請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64253完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲(Ming-Syan Chen) | |
| dc.contributor.author | Shih-Han Lin | en |
| dc.contributor.author | 林士涵 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:37:03Z | - |
| dc.date.available | 2012-08-22 | |
| dc.date.copyright | 2012-08-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | [1] Google Place API. https://developers.google.com/maps/
[2] Google Map Service. https://maps.google.com/ [3] Foursquare. https://foursquare.com/ [4] N. Peleki, E. Frentzos, N. Giatrakos, and Y. Theodoridis. “HERMES: Aggregative LBS via a Trajectory DB Engine.” In Proceedings of COMAD, pages 1255-1258, 2008. [5] Y. Zheng, L. Zhang, X. Xie, and W. Y. Ma. “Mining Interesting Locations and Travel Sequences from GPS Trajectories.” In Proceedings of WWW, pages 791-800. 2009. [6] S. Chaudhuri and L. Gravano. “Evaluating Top-k Selection Queries.” In Proceedings of VLDB, 1999. [7] M. P. Kato, S. Oyama, O. Hiroaki, and K. Tanaka. “Query by Example for Geographic Entity Search with Implicit Negative Feedback.” In Proceedings of ICUIMC, 2010. [8] Y. Du, D. Zhang, and T. Xia. “The Optimal-Location Query.” In Proceedings of SSTD, pages 163-180, 2005. [9] V. Sengar, T. Joshi, J. Joy, S. Prakash, and K. Toyama. “Robust Location Search from Text Queries.” In Proceedings of ACM GIS, 2007. 36 [10] F. Ricci, “Travel Recommender Systems.” In Proceedings of IEEE Intelligent Systems, pages 55–57, 2002. [11] C. Choi, M. Cho, E. Y. Kang, and P. Kim. “Travel Ontology for Recommendation System based on Semantic Web.” In Proceedings of ICACT, pages 624-627, 2006. [12] H. W. Tung, and V. W. Soo, “A Personalized Restaurant Recommender Agent for Mobile E-service.” In Proceedings of IEEE EEE, pages 259–262. 2004. [13] B. H. Lee, H. N. Kim, J. G. Jung, and G. S. Jo. “Location-Based Service with Context Data for a Restaurant Recommendation.” In Proceedings of DEXA, pages 430-438, 2006. [14] Y. Takeuchi and M. Sugimoto. “CityVoyager: An Outdoor Recommendation System Based on User Location History.” In Proceedings of UIC, pages 625-636. 2006. [15] Q. Gan, J. Attenberg, A. Markowetz, and T. Suel. “Analysis of Geographic Queries in a Search Engine Log.” In Proceedings of LOCWEB, pages 49-56, 2008. [16] J. Ding, L. Gravano, and N. Shivakumar. “Computing Geographical Scopes of Web Resources.” In Proceedings of VLDB, pages 545-556, 2000. [17] Y. Y. Chen, T. Suel, and A. Markowetz. “Efficient Query Processing in Geographic Web Search Engines.” In Proceedings of SIGMOD, pages 277-288, 2006. 37 [18] C. B. Jones and R. S. Purves. “Geographical Information Retrieval.” International Journal of Geographical Information Science 22, pages 219–228, 2008. [19] A. Markowetz, Y. Y. Chen, T. Suel, X. Long, and B. Seeger. “Design and Implementation of a Geographic Search Engine.” In Proceedings of WebDB, 2005. [20] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel. “Text vs. Space: Efficient Geo-search Query Processing.” In Proceedings of CIKM, pages 423-432, 2011. [21] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W. Y. Ma. “Hybrid Index Structures for Location-based Web Search.” In Proceedings of CIKM, pages 155-162, 2005. [22] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. “The Grid File: An Adaptable, Symmetric Multikey File Structure.” In Proceedings of ACM Transactions on Database Systems, pages 38-71, 1984. [23] V. Gaede and O. Gunther. “Multidimensional Access Methods.” In Proceedings of ACM Computing Surveys, pages 170-231, 1998. [24] I. D. Felipe, V. Hristidis, and N. Rishe. “Keyword Search on Spatial Databases.” In Proceedings of ICDE, pages 656-665, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64253 | - |
| dc.description.abstract | 在我們的日常生活中常會遇到搜尋地點的需求,並且在不同的場合下使用者
會有不同的地點搜尋模式。其中一種常見的需求為找尋一個地點的確切位置,例 如,搜尋台北101 的確切位置與地址;另一種基本的搜尋需求是希望在地圖上標 出某個區域內的特定種類地點,例如,搜尋台灣大學附近的所有日式餐廳。然而, 根據我們的觀察,還有一種地點搜尋的需求也時常出現在我們的生活中。當我們 想要推薦一個曾經去過的地點給朋友時,也許忘記所欲推薦地點的確切名稱。而 使用者憑藉印象仍記得某些資訊,其中包含了此地點的類別、所在的大略區域、 以及此地點周圍的一些明顯標地。例如,想推薦一個上個月去過位在台北市東區 的日式餐廳給朋友,但卻無法想起確切的餐廳名稱,但是知道其附近有公園及超 級市場。 為了解決這樣的問題,我們提出了一個基於使用者過往印象之新穎地點搜尋 技術。我們設計了兩種演算法,分別為'離線距離增強演算法'及'空間索引增強演 算法'。演算法的主要目的為能夠正確且即時地回覆使用者的搜尋。再者,透過使 用者搜尋後的回饋資訊,我們提出改善機制以提高系統之準確率。為了驗證所提 出方法之正確性與效能,我們實作了基於過往印象之地點搜尋系統。此系統包含 了超過四萬筆地點資訊之真實城市資料庫。藉由實際使用者的測試與實驗分析, 我們驗證了所提出系統具備高準確率,且符合此應用之即時搜尋需求。 | zh_TW |
| dc.description.abstract | In our daily life, place query is one of the most fundamental applications.
Traditional use cases include finding the exact spatial location of a place and searching for a specific type of places in a given spatial range. On the other hand, there is another possibility that you may want to recommend a visited place to friends but forget the complete name of the place. You have vague impressions on it and only remember the information of the place type, the rough range of the place, and some places near it. For example, a user may want to find a Japanese food restaurant which is located in the eastern part of a city, and there are a park and a supermarket adjacent to this restaurant. To enable the capability of query by impression that has not been fully explored in the literature, in this paper, we define a new place query problem called Place Query with Adjacency Constraints (abbreviated as PQAC). We propose a naive approach and two enhancement algorithms, distance pre-calculating algorithm and grid indexing algorithm, to achieve greater efficiency that can satisfy the real-time need of this place query service. Furthermore, we also consider using user query feedback to increase the accuracy of the results. We implement a Query By Impression (abbreviated as QBI) system with a real metropolitan place dataset consisting of more than 40,000 place records from Google Place API. Experiments with user study collected from 15 volunteers are conducted to validate the efficiency and effectiveness of the proposed QBI system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:37:03Z (GMT). No. of bitstreams: 1 ntu-101-R99921053-1.pdf: 605188 bytes, checksum: 5e2f1111bba56447372f845b6e168236 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Acknowledgements i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 Chapter 2 Preliminaries 5 2.1 Problem Description 5 2.2 System Architecture of QBI 6 Chapter 3 Place Query With Adjacency Constraints 8 3.1 Pre-processing Procedure 8 3.2 Naive Approach 9 Chapter 4 Performance Enhancement Algorithms 13 4.1 Distance Pre-calculating Algorithm 13 4.2 Grid Indexing Algorithm 17 4.3 Enhancement By User Feedback 21 Chapter 5 Performance Evaluation 24 5.1 System Setup 24 5.2 Accuracy Performance 25 5.3 Efficiency Performance 28 5.4 Discussion 30 Chapter 6 Related Works 32 Chapter 7 Conclusion 34 REFERENCES 35 | |
| dc.language.iso | en | |
| dc.subject | 基於印象搜尋技術 | zh_TW |
| dc.subject | 鄰近限制搜尋 | zh_TW |
| dc.subject | 適地性服務 | zh_TW |
| dc.subject | 地點搜尋 | zh_TW |
| dc.subject | Place Query | en |
| dc.subject | Location-based Service | en |
| dc.subject | Adjacency Constraints | en |
| dc.subject | Query By Impression | en |
| dc.title | 基於使用者過往周遭印象之新穎地點搜尋系統 | zh_TW |
| dc.title | Query by Impression: A Novel Place Query System with Adjacency Constraints | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 雷欽隆,黃寶儀,曾祺堯,戴志華 | |
| dc.subject.keyword | 地點搜尋,適地性服務,鄰近限制搜尋,基於印象搜尋技術, | zh_TW |
| dc.subject.keyword | Place Query,Location-based Service,Adjacency Constraints,Query By Impression, | en |
| dc.relation.page | 37 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 591 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
