Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64200
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾賢忠
dc.contributor.authorSz-Jie Chenen
dc.contributor.author陳思潔zh_TW
dc.date.accessioned2021-06-16T17:34:33Z-
dc.date.available2017-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citationAbu-Shakra M., Shoenfeld Y., 2001. Azathioprine therapy for patients with systemic lupus erythematosus. Lupus 10, 152-153.
Albert D., Dunham J., Khan S., Stansberry J., Kolasinski S., Tsai D., Pullman-Mooar S., Barnack F., Striebich C., Looney R.J., Prak E.T., Kimberly R., Zhang Y., Eisenberg R., 2008. Variability in the biological response to anti-CD20 B cell depletion in systemic lupuserythaematosus. Ann Rheum Dis 67, 1724-1731.
Aringer M., Smolen J.S., 2008. The role of tumor necrosis factor-α in systemic lupus erythematosus. Arthritis Res Ther 10, 202.
Athar M., Back J.H., Tang X., Kim K.H., Kopelovich L., Bickers D.R., Kim A.L., 2007. Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 224, 274-283.
Baur J.A., 2010. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 131, 261-269.
Baerenwaldt A., Lux A., Danzer H., Spriewald B.M., Ullrich E., Heidkamp G., Dudziak D., Nimmerjahn F., 2011. Fcγ receptor IIB (FcγRIIB) maintains humoral tolerance in the human immune system in vivo. Proc Natl Acad Sci USA 108, 18772-7.
Ben-Neriah Y., Karin M., 2011. Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12, 715-723.
Bereswill S., Munoz M., Fischer A., Plickert R., Haag L.M., Otto B., Kuhl A.A.,Loddenkemper C., Gobel U.B., Heimesaat MM., 2010. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinalinflammation. PLoS One 5, e15099.
Bertsias G., Ioannidis J.P., Boletis J., Bombardieri S., Cervera R., Dostal C., Font J., Gilboe I.M., Houssiau F., Huizinga T., Isenberg D., Kallenberg C.G., Khamashta M.,
Piette JC., Schneider M., Smolen J., Sturfelt G., Tincani A., van Vollenhoven R.,Gordon C., Boumpas D.T., 2008. EULAR recommendations for the management of systemic lupus erythematosus. Report of a task force of the EULAR standing
committee for international clinical studies including therapeutics. Ann Rheum Dis 67, 195-205.
Bolland S., Ravetch J.V., 1999. Inhibitory pathways triggered by ITIM-containing receptors. Adv Immunol 72, 149-177
Bolland S., Ravetch J.V., 2000. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 13, 277-285.
Burt R.K., Marmont A., Oyama Y., Slavin S., Arnold R., Hiepe F., Fassas A., Snowden J., Schuening F., Myint H., Patel D.D., Collier D., Heslop H., Krance R., Statkute L.,Verda L., Traynor A., Kozak T., Hintzen R.Q., Rose JW., Voltarelli J., Loh Y., Territo M., Cohen B.A., Craig R.M., Varga J., Barr W.G., 2006 . Randomized controlled trials of autologous hematopoietic stem cell transplantation for autoimmune diseases: the evolution from myeloablative to lymphoablative transplant regimens. Arthritis Rheum. 54, 3750-3760.
Caccavo D., Lagana B., Mitterhofer A.P., Ferri G.M., Afeltra A., Amoroso A., Bonomo L., 1997. Long-term treatment of systemic lupus erythematosus with cyclosporine A. Arthritis Rheum. 40, 27-35.
Cen Y., 2010. Sirtuins inhibitors: the approach to affinity and selectivity. Biochim Biophys Acta. 1804, 1635-44.
Chen J.Y., Wang C.M., Tsao K.C., Chow Y.H., Wu J.M., Li C.L., Ho H.H., Wu Y.J., Luo S.F., 2004. Fcγ receptor IIa, IIIa, and IIIb polymorphisms of systemic lupus erythematosus in Taiwan. Ann. Rheum. Dis. 63,877-880.
Chen J.Y., Wang C.M., Ma C.C., Luo S.F., Edberg J.C., Kimberly R.P., Wu J., 2006. Association of a transmembrane polymorphism of Fcγ receptor IIb (FCGR2B) with systemic lupus erythematosus in Taiwanese patients. Arthritis Rheum. 54, 3908-3917.
Daikh D.I., Wofsy D., 2001. Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide. J Immunol 166, 2913-2916.
Danchenko N., Satia J.A., Anthony M.S., 2006. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus 15, 308-318.
Dijstelbloem H.M., van de Winkel J.G., Kallenberg C.G., 2001. Inflammation in autoimmunity: receptors for IgG revisited. Trends Immunol 22, 510-516.
Dorner T., Lipsky PE., 2006. Signalling pathways in B cells: implications for autoimmunity. Curr Top Microbiol Immunol. 305, 213-40.
Edwards J.C., Cambridge G., 2006. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 6, 394-403.
Elmali N., Baysal O., Harma A., Esenkaya I., Mizrak B., 2007. Effects of resveratrol in inflammatory arthritis. Inflammation 30, 1-6.
Floto R.A., Clatworthy M.R., Heilbronn K.R., Rosner D.R., MacAry P.A., Rankin A., Lehner P.J., Ouwehand W.H., Allen J.M., Watkins N.A., Smith K.G., 2005. Loss of function of a lupus-associated FcγRIIb polymorphism through exclusion from lipid rafts. Nat Med 11, 1056-8.
Fonseca-Kelly Z., Nassrallah M., Uribe J., Khan R.S., Dine K., Dutt M., Shindler K.S., 2012. Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis. Front Neurol 3, 84.
Ginzler EM., Dooley M.A., Aranow C., Kim M.Y., Buyon J., Merrill J.T., Petri M.,Gilkeson G.S., Wallace D.J., Weisman M.H., Appel G.B., 2005. Mycophenolate mofetil or intravenous cyclophosphamide for lupus nephritis. N Engl J Med 353, 2219-2228.
Hahn B.H., 1998. Antibodies to DNA. N Engl J Med 338, 1359-1368.
Hedrich C.M., Zappel H., Straub S., Laass M.W., Wieczorek K., Hahn G., Heubner G., Gahr M., 2011. Early onset systemic lupus erythematosus: differential diagnoses, clinical presentation, and treatment options. Clin Rheumatol 30, 275-283.
Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S., Wood JG., Zipkin R.E., Chung P., Kisielewski A., Zhang L.L., Scherer B., Sinclair D.A., 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196.
Indik Z.K., Park J.G., Hunter S., Schreiber A.D., 1995. The molecular dissection of Fc γ receptor mediated phagocytosis. Blood 86, 4389-4399.
Ivashkiv L.B., 2009. Cross-regulation of signaling by ITAM-associated receptors. Nat Immunol 10, 340-347.
Jovanovic V., Dai X., Lim YT., Kemeny D.M., MacAry P.A., 2009. Fc γ receptor biology and systemic lupus erythematosus. Int J Rheum Dis 12, 293-298.
Kalergis A.M., Ravetch J.V., 2002. Inducing tumor immunity through the selective engagement of activating Fcγ receptors on dendritic cells. J Exp Med 195, 1653-1659.
Kammer G.M., 1983. Impaired T cell capping and receptor regeneration in active systemic lupus erythematosus. Evidence for a disorder intrinsic to the T lymphocyte.
J Clin Invest 72, 1686-1697.
Kang H.K., Ecklund D., Liu M., Datta S.K., 2009. Apigenin, non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells. Arthritis Res Ther 11, R59.
Kim E.J., Kho J.H., Kang M.R., Um S.J., 2007. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 28, 277-290.
Li L., Yao Z., 2004. Mast cell and immune inhibitory receptors. Cell Mol Immunol 1, 408-415.
Lipsky P.E., 2001. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol 2, 764-766.
Lynch R.G., 2000. Regulatory roles for FcγRIII (CD16) and FcγRII (CD32) in the development of T- and B-lineage lymphoid cells. J Leukoc Biol 67, 279-284.
Mackay M., Stanevsky A., Wang T., Aranow C., Li M., Koenig S., Ravetch J.V., Diamond B., 2006. Selective dysregulation of the FcγIIB receptor on memory B cells in SLE. J Exp Med 203, 2157-2164.
Manger K., Kalden J.R., Manger B., 1996. Cyclosporin A in the treatment of systemic lupus erythematosus: results of an open clinical study. Br J Rheumatol 35, 669-675.

Marshak-Rothstein A., 2006. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6, 823-835.
Melchers F., 2003. Actions of BAFF in B cell maturation and its effects on the development of autoimmune disease. Ann Rheum Dis 62, 25-27.
Milne JC., Lambert P.D., Schenk S., Carney D.P., Smith J.J., Gagne D.J., Jin L., Boss O., Perni R.B., Vu C.B., Bemis J.E., Xie R., Disch J.S., Ng P.Y., Nunes J.J., Lynch A.V.,Yang H., Galonek H., Israelian K., Choy W., Iffland A., Lavu S., Medvedik O., Sinclair D.A., Olefsky J.M., Jirousek M.R., Elliott P.J., Westphal C.H., 2007. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716.
Morand E.F., 2007. Effects of glucocorticoids on inflammation and arthritis. Curr Opin Rheumatol 19, 302-307.
Nakayama H., Yaguchi T., Yoshiya S., Nishizaki T., 2012. Resveratrol induces apoptosis MH7A human rheumatoid arthritis synovial cells in a sirtuin 1-dependent
manner. Rheumatol Int 32, 151-157.
Nimmerjahn F., Ravetch J.V., 2006. Fcγ receptors: old friends and new family members. Immunity 24, 19-28.
Nimmerjahn F., Ravetch J.V., 2008. Fcγ receptors as regulators of immune responses. Nat Rev Immunol 8, 34-47.
Nishimura T., Narita T., Miyazaki E., Ito T., Nishimoto N., Yoshizaki K., Martial J.A., Bellfroid E.J., Vissing H., Taniyama T., 2001. Characterization of the human FcγRIIB gene promoter: human zinc-finger proteins (ZNF140 and ZNF91) that bind to different regions function as transcription repressors. Int Immunol 13, 1075-84.
No authors listed, 1999. Guidelines for referral and management of systemic lupus erythematosus in adults. American College of Rheumatology Ad Hoc Committee on Systemic Lupus Erythematosus Guidelines. Arthritis Rheum 42, 1785-1796.
O'Keefe T.L., Williams G.T., Batista F.D., Neuberger M.S., 1999. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med 189, 1307-1313.
Ono M., Okada H., Bolland S., Yanagi S., Kurosaki T., Ravetch J.V., 1997. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 90, 293-301.
Ostensen M., Villiger P.M., 2001. Nonsteroidal anti-inflammatory drugs in systemic lupus erythematosus. Lupus 10, 135-139.
Park S.J., Ahmad F., Philp A., Baar K., Williams T., Luo H., Ke H., Rehmann H., Taussig R., Brown A.L., Kim M.K., Beaven M.A., Burgin A.B., Manganiello V., Chung J.H., 2012. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421-433.
Pisoni C.N., Sanchez F.J., Karim Y., Cuadrado M.J., D'Cruz D.P., Abbs I.C., Khamasta M.A., Hughes G.R., 2005. Mycophenolate mofetil in systemic lupus erythematosus: efficacy and tolerability in 86 patients. J Rheumatol 32, 1047-1052.
Pritchard N.R., Smith K.G., 2003. B cell inhibitory receptors and autoimmunity. Immunology 108, 263-273.
Pulendran B., Ahmed R., 2006. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849-863.
Qiu WQ., de Bruin D., Brownstein B.H., Pearse R., Ravetch J.V., 1990. Organization of the human and mouse low-affinity Fc gamma R genes: duplication and recombination. Science 248, 732-735.
Rahman Z.S., Manser T., 2005. Failed up-regulation of the inhibitory IgG Fc receptor FcγRIIB on germinal center B cells in autoimmune-prone mice is not associated with deletion polymorphisms in the promoter region of the FcγRIIB gene. J Immunol 175, 1440-9.
Ramos-Casals M., Sanz I., Bosch X., Stone J.H., Khamashta M.A., 2012. B-cell depleting therapy in systemic lupus erythematosus. Am J Med 125, 327-336.
Ronnblom L., Pascual V., 2008. The innate immune system in SLE: type I interferons and dendritic cells. Lupus 17, 394-399.
Ruiz-Irastorza G., Ramos-Casals M., Brito-Zeron P., Khamashta M.A., 2010. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis 69, 20-28.
Sansom D.M., 2000. CD28, CTLA-4 and their ligands: who does what and to whom? Immunology 101, 169-177.
Sanz I., Lee F.E., 2010. B cells as therapeutic targets in SLE. Nat Rev Rheumatol 6, 326-337.
Sanz I., Yasothan U., Kirkpatrick P., 2011. Belimumab. Nat Rev Drug Discov 10, 335-336.
Shindler K.S., Ventura E., Dutt M., Elliott P., Fitzgerald D.C., Rostami A., 2010. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuroophthalmol 30, 328-339.
Steinman R.M., Hawiger D., Liu K., Bonifaz L., Bonnyay D., Mahnke K., Iyoda T., Ravetch J., Dhodapkar M., Inaba K., Nussenzweig M., 2003. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann N Y Acad Sci 987,15-25.
Su K., Wu J., Edberg J.C., Li X., Ferguson P., Cooper G.S., Langefeld C.D., Kimberly R.P., 2004a. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcγRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J Immunol 172, 7186-7191.
Su K., Li X., Edberg JC., Wu J., Ferguson P., Kimberly RP., 2004b. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearingFcγRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function. J Immunol 172, 7192-7199.
Su K., Yang H., Li X., Li X., Gibson AW., Cafardi JM., Zhou T., Edberg JC., Kimberly RP., 2007. Expression profile of FcγRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. J Immunol 178, 3272-3280.

Tackey E., Lipsky P.E., Illei G.G., 2004. Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus 13, 339-343.
Takai T., Li M., Sylvestre D., Clynes R., Ravetch J.V., 1994. FcR γ chain deletion results in pleiotrophic effector cell defects. Cell 76, 519-529.
Tamir I, Dal Porto J.M, Cambier J.C., 2000. Cytoplasmic protein tyrosine phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Curr Opin Immunol 12, 307-315.
Tennen R.I., Michishita-Kioi E., Chua K.F., 2012. Finding a target for resveratrol. Cell 148, 387-389.
Thatayatikom A., White A.J., 2006. Rituximab: a promising therapy in systemic lupus erythematosus. Autoimmun Rev 5, 18-24.
Tzeng S.J., Bolland S., Inabe K., Kurosaki T., Pierce S.K., 2005. The B cell inhibitory Fc receptor triggers apoptosis by a novel c-Abl family kinase-dependent pathway. J Biol Chem 280, 35247-35254
Udenigwe C.C., Ramprasath V.R., Aluko R.E., Jones P.J., 2008. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr Rev 66, 445-454.
van Es J.H., Gmelig Meyling F.H., van de Akker W.R., Aanstoot H., Derksen R.H., Logtenberg T., 1991. Somatic mutations in the variable regions of a human IgG
anti-double-stranded DNA autoantibody suggest a role for antigen in the induction of systemic lupus erythematosus. J Exp Med 173, 461-470.
Vely F., Vivier E., 1997. Conservation of structural features reveals the existence of a large family of inhibitory cell surface receptors and noninhibitory/activatory counterparts. J Immunol 159, 2075-2077.
Yeung F., Hoberg J.E., Ramsey C.S., Keller M.D., Jones D.R., Frye R.A., Mayo M.W., 2004. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23, 2369-2380.
Yoshida Y., Shioi T., Izumi T., 2007. Resveratrol ameliorates experimental autoimmune myocarditis. Circ J 71, 397-404.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64200-
dc.description.abstractFcγRIIB是B細胞最重要的抑制性受體,在免疫系統中扮演調節抗體的主要角色。其作用機轉主要是透過抑制B-cell antigen receptor (BCR),但近來的研究顯示FcγRIIB單獨活化能引致B細胞凋亡。FcγRIIB身為抑制性受體的重要可由基因惕除鼠呈現紅斑性狼瘡及系統性紅斑性狼瘡病人FcγRIIB在記憶B細胞表現量降低的得到印證及顯示其重要性。過去文獻對於FcγRIIB的研究主要針對其蛋白質功能以及訊息傳遞之探討,儘管有文獻提出當FcγRIIB的promoter出現特定的核酸多形性變化(SNP)時,會影響FcγRIIB基因的轉錄活性,進而改變其蛋白質的表現量,但對於可調節FcγRIIB基因表現的轉錄因子及其上游調控機制尚不清楚。因此,本研究透過利用螢光報導系統(FcγRIIB-Luc)篩選LOPAC藥庫,並篩選出42種可以調控FcγRIIB基因表現之藥物。更進一步地,本研究想找出具有治療紅斑性狼瘡的潛力藥物,因此從42個候選藥物中再挑出與治療自體免疫疾病相關但尚未被應用在治療紅斑性狼瘡之藥物,最終先選定resveratrol做為研究調控FcγRIIB基因表現之候選藥物。在給予resveratrol至BJAB細胞後,FcγRIIB之mRNA及其在細胞表面的蛋白質表現量確實顯著增加,並可以被SIRT1抑制劑 (Ex-527)預處理抑制,顯示resveratrol透過SIRT1增加FcγRIIB基因表現。另外,有文獻指出SIRT1會抑制轉錄因子NF-κB活性,因此本研究在BJAB 細胞過度表現p65和IKKβ,實驗結果發現兩者皆呈明顯增加FcγRIIB的表現。所以本研究推論,resveratrol會透過活化SIRT1進而促進FcγRIIB的表現。而NF-κB的角色及其他SIRT1下游調控因子須再驗證與釐清。最後,期望透過本研究之策略,在未來能透過研究resveratrol及其他可以調控FcγRIIB基因表現的藥物,找到治療系統性紅斑性狼瘡病人乃至其他自體免疫疾病之具有治療潛力之新藥物和新標靶供新藥研發。zh_TW
dc.description.abstractFcγRIIB is the key inhibitory receptor in B cells. During the encounter of immune complexes, FcγRIIB inhibits BCR through phosphorylation of its immunoreceptor tyrosine-based inhibitory motif by Lyn to recruit SHIP for downstream inhibitory signals. Recently it has been shown that FcγRIIB itself can signal for apoptosis. The importance of FcγRIIB can be demonstrated by gene deficient mice that exhibit lupus-like disease. Consistent with this, FcγRIIB is down-regulated in memory B cells in patients with lupus. Previous studies have concentrated on protein function and signaling transduction of FcγRIIB without much known in transcriptional regulation. There are reports to indicate that the transcription activity of FcγRIIB gene can be altered by occurrence of single nucleotide polymorphism (SNP) on the FcγRIIB promoter, but the associated factors remain unclear. In this study we sought to screen LOPAC library using an FcγRIIB promoter linked luciferase assay and a total of 42 compounds showed significant modulatory effects on FcγRIIB gene expression. We next decided to select a candidate compound that is anti-inflammatory but has not yet been used in lupus for validation and further studies. Indeed, we found that resveratrol treatment to BJAB cells showed a dose-dependent increase of promoter activities, mRNA levels and surface expression. These effects were abolished by pre-treatment with Ex-527, a SIRT1 specific inhibitor, indicating that resveratrol up-regulates FcγRIIB gene expression through SIRT1. Since SIRT1 has been shown to be inhibitory to NF-κB activity for its anti-inflammatory effects, we over-expressed NF-κB p65 and IKKβ in BJAB cells and unexpectedly found a substantial increase of FcγRIIB expression, indicating that the effect of SIRT1 by resveratrol is not through NF-κB. Whether the effects of resveratrol to up-regulate FcγRIIB expression might be through mediators independent of NF-κB or in part independent of SIRT1 requires further investigation. In conclusion, our data indicates that resveratrol can up-regulate FcγRIIB expression through SIRT1 and distinct downstream targets. Our strategy to search for new compounds to treat autoimmune diseases by modulation of expression levels of FcγRIIB is novel. By further studying more candidate compounds, we should be able to discover new and effective drugs as well as identify new targets for the treatment of patients with lupus.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:34:33Z (GMT). No. of bitstreams: 1
ntu-101-R99443012-1.pdf: 3130382 bytes, checksum: a7c70bd21a7d3fe3ad18d559b4bd6f66 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
口試委員審定書............................................I
中文摘要.................................................II
Abstract................................................III
List of abbreviation......................................V
Contents................................................VII
Contents of Figures......................................IX
Contents of Tables........................................X
Chapter 1. Introduction...................................1
1.1 Immune inhibitory receptors...........................2
1.2 Fcγ receptor.........................................4
1.2.1 Fcγreceptor IIB..................................5
1.2.2 FcγRIIB as a major negative regulator of B cell
activation........................................6
1.2.3 FcγRIIB as a regulator of adaptive immunity......7
1.2.4 Fcγ RIIB as a regulator of innate immunity.......8
1.3 Systemic lupus erythematosus (SLE)....................8
1.3.1 Immune dysregulation in lupus.....................9
1.3.2 Therapies for SLE................................10
1.3.2.1 Non-steroidal anti-inflammatory drugs (NSAIDs)..10
1.3.2.2 Anti-malarial medications......................10
1.3.2.3 Steroids.......................................10
1.3.2.4 Immunosuppressive agents.......................11
1.3.2.5 Cytokine blockade..............................11
1.3.2.6 B-cell targeting...............................11
1.3.2.7 Co-stimulatory blockade........................12
1.3.2.8 Antigen-specific strategies.....................13
1.3.2.9 Bone marrow and hematopoietic stem cell
transplantation................................13
1.3.3 Currently and commonly used medications in the
treatment of SLE.................................13
1.3.4 Dysregulation of the FcγIIB receptor in SLE.....14
1.4 Resveratrol..........................................15
1.5 Motivation...........................................16
Chapter 2. Materials and Methods.........................20
2.1 Cell lines and culture conditions....................21
2.2 Mice.................................................21
2.3 Reagents.............................................21
2.3.1 For Cells........................................21
2.3.2 For mice.........................................22
2.4 Cell viability.......................................22
2.5 Plasmid constructs...................................23
2.5.1 FcγRIIB promoter linked luciferase constructRIIB
promoter linked luciferase construct.............23
2.5.2 NF-κB p65.......................................24
2.5.3 Iκ B kinaseβ subnuit (IKKβ)...................24
2.6 Luciferase reporter assay............................25
2.7 Flow cytometry.......................................26
2.7.1 For BJAB cells...................................26
2.7.2 For mouse splenic cells..........................26
2.8 Design of primers and probes of real-time PCR........27
2.9 Real-time PCR........................................28
2.10 Complete blood counts (CBCs)........................29
Chapter 3. Results.......................................30
3.1 Using luciferase reporter gene assay to screen the
library of pharmacologically active compounds (LOPAC)
for modulators of RcγRIIB expression................31
3.2 Resveratrol up-regulates the FcγRIIB gene
transcription........................................35
3.3 Resveratrol up-regulates the expression of surface Fcγ
RIIB on BJAB cells...................................36
3.4 SIRT1 is involved in up-regulating the expression of Fc
γRIIB by resveratrol................................37
3.5 Resveratrol-induced up-regulation of FcγRIIB
expression is in part through NF-κB.................38
3.6 Effects of resveratrol on immune receptors...........39
3.7 Resveratrol mediated up-regulation of FcγRIIB enhances
B-cell apoptosis in response to immune complex.......40
3.8 Resveratrol ameliorates lupus symptoms of MRL/lpr
mice.................................................41
Chapter 4. Discussions...................................43
Figures and Tables...................................................50
References...............................................85

Contents of Figures
Figure 3-1. Cloning of 3.3kb promoter region of FcγRIIB
for luciferase reporter gene assay...........51
Figure 3-2. The FcγRIIB 3.3kb promoter linked to
luciferase reporter gene can be substantially
activated by compound X and phorbol 12-
myristate 13-acetate.........................53
Figure 3-3. Flow chart of LOPAC screening strategy and data
analysis.....................................55
Figure 3-4. The effects of resveratrol on the
transcriptional activity of the FcγRIIB 3.3-
luc gene.....................................58
Figure 3-5. Dose-dependent effects of FcγRIIB 3.3-luc gene
transcription by resveratrol in BJAB cells...60
Figure 3-6. Resveratrol up-regulates the transcription of
endogenous FcγRIIB in BJAB cells in a dose-
dependent fashion............................62
Figure 3-7. Resveratrol up-regulates the expression level
of cell surface FcγRIIB on BJAB cells.......64
Figure 3-8. Known pathways to activate SIRT1 by resveratrol
and the regulatory effects of SIRT1 on NF-κB
and p53 that are downstream mediators
associated with inflammation.................65
Figure 3-9. Ex-527, a Sirt1 inhibitor, exerts a dose-
dependent inhibition on resveratrol-induced up-
regulation of surface FcγRIIB on BJAB cells.67
Figure 3-10.Ex-527 abrogates the up-regulation of surface
FcγRIIB expression by resveratrol on BJAB
cells........................................69
Figure 3-11.Increased levels of NF-κB p65 by over-
expression of either NF-κB p65 or IKKβ up-
regulates FcγRIIB expression................71
Figure 3-12.Resveratrol potentiates FcγRIIB expression
that is induced by an increase of NF-κB p65
levels through over-expression of NF-κB p65
and IKKβ in BJAB cells......................72
Figure 3-13.QPCR analyses of mRNA expression levels of Fcγ
RIIB, CD95 and BAFF-R in response to 10 μM of
resveratrol..................................73
Figure 3-14.Up-regulation of FcγRIIB expression by
resveratrol enhances immune complex-induced
apoptosis in BJAB cells......................74
Figure 3-15.Timeline and schedule of animal experiments..75
Figure 3-16.Resveratrol ameliorates the signs and symptoms
of MRL/lpr lupus mice........................77
Figure 3-17.Effects of resveratrol on peripheral blood
cells of MRL/lpr lupus mice..................80
Figure 3-18.Resveratrol up-regulates the surface expression
of FcγRIIB on B cells with a concomitant
decrease of B cell number in the spleen in
MRL/lpr lupus mice...........................82
dc.language.isoen
dc.subjectFc受體zh_TW
dc.subject抑制性受體zh_TW
dc.subject紅斑性狼瘡zh_TW
dc.subjectsystemic lupus erythematosusen
dc.subjectFc receptoren
dc.subjectFcγRIIBen
dc.subjectresveratrolen
dc.subjectSIRT1en
dc.subjectSLEen
dc.subjectlupusen
dc.title藥物調控B細胞上抑制性Fc受體的表現及探討其機轉並做為系統性紅斑性狼瘡之治療zh_TW
dc.titlePharmacological modulation and its mechanism on the expression of the inhibitory Fc receptor in B cells as a
therapeutic for systemic lupus erythematosus
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周綠蘋,徐立中,林國儀
dc.subject.keywordFc受體,抑制性受體,紅斑性狼瘡,zh_TW
dc.subject.keywordFc receptor,FcγRIIB,resveratrol,SIRT1,SLE,lupus,systemic lupus erythematosus,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2012-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved