Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64285
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬
dc.contributor.authorPei-Wen Huen
dc.contributor.author胡珮雯zh_TW
dc.date.accessioned2021-06-16T17:38:44Z-
dc.date.available2017-08-17
dc.date.copyright2012-08-17
dc.date.issued2012
dc.date.submitted2012-08-14
dc.identifier.citationAsai, T., G., Tena, J. Plotnikova, M. R. Willmann, W.-L. Chiu, L. Gomez-Gomez, T. Boller, F. M. Ausubel, and J. Sheen. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977-983.
Atamian, H. S., T. Eulgem, and I. Kaloshian. 2011. SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta 235:299-309.
Attard, A., M. Gourgues, N. Callemeyn‐Torre, and H. Keller. 2010. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytologist 187:449-460.
Bonnet P., Bourdon E., Ponchet M., Blein J. P., Ricci P. 1996. Acquired resistance triggered by elicitins in tobacco and other plants. Eur. J. Plant Pathol. 102:181–192
Brunner, F., S. Rosahl, J. Lee, J. J. Rudd, C. Geiler, S. Kauppinen, G. Rasmussen, D. Scheel, and T. Nurnberger. 2002. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J. 21:6681-6688.
Chen, W., N. J. Provart, J. Glazebrook, F. Katagiri, H.-S. Chang, T. Eulgem, F. Mauch, S. Luan, G. Zou, S.A. Whitham, P.R. Budworth, Y. Tao, Z. Xie, X. Chen, S. Lam, J.A. Kreps, J. F. Harper, A. Si-Ammour, B. Mauch-Mani, M. Heinlein, K. Kobayashi, T. Hohn, J. L. Dangl, X. Wang, and T. Zhu. 2002. Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses. Plant Cell 14:559-574.
Chen, W. J., and T. Zhu. 2004. Networks of transcription factors with roles in environmental stress response. Trends Plant Science 9:591-596.
Chen Y.Y., Lin Y.M., Chao T.C., Wang J.F., Liu A.C., Ho F.I., Cheng C.P. 2009. Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol Plant. 136-3:324-35.
Coker, J. S., and E. Davies. 2003. Selection of candidate housekeeping controls in tomato plants using EST data. BioTechniques 35:740-742.
Eulgem, T., P. J. Rushton, S. Robatzek, and I. E. Somssich. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5:199-206.
Felix, G., J. D. Duran, S. Volko, and T. Boller. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265-276.
Fellbrich, G., A. Romanski, A. Varet, B. Blume, F. Brunner, S. Engelhardt, G. Felix, B. Kemmerling, M. Krzymowska, and T. Nurnberger. 2002. NPP1, a Phytophthora‐associated trigger of plant defense in parsley and Arabidopsis. The Plant Journal 32:375-390.
Fliegmann, J., A. Mithofer, G. Wanner, and J. Ebel. 2004. An Ancient Enzyme Domain Hidden in the Putative β-Glucan Elicitor Receptor of Soybean May Play an Active Part in the Perception of Pathogen-associated Molecular Patterns during Broad Host Resistance. Journal of Biological Chemistry 279:1132-1140.
Gaulin, E., N. Drame, C. Lafitte, T. Torto-Alalibo, Y. Martinez, C. Ameline-Torregrosa, M. Khatib, H. Mazarguil, F. Villalba-Mateos, S. Kamoun, C. Mazars, B. Dumas, A. Bottin, M.-T. Esquerre-Tugaye, and M. Rickauer. 2006. Cellulose Binding Domains of a Phytophthora Cell Wall Protein Are Novel Pathogen-Associated Molecular Patterns. Plant Cell 18: 1766 -1777.
Grunewald, W., M. Karimi, K. Wieczorek, E. Van de Cappelle, E. Wischnitzki, F. Grundler, D. Inze, T. Beeckman, and G. Gheysen. 2008. A Role for AtWRKY23 in Feeding Site Establishment of Plant-Parasitic Nematodes. Plant Physiology 148:358 -368.
Hassan G., Zoltan B., Peter G. O., Cornelia R., Frank S., Kerstin W. 2010. Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiological and Molecular Plant Pathology 10: 1016
Higashi, K., Y. Ishiga, Y. Inagaki, K. Toyoda, T. Shiraishi, and Y. Ichinose. 2008. Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol. Genet. Genomics 279:303-312.
Hofmann, M. G., A. K. Sinha, R. K. Proels, and T. Roitsch. May. Cloning and characterization of a novel LpWRKY1 transcription factor in tomato. Plant Physiology and Biochemistry 46:533-540.
Jones, J.D.G., and J.L. Dangl. 2006. The plant immune system. Nature 444:323-329.
Journot-Catalino, N., I.E. Somssich, D. Roby, and T. Kroj. 2006. The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana. Plant Cell 18: 3289 -3302.
Kamoun, S., Klucher, K. M., Coffey, M. D. and Tyler, B. M. 1993. A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Mol. Plant Microbe Interact. 6: 573-581.
Kim, K.-C., B. Fan, and Z. Chen. 2006. Pathogen-Induced Arabidopsis WRKY7 Is a Transcriptional Repressor and Enhances Plant Susceptibility to Pseudomonas syringae. Plant Physiol. 142:1180-1192.
Kim, K.-C., Z. Lai, B. Fan, and Z. Chen. 2008. Arabidopsis WRKY38 and WRKY62 Transcription Factors Interact with Histone Deacetylase 19 in Basal Defense. Plant Cell 20:2357 -2371.
Li, J., G. Brader, and E.T. Palva. 2004. The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. Plant Cell 16:319 -331.
Liang, Y. C., Liu, A. X., Wang, J. S., Zhang, T. Y. and Dong, H. 2007. Microscopic hypersensitive response and expression of defense response induced by the proteinaceous elicitor elicitin-parasiticein. Acta Phytopathol. Sinica. 37: 610-615.
Liou R. F., Lee J. T., Lee H. C., and Ann P. J. 2002. Analysis of Phytophthora parasitica by retrotransposon-derived DNA fingerprinting. Bot. Bull. Acad. Sin. 43: 21-29.
Liu Y., Schiff M., Dinesh-Kumar SP. 2002. Virus-induced gene silencing in tomato. Plant J. 31: 777-786
Ma, W. 2011. Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. Plant Science 181:342-346.
Mukhtar, M. S., L. Deslandes, M.-C. Auriac, Y. Marco, and I. E. Somssich. 2008. The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. Plant J. 56:935-947.
Murray, S.L., R. A. Ingle, L. N. Petersen, and K. J. Denby. 2007. Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Mol. Plant Microbe Interact. 20:1431-1438.
Nurnberger, T., D. Nennstiel, T. Jabs, W.R. Sacks, K. Hahlbrock, and D. Scheel. 1994. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449-460.
Park, C. Y., J.H. Lee, J. H. Yoo, B. C. Moon, M. S. Choi, Y. H. Kang, S. M. Lee, H. S. Kim, K. Y. Kang, W. S. Chung, and others. 2005. WRKY group IId transcription factors interact with calmodulin. FEBS letters 579:1545–1550.
Pedley, K. F., and G. B. Martin. 2005. Role of mitogen-activated protein kinases in plant immunity. Current Opinion in Plant Biology 8:541-547.
Postel, S., and B. Kemmerling. 2009. Plant systems for recognition of pathogen-associated molecular patterns. Semin. Cell Dev. Biol. 20:1025-1031.
Ricci P, Bonnet P, Huet JC, Sallantin M, Beauvais-Cante F, Bruneteau M, Billard V, Michel G, Pernollet JC. 1989. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem. 183: 555–563
Rushton, P.J., I.E. Somssich, P. Ringler, and Q.J. Shen. 2010. WRKY transcription factors. Trends Plant Sci. 15:247-258.
Schwessinger, B., and C. Zipfel. 2008. News from the frontline: recent insights into PAMP-triggered immunity in plants. Current Opinion in Plant Biology 11:389-395.
Shen, Q.-H., Y. Saijo, S. Mauch, C. Biskup, S. Bieri, B. Keller, H. Seki, B. Ulker, I.E. Somssich, and P. Schulze-Lefert. 2007. Nuclear Activity of MLA Immune Receptors Links Isolate-Specific and Basal Disease-Resistance Responses. Science 315:1098 -1103.
Stulemeijer IJ, Stratmann JW, Joosten MH. 2007. The tomato MAP kinases LeMPK1,− 2 and− 3 have different roles in Cf-4/Avr4-induced HR and resistance to Cladosporium fulvum. Plant Physiol. 144:1481-94.
Takemoto, D., A.R. Hardham, and D.A. Jones. 2005. Differences in cell death induction by Phytophthora elicitins are determined by signal components downstream of MAP kinase kinase in different species of Nicotiana and cultivars of Brassica rapa and Raphanus sativus. Plant Physiol. 138:1491-1504.
Wang, D., N. Amornsiripanitch, and X. Dong. 2006. A Genomic Approach to Identify Regulatory Nodes in the Transcriptional Network of Systemic Acquired Resistance in Plants. PLoS Pathog. 2:e123.
Xing, D.-H., Z.-B. Lai, Z.-Y. Zheng, K.M. Vinod, B.-F. Fan, and Z.-X. Chen. 2008. Stress- and Pathogen-Induced Arabidopsis WRKY48 is a Transcriptional Activator that Represses Plant Basal Defense. Molecular Plant 1:459 -470.
Xu, X., C. Chen, B. Fan, and Z. Chen. 2006. Physical and Functional Interactions between Pathogen-Induced Arabidopsis WRKY18, WRKY40, and WRKY60 Transcription Factors. Plant Cell 18:1310 -1326.
Yan, H. Z., and Liou, R. F. 2006. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fung. Genet. Biol. 43: 430 -438.
Zheng, Z., S.L. Mosher, B. Fan, D.F. Klessig, and Z. Chen. 2007. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol. 7:2.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64285-
dc.description.abstractWRKY為植物重要轉錄因子 (transcription factor),常以基因族 (gene family) 型式存在於植物體中,參與多種生物 (biotic) 及非生物 (abiotic) 逆境反應之分子調控,故為非常重要的轉錄調控因子。番茄為世界性重要的經濟作物,瞭解番茄因應病原菌而啟動的基因表現以及其後續所引發的各種抗病反應為當前重要的議題,而WRKY轉錄因子在這樣的生物逆境反應很可能也扮演舉足輕重的角色,值得我們深入探究。本實驗室先前以番茄生物晶片所進行的研究發現,某些WRKY基因在番茄被疫病菌 (Phytophthora parasitica) 感染後會被誘導表現,另外以semi-quantitative reverse transcriptase PCR所做的分析也發現特定之WRKY 基因的表現確實會因應疫病菌侵染而啟動,將其命名為SlWRKY15。SlWRKY15屬於WRKY IId族群,並且位於細胞核內。基因表現分析發現,SlWRKY15會被疫病菌誘導表現,但不會被青枯病菌 (Ralstonia solnacearum)及細菌性斑點病菌(Pseudomonas syringae)誘導表現;此外,SlWRKY15之表現受到植物荷爾蒙水楊酸以及乙烯的調控。以agroinfection在番茄植株大量表現SlWRKY15基因能使植株在疫病菌及青枯病菌感染下呈現較佳的耐病性。相對而言,利用VIGS (virus-induced gene silencing) 抑制SlWRKY15基因表現,則增加番茄對上述兩種病原菌的感病性。由於大量表現SlWRKY15所引發的耐病並無專一性,顯示SlWRKY15基因可能在番茄的先天性防禦反應扮演重要的角色;實驗也顯示疫病菌PAMP,包括parA1及pep13,能誘導菸草中SlWRKY15之同源性基因的表現。進一步的研究發現,SlWRKY15並不能與LeMPK2 及LeMPK3等PTI調控相關蛋白交互作用,但當SlWRKY15大量表現時,會降低部分抗病相關基因的表現,這些結果顯示SlWRKY15透過複雜的調控引起番茄的耐病性,其詳細分子機制有待進一步釐清。zh_TW
dc.description.abstractWRKY transcription factors (WRKYs) are encoded by large gene families in all higher plants. They are known to play pivotal roles in plant-specific processes, including plant responses to biotic and abiotic stresses. While analyzing tomato genes which are differentially expressed in response to infection by Phytophthora parasitica, we found a gene that is up-regulated and encodes a putative WRKY transcription factor, herein named SlWRKY15. The predicted amino acid sequence of SlWRKY15 contains a WRKY domain, a zinc-finger motif, nuclear localization signal, and a calmodulin binding domain. Analysis by semi-quantitative reverse transcriptase polymerase chain reaction indicated that SlWRKY15 is expressed in all parts of the tomato plant, with the messages in the flowers and stems being more abundant than those in other parts. Furthermore, expression of SlWRKY15 is induced following treatment of the plants with salicylic acid and ethylene. As well, expression of the homologs of SlWRKY15 in tobacco is induced by PAMPs from Phytophthora, including parA1 and pep13. To investigate its function, SlWRKY15 overexpressing plants were conducted by agroinfection and then inoculated the plants with P. parasitica and Ralstonia solnacearum. The results indicated that disease symptoms caused by either P. parasitica or R. solnacearum on plants overexpressing SlWRKY15 were less severe than those on the control plants. In contrast, down regulation of SlWRKY15 by virus-induced gene silencing enhanced the plant susceptibility s to these two pathogens. In plant overexpressing SlWRKY15, the expression of defense related genes (ACO1, PAL5, and PIN2) was down regulated. These results suggest a potential role of SlWRKY15 in the plant basal defense response, but how is it involved in the regulation of defense response awaits further investigation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:38:44Z (GMT). No. of bitstreams: 1
ntu-101-R98633014-1.pdf: 1573741 bytes, checksum: c6ed94ee160f5fcb6b8e0b2d88b4f830 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
Chinese Abstract………………………………………………………………….……... i
Abstract……………………………………………………………………….………...iii
Introduction……………………………………………………………………………...1
Materials and methods…………………………………………………………………...8
RNA extraction, q-RT-PCR, and semi-q-RT-PCR analysis…………………….......8
Phylogenetic analysis………………………………………………………………8
Pathohgen strains, plant inoculation procedures…………………………………...9
Treatment of abiotic stress………………………………………………………10
Measurement of bacteria growth in plant……………………………………..10
Treatment of tomato plants with hormones……………………………………….10
Treatment of pathogen-associated molecular pattern (PAMP)……………………11
Virus-mediated transient overexpression……………………………………...12
Virus-induced gene silencing……………………………………………………...12
Yeast two hybrid analyse……………………………………………………..13
Cytological Staining………………………………………………………………14
Results………………………………………………………………………………….16
Identification of the tomato SlWRKY15 gene……………………………………16
SlWRKY15 shows different expression patterns in various plant tissues and is induced by P. parasitica infection………………………………………………...17
SlWRKY15is localized in the nucleus………………………………………...18
SlWRKY15 confers tomato resistance against P. parasitica and R. solanacearum
…………………………………………………………………………………….19
SlWRKY15 is induced by salicylic acid (SA) and ethylene (ET)………………...21
The tobacco homolog of SlWRKY15 is induced by PAMPs from P. parasitica
…………………………………………………………………………………….22
Interaction of SlWRKY15 and proteins involved in PTI…………………………22
SlWRKY15 may enhance phenolic compound accumulation in tomato leaves…24
SlWRKY15 alters the expression of defense related genes………………………24
Discussion………………………………………………………………………………26
References……………………………………………………………………………...32
Tables…………………………………………………………………………………...37
Figures………………………………………………………………………………….39
dc.language.isoen
dc.subjectWRKY轉錄因子zh_TW
dc.subject番茄zh_TW
dc.subject疫病菌zh_TW
dc.subject短暫大量表現zh_TW
dc.subject病毒誘導的基因靜默zh_TW
dc.subject植物基礎防禦反應zh_TW
dc.subject青枯病菌zh_TW
dc.subjectvirus-induced gene silencingen
dc.subjectPAMP-triggered immunityen
dc.subjectPhytophthoraen
dc.subjectplant basal defenseen
dc.subjectRalstonia solanacearumen
dc.subjecttomatoen
dc.subjectAgroinfectionen
dc.subjectWRKY transcription factoren
dc.title探究SlWRKY15轉錄因子在番茄基礎防禦反應扮演的角色zh_TW
dc.titleTo investigate the role of SlWRKY15 in tomato basal defense responsesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭秋萍,林乃君,張孟基,陳仁治
dc.subject.keyword番茄,疫病菌,青枯病菌,WRKY轉錄因子,短暫大量表現,病毒誘導的基因靜默,植物基礎防禦反應,zh_TW
dc.subject.keywordAgroinfection,,PAMP-triggered immunity,Phytophthora,plant basal defense,Ralstonia solanacearum,tomato,virus-induced gene silencing,WRKY transcription factor,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2012-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved