Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64218
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鵬林 博士(Dr. Pung-Ling Huang)
dc.contributor.authorYung-Wei Chengen
dc.contributor.author程永煒zh_TW
dc.date.accessioned2021-06-16T17:35:21Z-
dc.date.available2017-08-27
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation林靜宜和詹富智. 2005. 無篩選標示基因 (marker-free) 轉基因植物之構築及其最新發展. Plant Pathology Bulletin 14:159-176.
范藝齡. 2010. 應用轉位子去除篩選標誌系統於蝴蝶蘭基因轉殖. 國立臺灣大學園藝學系碩士論文.
Akiyoshi, D. E., H. Klee, R. M. Amasino, and M. P. Gordon. 1984. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA. 81:5994-5998.
Baker, B.,J. Schell,H. Lörz, and N. V. Federoff. 1986. Transpositionof themaize-controllingelement“Activator” intobacco. Proc Natl Acad Sci USA. 83:4844-4848.
Balcells, L., E. Sundberg, and G. Coupland. 1994. A heat-shock promoter fusion to the Ac transposase gene drives inducible transposition of a Ds element during Arabidopsis embryo development. Plant J. 5:755-764.
Balcells, L., J. Swinburne, and G. Coupland. 1991. Transposons as tools for the isolation of plant genes. Trends Biotech. 9: 31-37.
Barry, G., G. Kishore, S. Padgette, M. Talor, K. Kolacz, M. Weldon, D. Re, D. Eichholtz, K. Fincher, and L. Hallas. 1992. Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to plants. In: Singh, B.K., Flores, H.E., Shannon, J.C. (eds.), Biosynthesis and Molecular Regulation of Amino Acids in Plants. American Society of Plant Physiology, p. 139–145.
Becker, H. A., and R. Kunze. 1997. Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and terminal inverted repeats. Mol. Gen Genet 254: 219-230.
Bigot, Y., C. Auge-Gouillou, and G. Periquet. 1996. Computer analyses reveal a hobo-like element in the nematode Caenorhabditis elegans, which presents a conserved transposase domain common with the Tc1-Mariner transposon family. Gene 174:265-271.
Boboila, C., M. Jankovic, C. T. Yan, J. H. Wang, D. R. Wesemann, T. Zhang, A. Fazeli, L. Feldman, A. Nussenzweig, M. Nussenzweig, and F. W. Alt. 2010. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc. Natl. Acad. Sci. USA. 107:3034-3039.
Calvi, B. R., T. J. Hong, S. D. Findley, and W. M. Gelbart. 1991. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66:465-471.
CFIA.1995. Canadian Food Inspection Agency. Decision Document DD95-03: Determination of Environmental Safety of Pioneer Hi-Bred International Inc.’s Imidazolinone-Tolerant Canola.
Chakraborti, D., A. Sarkar, H. A. Mondal, D. Schuermann, B. Hohn, B. K. Sarmah, and S. Das. 2008. Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. Plant Cell Rep. 27:1623-1633.
Charng Y. C., A. J. P. Pfitzner, U. M. Pfitzner, K. F. Chang, C. M. Chen, J. Tu, and T. T. Kuo. 2000. Construction of an inducible transposon, INAc, to develop a gene tagging system in higher plants. Mol. Breed. 6:353-367
Charng, Y. C., G. Wu, C. S. Hsieh, H. N. Chuang, J. Y. Huang, L. C. Yeh, Y. H. Shieh, and J. Tu. 2007. The inducible transposon system for rice functional genomics. Botanical Studies 48:1-11.
Charng, Y. C., K. T. Li, H. K. Tai, N. S. Lin, and J. Tu. 2008. An inducible transposon system to terminate the function of a selectable marker in transgenic plants. Mol. Breed. 21:359-368.
Coen, E. S., T. P. Robbins, J. Almeida, A. Hudson, and R. Carpenter. 1989. Consequences and mechanisms of transposition in Antirrhinum majus. In: Berg DE, Howe MH (eds) Mobile DNA. ASM Press, Washington, DC, p 413-436.
Comai, L., K. N. Larson, J. Kiser, C. J. D. Mau, A. R. Pokalsky, C. K. Shewmaker, K. McBride, A. Jones, and D. M., Stalker. 1988. Chloroplast transport of a ribulose bisphosphate carboxylase small subunit-5-enolpyruvyl 3-phosphoshikimate synthase chimeric protein requires part of the mature small subunit in addition to the transit peptide. J. Biol. Chem.263:15104-15109.
Cotsaftis, O., S. Christophe, J. C. Breitler, D. Meynard, R. Greco, A. Pereira, and E. Guiderdoni1. 2002. Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Mol. Breed. 10: 165-180.
Cuadrado, M., B. M. Pastor, and O. F. Capetillo. 2006. ATR activation in response to ionizing radiation: still ATM territory. Cell Div. 1: 37–50.
Culligan, K. M., C. E. Robertson, J. Foreman, P. Doerner, and A. B. Britt. 2006. ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J. 48:947-961.
Dale, E., and D. Ow. 1991. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA. 88:10558-10562.
Daley, M., V. C. Knauf, K. R. Summerfelt, and J. C. Turner. 1998. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker- free transgenic plants. Plant Cell Rep. 17:489-496.
Daniell, H., B. Muthukumar, S. B. Lee. 2001. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr.Genet. 39:109-16.
Della-Cioppa, G., S. C. Bauer, M. L. Taylor, D. E. Rochester, B. K. Klein, D. M. Shah, R. T. Fraley, and G. M. Kishore. 1987. Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. Biotechnology. 5:579-584.
Eckes, P., P. Schmitt, W. Daub, and F. Wengenmayer. 1989. Overproduction of alfalfa glutamine synthase in transgenic tobacco plants. Mol. Gen. Genet. 217:263-268.
Elena, Z, S. Charles, and M. Peter. 2000. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol. 18:442-5.
Endo, S. T. Kasahara, K. Sugita, E. Matsunaga, and Ebinuma. 2001. The isopentyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum cv. Petite Havana SR1). Plant Cell.Rep. 20:60-66.
Esposito, T., F. Gianfrancesco, A. Ciccodicola, L. Montanini, S. Mumm, M. D’Urso, A. Forabosco. 1999. A novel pseudoautosomal human gene encodes a putative protein similar to Ac-like transposases. Hum. Mol. Genet 8:61-67.
Finnegan, D. J., 1990. Transposable elements and DNA transposition in eukaryotes.Curr.Opin. Cell Biol. 2:471-477.
Fuchs, R.L., J.E. Ream, B.G. Hammond, M.W. Naylor, R.M. Leimgruber, and S.A. Berberich.1993a. Safety assessment of the neomycin phosphotransferase II (NPTII) protein. Biotechnology 11:1543-1547.
Fuchs, R.L., R.A. Heeren, M.E. Gustafson, G.J. Rogan, D.E. Bartnicki, R.M. Leimgruber, R.F. Finn, A. Hershman, and S.A. Berberich. 1993b. Purification and characterization of microbially expressed neomycin phosphotransferase II (NPTII) protein and its equivalence to the plant expressed protein. Biotechology 11:1537-1542.
Gellert, M. 2002. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71:101-132.
Goldsbrough, A. P., C. N. Lastrella, and J. I. Yoder. 1993. Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology 11:1286-1292.
Gorbunova, V., and A. A. Levy. 2000. Analysis of extrachromosomal Ac/Ds transposable elements. Genetics 155:349-359.
Hajdukiewicz, P. T. 2001. Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J. 27:161-171.
Hake, S., E. V. Vollbrecht, and M. Freeling. 1989.Cloning of knotted, thedominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J. 8:15-22.
Haldrup, A., S. G. Petersen, and F. T. Okkels. 1998. Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Rep. 18:76-81.
Heeres, P, M. R. Schippers, E. Jacobsen, and R. G. F. Visser. 2002. Transformation of a large number of potato varieties: genotype-dependent variation in efficiency and somaclonal variability. Euphytica. 124:13-22.
Hehl, R., W. Nacken, A. Krause, H. Saedler, and H. Sommer. 1991. Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol. Biol. 16:369-371.
Hiei, Y., S. Ohta, T. Komari and T. Kumashiro. 1994. Efficient transformation rice (oryza sativaL.) mediated by Agorobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271-282.
Hoff, T., K. M. Schnorr, and J. Mundy. 2001. A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol. Bio.45:41-49.
Howe, A. R., C. S. Gasser, S. M. Brown, S. R. Padgette, J. Hart, G. B. Parker, M. E. Fromm, and C. L. Armstrong. 2002. Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Mol. Breed. 10:153-164.
Huefner, N. D., Y. Mizuno, C. F. Weil, I. Korf, A. B. Britt. 2011. Breadth by depth: Expanding our understanding of the repair of transposon-induced DNA double strand breaks via deep-sequencing. DNA Repair 10:1023-1033.
Iliakis, G. 2009. Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence. Radiother.Oncol. 92:310-315.
Joersbo, M., and F.T.Okkels. 1996. A novel principle for selection oftransgenic plant cells: positive selection. Plant Cell.Rep. 16:219-221.
Jofuku, K. D., and R. B. Goldberge. 1998. Analysis of plant gene structure. In: Shaw, C. H. (ed). Plant Biology.A practical approach.IRL.Press, Oxford, UK.p37-42.
Kempken, F., and F.Windhofer. 2001. The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110:1-9.
Kempken, F., and U. Kück. 1996. Restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: structure, expression, and alternative RNA splicing. Mol. Cell Biol. 16:6563-6572.
Kishore, G. M., L. Brundage, K. Kolk, S. R. Padgette, D. Rochester, K. Huynh, and G. della-Cioppa. 1986. Isolation, purification and characterization of a glyphosate tolerant mutant E. coli EPSP synthase. Fed. Proc. 45:1506.
Koga, A., M. Suzuki, H. Inagaki, Y. Bessho, and H. Hori. 1996. Transposable element in fish. Nature 383:30.
Koga, A., M. Suzuki, Y. Maruyama, M. Tsutsumi, and H. Hori. 1999. Amino acid sequence of a putative transposase protein of the mekafish transposable element Tol2 deduced from mRNA nucleotide sequences. FEBS Lett 461:295-298.
Kopertekh, L., G. Juttner, and J. Schiemann. 2004. PVX-Cre-mediated marker gene elimination from transgenic plants. Plant Mol. Biol.55:491-500.
Krishnaswamy, L., J. Zhang, and T. Peterson. 2008. Reversed end Ds element: a novel tool for chromosome engineering in Arabidopsis. Plant Mol. Biol. 68:399-411.
Krishnaswamy, L., J. Zhang, and T. Peterson. 2010. Fusion of reverse-oriented Ds termini following abortive transposition in Arabidopsis: implications for the mechanism of Ac/Ds transposition. Plant Cell Rep. 29:413-417.
Kunkel, T., Y. S. Chan, and N. H. Chua. 1999. Inducible isopentenyl transferase as a high-efficiency marker for plant ransformation. Nat. Biotechnol. 17:916-919.
Kunze, R., and C. F. Weil. 2002. The hAT and CACTA superfamilies ofplant transposons. In: Craig NL, Craigie R, Gellert M, Lambo-witz AM (eds) Mobile DNA II. ASM Press, Washington, DC,p 565-610.
Li, K. T., Y. L. Lin, J. Y. Huang, W. Y. Li, and Y. C. Charng. 2008. A one-time inducible transposon for creating knockout mutants. Mol. Breed. 22:85-94.
Liu, H. K., C. Yang, and Z. M. Wei. 2005. Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants. Plant Sci. 168:997-1003.
Lodhi, N., A. Ranjan, M. Singh, R. Srivastava, S. P. Singh, C. P. Chaturvedi, S. A. Ansari, S. V. Sawant, and R. Tuli. 2008. Interactions between upstream and core promoter sequences determine gene expression and nucleosome positioning in tobacco PR-1a promoter. Biochimica et Biophysica Acta 1779:634-644.
LuAnn, S. D. LaFoe, and C. F. Weil.1996. AdjacentSequencesInfluenceDNA RepairAccompanying Transposon Excision in Maize. Genetics 142:237-246.
Malik, V.S., and M. K. Saroha, 1999.Marker gene controversy in transgenic plants. J. Plant Biochem.Biotechnol. 8:1-13.
Mazodier, P., P. Cossart, E. Giraud, and F. Gasser. 1985. Completion of the nucleotide sequence of the central region of Tn5 confirms the presence of three resistance genes. Nucleic Acids Res. 13:195-205.
McClintock, B. 1951.Cold Spring Harbor Syrup. Quant. Biol. 16:13-47.
Miki, B., and S. McHugh. 2004. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 107:193-232.
Mor, T.S., M. A. Gomez, and K. E. Palmer. 1998. Perspective:edible vaccines-a concept coming of age. Trends Microbiol.65:449–453.
Nap,J.P., J.Bijvoet, and W.J.Stiekema, 1992.Biosafetyofkanamycinresistanttransgenic plants. Trans. Res. 1:239-249.
OECD. 1999. Concensus document on general information concerning the genes and their enzymes that confer tolerance to phosphinothricin herbicide. Series on Harmonization of Regulatory Oversight in Biotechnology.No. 11.
Ortiz, J. P. A., M. I. Reggiardo, R. A. Ravizzini, S. G. Altabe, G. D. L. Cervigni, M. A. Spitteler, M. M. Morata, F. E. Elias, and R. H. Vallejos. 1996. Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep. 15:877-881.
Ow, D. W. 2001. The right chemistry for marker gene removal? Nat. Biotechnol. 19:115-116.
Ow, D. W. 2007. GM maize from site-specific recombination technology, what next?Curr Opin Biotechnol. 18:115-120.
Pastink, A., J. C. Eeken, P. H. Lohman. 2001. Genomic integrity and the repair of double-strand DNA breaks. Mutat. Res. 480-481.
Privalle, L. S., M. Wright, J. Reed, G. Hansen, J. Dunder, E. M. Dawson, Y. F. Chang, M. L. Powell, and M. Meghji. 2000. Phosphomannose isomerase – a novel system for plant selection: mode of action and safety assessment. In: Fairburn, C., Scoles, G., McHughen, A. (eds.), Proceedings of the 6th International Symposium on The Biosafety of Genetically Modified Organisms. p. 171–178.
Rinehart, T. A., C. Dean, and C. F. Weil. 1997. Comparative analysis of non-random DNA repair following Ac transposon excision in maize and Arabidopsis, Plant J. 12:1419-1427.
Roth, D. B., J. P. Menetski, P. B. Nakajima, M. J. Bosma, and M. Gellert. 1992. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in SCID mouse thymoctes. Cell 70:983-991.
Saedler, H. and P. Nevers. 1985. Transposition in plants: a molecular model. EMBO J. 4:585-590.
Schultes, N. P., R. J. Sawers, T. P. Brutnell, and R. W. Krueger.2000. Maizehighchlorophyllfluorescent60mutationiscausedbyanAcdisruptionofthegeneencodingthechloroplastribosomalsmall subunit protein 17. Plant J. 21:317-327.
Southern, E. M. 1975.Detection of specific sequence among DNA fragment separted by gel electrophoresis. J. Mol. Biol. 98:503-517.
Sreekala, C., L. Wu, K. Gu, D. Wang, D. Tian, and Z. Yin. 2005. Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep. 24:86-94.
Srivastava, V., O. D. Anderson, and D. W. Ow. 1999. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc. Natl. Acad. Sci. USA. 96:11117-11121.
Starlinger, P., and H. P. Döringa. 1984. Barbara McClintock's controlling elements: Now at the DNA level. Cell 39:253-259.
Sun, L., L. Zhou, M. Lu, M. Cai, X. W. Jiang, and Q. X. Zhang. 2009. Marker-Free Transgenic Chrysanthemum Obtained by Agrobacterium-Mediated Transformation with Twin T-DNA Binary Vectors. Plant Mol. Biol. Rep. 27:102-108.
Svab, Z., P.Maliga. 1993. High-frequency plastid transformationin tobacco by selection for a chimeric aadA gene. Proc. Natl.Acad. Sci. USA. 90:913-917.
Takei, K., H. Skakibara, and T. Sugiyama. 2001. Identification of genes encoding adenylate isopentyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol. Chem.276:26405-26410.
Teruo, I., O. M. Ohshima, and Y. Ohshima. 1991. Transformation of Japanese potato cultivars with the β-glucuronidase gene fused with the promoter of the pathogenesis-related la protein gene of tobacco. Plant Cell Rep. 8:325-328.
Thompson, C. J., N. R. Movva, R. Tizard, R. Crameri, J. E. Davies, M. Lauwereys, and J. Botterman. 1987. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6:2519-2523.
Tian, L. N., P. J. Charest, A. Seguin, and R.G. Rutledge. 2000. Hygromycin resistance is an effective selectable marker for biolistic transformation of black spruce (Picea mariana). Plant Cell Rep. 19:358-362.
Twyman, R.M., E. Stöger, A. Kohli, T. Capell, and P. Christou. 2002. Selectable and screenable markers for rice transformation. Mol. Methods Plant Anal. 22:1-17.
Ursin, V. M. 1996. Aldehyde dehydrogenase selectable markers for plant transformation. WO 96:12029.
US Food and Drug Administration (FDA). 1994. Secondary food additives permitted in food for human consumption: food additives permitted in feed and drinking water of animals; aminoglycoside 3’-phosphotransferase II; Final Rule, Fed Regist. 59:26700-26711.
Van Loon, L.C. 1975. Similarity of qualitative changes of specific proteins after infection with different viruses andtheirrelationshiptoacquired resistance. Virology 67: 566-575.
Waldron, C., E. B. Murphy, J.L. Roberts, G. D. Gustafson, S. L. Armour, and S. K. Malcolm. 1985. Resistance to hygromycin B. Plant Mol. Biol. 5:103-108.
Wang, D., Q. Zhao, D. Zhu, G. Ao, and J. Yu. 2006. Particle-bombardment-mediated co-transformation of maize with a lysine rich protein gene (sb401) from potato. Euphytica 150:75-85.
Warren, W. D., P. W. Atkinson, and O. Brochta. 1994. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet Res 64:87-97.
Weil, C.F., and R. Kunze. 2000. Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nat Genet 26:187-190.
Wendy, P. S. 2006. Physiological mechanisms of glyphosate resistance. Weed Technol. 20: 290-300.
White,R.F.1979. Acetylsalicylicacid(aspirin)inducesresistancetotobaccomosaicvirusin tobacco. Virology 99:410-412.
WHO. 1993. Health aspects of markers in genetically modified plants. Report of a WHO workshop. World Health Organization, Geneva.
Wohlleben, W., W. Arnold, I. Broer, D. Hilleman, E. Strauch, and A. Puhler. 1988. Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum. Gene 70:25-37.
Yu, J., K. Marshall, M. Yamaguchi, J. E. Haber, and C. F. Weil. 2004. Microhomology-dependent end joining and repair of transposon-induced DNA hairpins by host factors in Saccharomyces cerevisiae, Mol. Cell Biol. 24:1351-1364.
Zhang, W., S. Subbarao, P. Addae, A. Shen, C. Armstrong, V. Peschke, and L. Gilbertson. 2003. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet. 107:1157-1168.
Zhang, Y., H. Liu, B. Li, J. T. Zhang, Y. Li, and H. Zhang. 2009. Generation of selectable marker-free transgenic tomato resistant to drought, cold and oxidative stress using the Cre/loxP DNA excision system. Transgenic Res. 18:607-619.
Zhao, Y., Q. Qian, H. Z. Wang, and D. N. Huang. 2007. Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA, In Vitro Cell Dev. Biol. Plant 43:328-334.
Zhou, H., J. W. Arrowsmith, M. E. Fromm, C. M. Hironaka, M. L. Taylor, D. Rodriguez, M. E. Pajeau, S. M. Brown, C. G. Santino, and J. E. Fry. 1995. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep.15:159-163.
Zhou, L. R. Mitra, P. W. Atkinson, A. B. Hickman, F. Dyda, and N. L. Craig. 2004. Transposition of hAT elements links transposable elements and V(D)J recombination, Nature 432:995-1001.
Zuo, J., Q. W. Niu, S. G. Møller, and N. H. Chua. 2001. Chemical-regulated, site-specific DNA excision in transgenic plants. Nat. Biotechnol. 19:157-161.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64218-
dc.description.abstract篩選標誌基因之表達有助於分離出轉殖細胞,一旦確立轉殖事件後,篩選標誌基因便不具有其他的用途,若持續添加抗生素或殺草劑等篩選試劑,則易降低轉殖細胞增殖及分化的能力。另外,轉殖植株之抗藥性基因可能影響生態環境的平衡,易引發大眾對其安全性的疑慮。本研究利用可受水楊酸誘導之菸草PR-1a 啟動子與轉位酶 (transposase) 基因融合,應用於四種轉位子 (transposon) 系統,以 3 mM 水楊酸處理轉殖蝴蝶蘭癒傷組織及菸草葉圓片5天,接著抽取基因組 DNA 進行聚合酶連鎖反應 (polymerase chain reaction, PCR),將 PCR 所得到的產物定序分析,結果顯示轉位事件 (transposition) 發生後,產生四種轉位類型,除了預期的左邊界 (left border) 及右邊界 (right border),也保留了35 - 128 bp之部分質體序列。本研究進一步針對篩選標誌基因轉位後是否再插入其它位置進行探討,以南方氏雜交法進行分析,轉殖 pGcET 和 pGEnT 植株只雜合到轉位後之片段,並未獲得篩選標誌基因片段,顯示轉位作用已達到篩選標誌基因移除之目標。zh_TW
dc.description.abstractExpression of selectable marker genes allows scientists to identify and isolate the transgenic cells. Once the transgenic plant has been generated, marker gene generally no longer serves an essential purpose. Furthermore, the propagation and development of transgenic cells will be retarded if the antibiotic or herbicide remains in the growth medium. Besides, it is concerned by publics about biosafety of antibiotic and herbicide resistance genes in transgenic plants. We have developed four different constructs under the control of the promoter PR-1afor inducible transposon systems as marker-free strategy and theses constructs were transformed into Phalaenopsis calli and tobacco plants. Transgenic plants were treated with 3 mM salicylic acid for 5 days to eliminate marker genes. Four patterns of transposition have been identified base on sequence analysis. Residual DNA sequences of 35 - 128 bp were fused as footprints after excision of the transposon. Southern analysis confirmed further that the herbicide resistance geneEPSPS,had been removed together with the transposition.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:35:21Z (GMT). No. of bitstreams: 1
ntu-101-R99628132-1.pdf: 2704327 bytes, checksum: 648201204009b1e4c390f20b521bec00 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要 i
Abstract ii
壹、前言 1
貳、前人研究 2
一、篩選標誌基因 2
(一) 抗生素抗性基因(antibiotics resistance gene) 2
(二) 殺草劑抗性基因(herbicide resistance gene) 3
(三) 正向篩選基因 (Positive selectable gene) 5
二、篩選標誌基因移除策略 (marker free strategies) 6
(一) 共轉型法 (Co-transformation) 7
(二) 定點重組法 (Site-specific recombination) 8
(三) 轉位子系統 (Transposon system) 8
三、應用誘導型啟動子移除篩選標誌基因 9
四、轉位機制及修復模式 11
參、材料與方法 13
一、試驗材料 13
(一) 質體材料 13
(二) 試驗菌種 13
(三) 植物材料 15
二、試驗方法 15
(一) 農桿菌媒介轉殖法 15
(二) 擬轉殖株分析 16
(三) 水楊酸誘導轉位試驗 19
肆、結果 21
一、水楊酸誘導處理之最佳濃度 21
二、聚合酶連鎖反應分析 21
三、轉位後序列分析 32
四、南方氏雜交分析 37
五、轉殖蝴蝶蘭癒傷組織之再生及 GUS活性組織化學染色分析 37
伍、討論 45
一、水楊酸誘導型PR-1a啟動子 45
二、水楊酸誘導轉位子系統發生轉位之現象 46
三、轉位機制及修復模式 46
四、轉位後之再插入 49
陸、結語 51
柒、參考文獻 52
捌、附錄 63
dc.language.isozh-TW
dc.subject轉位&#37238zh_TW
dc.subject篩選標誌基因zh_TW
dc.subject轉位子zh_TW
dc.subjectAc末端反向重複序列zh_TW
dc.subjectselectable marker geneen
dc.subjecttransposaseen
dc.subjecttransposonen
dc.subjectActerminal inverted repeaten
dc.title應用轉位子系統去除轉殖蝴蝶蘭篩選標誌基因之研究zh_TW
dc.titleApplication of Transposon System for Selectable Marker Elimination in Transgenic Phalaenopsisen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖芳心 博士(Dr. Fang-Shin Liao),常玉強 博士(Dr. Yuh-Chyang Charng),杜宜殷 博士(Dr. Yi-Yin Do)
dc.subject.keyword篩選標誌基因,轉位子,Ac末端反向重複序列,轉位&#37238,zh_TW
dc.subject.keywordselectable marker gene,transposon,Acterminal inverted repeat,transposase,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2012-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved