filtration analysis 31
Cross-Linking of Syt1p 32
Fluorescence Microscopy 33
Results 34
I. Identification of Syt1p self-interaction binding site 34
Syt1p can interact with itself. 34
The C1 region of Syt1p can interact with C-terminus in vitro pull down assays 34
Syt1p∆C1 affects Syt1p self-interaction in vivo. 35
II. The Syt1p protein is present in soluble high-molecular-mass complexes. 37
III. Biological functions of the dimerization-deficient ∆C1 mutant of Syt1p 39
Syt1p∆C1 does not affect Arl1p and Imh1p localization 39
Syt1p∆C1 affects Ypt6p-dependent vacuolar fragmentation in syt1∆ypt6∆ strain. 40
Over-expression Syt1p∆C1 causes the inviability to complement the temperature growth defect of ypt6∆. 40
IV. Phosphorylative Syt1p mutations enhance Syt1p dimer formation 42
Syt1p self-interaction is affected through Syt1p Ser416417 and Thr277 phosphorylation. 42
Discussion 44
Dual forces are required for the dimer formation of Syt1p 44
The auto-inhibition of ARF-GEF regulation 47
Figures 49
Figure 1. Syt1p can interact with itself. 49
Figure 2. The C1 region of Syt1p is required for Syt1p self-interaction. 51
Figure 3. Syt1p∆C1 affects Syt1p self-interaction in vivo. 52
Figure 4. Gel filtration analysis of Syt1p protein. 53
Figure 5. Oligomerization of HA-Syt1p, HA-Syt1p∆C1 and HA-Syt1pC. 54
Figure 6.Syt1p∆C1 does not affect Arl1p localization in arl1syt1∆ strain 55
Figure 7. Syt1p∆C1 does not affect Imh1p localization in syt1∆ strain 56
Figure 8. Syt1p∆C1 affects Ypt6p-dependent vacuolar fragmentation in syt1ypt6∆ strain. 58
Figure 9. Over-expression Syt1p∆C1 does not suppress temperature growth defect of ypt6∆. 59
Figure 10. Syt1p self-interaction is affected through Syt1p Ser416417 phosphorylation. 60
Figure 11. Syt1p self-interaction is affected through Syt1p Thr277 phosphorylation. 61
Figure 12. Model of Syt1p self-interaction regulation in the Ypt6p-depentent pathway 62
Tables 63
Table 1. Yeast strains used in this study 63
Table 2. Constructs used in this study 64
Table 3. Antibodies used in this study 67
References 68
dc.language.isoen
dc.subject高基氏體zh_TW
dc.subject鳥糞嘌呤核&#33527zh_TW
dc.subject囊泡運輸zh_TW
dc.subject三磷酸結合蛋白zh_TW
dc.subject腺嘌呤核&#33527zh_TW
dc.subject二磷酸核醣化因子zh_TW
dc.subject小鳥糞嘌呤核&#33527zh_TW
dc.subject酸交換因子zh_TW
dc.subjectGolgi complexen
dc.subjectSec7en
dc.subjectGEFen
dc.subjectvesicular traffickingen
dc.subjectGTPaseen
dc.subjectADP-ribosylation factoren
dc.title探討第一腺嘌呤核苷二磷酸核糖化相似因子之鳥糞嘌呤核苷酸交換因子的自相互作用的功能特性zh_TW
dc.titleFunctional characterization of self-interaction of an Arl1p GEF- Syt1pen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑞華,鄧述諄,王昭雯
dc.subject.keyword高基氏體,腺嘌呤核&#33527,二磷酸核醣化因子,小鳥糞嘌呤核&#33527,三磷酸結合蛋白,囊泡運輸,鳥糞嘌呤核&#33527,酸交換因子,zh_TW
dc.subject.keywordGolgi complex,ADP-ribosylation factor,GTPase,vesicular trafficking,GEF,Sec7,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2012-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved