Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64183
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃宏斌
dc.contributor.authorPo-Yen Liuen
dc.contributor.author劉柏巖zh_TW
dc.date.accessioned2021-06-16T17:33:47Z-
dc.date.available2025-08-01
dc.date.copyright2020-03-05
dc.date.issued2020
dc.date.submitted2020-03-01
dc.identifier.citationArman, A., Zahiri, J., Fatahi, P., & Ghanbari, S. (2017). Comparison and Simulation of Flow Pattern in a 90 Degree Mild Bend Using CCHE2D and SRH-2D Models.
Ashida, K., & Michiue, M. (1972). Study on hydraulic resistance and bed-load transport rate in alluvial streams. Paper presented at the Proceedings of the Japan society of civil engineers.
Bączyk, A., Piwiński, J., Kłoda, R., & Grygoruk, M. (2016). Survey on river water level measuring technologies: Case study for flood management purposes of the C2-SENSE project. Paper presented at the International Conference on Systems, Control and Information Technologies 2016.
Ballard, C. M. (2012). RiverFLO-2D and the Surfacewater Modeling System (SMS). Brigham Young University,
Bandrowski, D. J., Lai, Y. G., Bradley, D. N., Murauskas, J., & Gauman, D. (2014). 2D hydrodynamic based logic modelling tool for river restoration decision analysis: a quantitative approach to project prioritization.
Bradley, D. N. (2015). Trinity River 40 Mile Hydraulic Model: Development and Analysis. Technical Report No. SRH-2016-27. Sedimentation and River Hydraulics Group. Technical Service Center, Bureau of Reclamation.
Brunner, G. W. (2006). HEC-RAS river analysis system, user’s manual version 4.0 beta. US Army Corps of Engineers, Hydrologic Engineering Center, Davis, California.
Brunner, G. W. C.-H. (2018). HEC-RAS River Analysis System, Supplemental to HEC-RAS Version 5.0 User's Manual Version 5.0.4. US Army Corps of Engineers, Hydrologic Engineering Center, Davis, California.
Brunner, G. W. H. (2014). Combined 1D and 2D Modeling with HEC-RAS. Hydraulic Engineering Center, US Army Corps of Engineers.
Camenen, B., & Larson, M. (2008). A general formula for noncohesive suspended sediment transport. Journal of Coastal Research, 615-627.
Castellarin, A., Di Baldassarre, G., Bates, P. D., & Brath, A. (2009). Optimal cross-sectional spacing in Preissmann scheme 1D hydrodynamic models. Journal of Hydraulic Engineering, 135(2), 96-105.
Chatterjee, C., Förster, S., & Bronstert, A. (2008). Comparison of hydrodynamic models of different complexities to model floods with emergency storage areas. Hydrological Processes: An International Journal, 22(24), 4695-4709.
Crispino, G., Gisonni, C., & Iervolino, M. (2015). Flood hazard assessment: comparison of 1D and 2D hydraulic models. International Journal of River Basin Management, 13(2), 153-166.
Cronshey, R. (1986). Urban hydrology for small watersheds. Retrieved from
Dargahi, B. (2019). Controlling floodwater mosquitoes by river regulation. Water and Environment Journal.
Deal, E. C. (2016). A Comparison Study of One-and Two-Dimensional Hydraulic Models for River Environments. University of Kansas,
Dehotin, J., Vázquez, R., Braud, I., Debionne, S., & Viallet, P. (2011). Modeling of hydrological processes using unstructured and irregular grids: 2D groundwater application. Journal of Hydrologic Engineering, 16(2), 108-125.
Deltares. (2019). 1D/2D modelling suite for integral water solutions. SOBEK User Manual.
Deslauriers, S., & Mahdi, T.-F. (2018). Flood modelling improvement using automatic calibration of two dimensional river software SRH-2D. Natural Hazards, 91(2), 697-715.
DHI. (2002). Mike 11 A modelling system for Rivers and Channels. Mike 11 User Manual.
DHI. (2011). MIKE 21 Spectral wave Model FM User Guide. MIKE 21 User Manual.
Dhungel, S., Barber, M. E., & Mahler, R. L. (2019). Comparison of one-and two-dimensional flood modeling in urban environments. International journal of sustainable development and planning, 14(4), 356-366.
Dredging Today, I. (2019, March 4). Environmental Tracing Wins USACE’s Sediment Morphodynamics Contract. Retrieved from
https://www.dredgingtoday.com/2019/03/04/environmental-tracing-wins-usaces-sediment-morphodynamics-contract/
Duan, J. G., Yu, C., Khalid, A., & Lei, L. (2014). Comparative Modeling Studies of Reservoir Drawdown Induced Erosion and Sedimentation. Technical Report, submitted to the Bureau of Reclamation, Dept. of Civil Engineering and Engineering Mechanics, Univ. of Arizona, 63 pages.
Engelund, F., & Fredsøe, J. (1976). A sediment transport model for straight alluvial channels. Hydrology Research, 7(5), 293-306.
Fernandez Luque, R., & Van Beek, R. (1976). Erosion and transport of bed-load sediment. Journal of hydraulic research, 14(2), 127-144.
Fernández-Pato, J., Caviedes-Voullième, D., & García-Navarro, P. (2016). Rainfall/runoff simulation with 2D full shallow water equations: Sensitivity analysis and calibration of infiltration parameters. Journal of Hydrology, 536, 496-513. doi:https://doi.org/10.1016/j.jhydrol.2016.03.021
Fernández-Pato, J., Sánchez, A., & García-Navarro, P. (2019). Simulación de avenidas mediante un modelo hidráulico/hidrológico distribuido en un tramo urbano del río Ginel (Fuentes de Ebro). Ribagua, 6(1), 49-62.
Garcia-Martinez, R., Saavedra, I. C., De Power, B. F., Valera, E., & Villoria, C. (1999). A two-dimensional computational model to simulate suspended sediment transport and bed changes. Journal of hydraulic research, 37(3), 327-344.
Garcia, M. (2008). Sedimentation engineering: processes, measurements, modeling, and practice.
Garcia, R., & Kahawita, R. A. (1986). Numerical solution of the St. Venant equations with the MacCormack finite‐difference scheme. International Journal for numerical methods in fluids, 6(5), 259-274.
Garcia, R. M.-W., Fernando. (2017). Advanced hydrologic and water quality modeling to assess flood and pollution impacts: A case study of the Caracol Industrial Park in Haiti. Aqua-LAC, 9(1), 1-14.
García-Martinez, R., Espinoza, R., Valera, E., & González, M. (2006). An explicit two-dimensional finite element model to simulate short-and long-term bed evolution in alluvial rivers. Journal of hydraulic research, 44(6), 755-766.
García-Navarro, P., Murillo, J., Fernández-Pato, J., Echeverribar, I., & Morales-Hernández, M. (2019). The shallow water equations and their application to realistic cases. Environmental Fluid Mechanics, 19(5), 1235-1252.
Gonzalez-Ramirez, N. (2010). Simulating Flood Propagation in Urban Areas using a Two-Dimensional Numerical Model.
Greimann, B., Lai, Y., & Huang, J. (2008). Two-dimensional total sediment load model equations. Journal of Hydraulic Engineering, 134(8), 1142-1146.
Harish, P., & Narayanan, P. (2007). Accelerating large graph algorithms on the GPU using CUDA. Paper presented at the International conference on high-performance computing.
Haumán, A., Pulcha, D., & Meléndez, M. (2015). Considerations on dam breach analysis of tailing storage facilities. Paper presented at the 3rd International Seminar on Tailings Management. Santiago.
Hengl, T. (2009). A practical guide to geostatistical mapping.
Horritt, M., & Bates, P. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology, 268(1-4), 87-99.
Huang, J., & Greimann, B. (2010). User’s Manual for SRH-1D 2.6, Sedimentation and River Hydraulics–One Dimension. Retrieved from
Hydronia, L. (2015a). RiverFlow2D Plus Two-Dimensional Finite-Volume River Dynamics Model. RiverFlow2D User Manual.
Hydronia, L. (2015b). RiverFlow2D Two-dimensional finite-volume river dynamics model verification and validation tests. RiverFlow2D User Manual.
Jensen, K., Heilman, J., & Hu, H. (2019). HEC-RAS2D and SRH-2D: A Comparison using an Equivalent Computational Mesh Developed for Analysis of the SR 107 Bridge. Paper presented at the Federal Interagency Sedimentation and Hydrologic Modeling Conference (SEDHYD 2019).
Jia, Y., & Wang, S. S. (2001). CCHE2D: Two-dimensional hydrodynamic and sediment transport model for unsteady open channel flows over loose bed. National Center for Computational Hydroscience and Engineering, Technical Report No. NCCHE-TR-2001-1.
Juez, C., Lacasta, A., Murillo, J., & García-Navarro, P. (2016). An efficient GPU implementation for a faster simulation of unsteady bed-load transport. Journal of hydraulic research, 54(3), 275-288.
Kain, C. L., Rigby, E. H., & Mazengarb, C. (2018). A combined morphometric, sedimentary, GIS and modelling analysis of flooding and debris flow hazard on a composite alluvial fan, Caveside, Tasmania. Sedimentary geology, 364, 286-301.
Keulegan, G. H. (1938). Laws of turbulent flow in open channels (Vol. 21): National Bureau of Standards US.
Khorram, S., & Ergil, M. (2011). Determining the predominant governing parameters of the bed-load equations for sediment-laden rivers on the continental shelf. Journal of Coastal Research, 27(2), 276-290.
Kucharczyk, M., & Hugenholtz, C. H. (2019). Pre-disaster mapping with drones: an urban case study in Victoria, British Columbia, Canada. Natural Hazards & Earth System Sciences, 19(9).
Lacasta, A., Morales-Hernández, M., Juez, C., Caviedes-Voullieme, D., Fernández-Pato, J., Murillo, J., . . . García, R. (2016). Challenges and improvements on high-performance river flow numerical modelling. Road to a new era of computing using RiverFlow2D GPU.
Lai, Y. (2006). Theory and user manual for SRH-W, version 1.1. US Department of the Interior, Bureau of Reclamation.
Lai, Y. G. (2008). SRH-2D version 2: Theory and User’s Manual. Sedimentation and River Hydraulics–Two-Dimensional River Flow Modeling, US Department of Interior, Bureau of Reclamation.
Lai, Y. G. (2010). Two-dimensional depth-averaged flow modeling with an unstructured hybrid mesh. Journal of Hydraulic Engineering, 136(1), 12-23.
Lai, Y. G. (2012). Channel Morphology Prediction with and without a Temporary Channel Upstream of the Elephant Butte Reservoir. Paper presented at the World Environmental and Water Resources Congress 2012: Crossing Boundaries.
Lai, Y. G. (2017). Modeling Stream Bank Erosion: Practical Stream Results and Future Needs. Water, 9(12), 950.
Lai, Y. G. (2019). User’s Manual:Sediment Transport and Mobile-Bed Modeling with SRH-2D. (Draft and not for Distribution), US Department of Interior, Bureau of Reclamation.
Lai, Y. G., Gaeuman, D., & Bandrowski, D. J. (2015). Morphological impact of a rehabilitation project: SRH-2D modeling assessment. Paper presented at the Joint 10th Federal Interagency Sedimentation Conference and 5th Federal Interagency Hydrologic Modeling Conference, Reno, Nevada.
Lai, Y. G., & Greimann, B. P. (2007). Numerical modeling of alternate bar formation downstream of a dike. Paper presented at the World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat.
Lai, Y. G., & Greimann, B. P. (2010). Predicting contraction scour with a two-dimensional depth-averaged model. Journal of hydraulic research, 48(3), 383-387.
Lai, Y. G., & Wu, K. (2019). A three-dimensional flow and sediment transport model for free-surface open channel flows on unstructured flexible meshes. Fluids, 4(1), 18.
Lane, E. W., & Carlson, E. (1953). Some factors affecting the stability of canals constructed in coarse granular materials. Paper presented at the Proceedings: Minnesota International Hydraulic Convention.
Lavoie, B., & Mahdi, T.-F. (2017). Comparison of two-dimensional flood propagation models: SRH-2D and Hydro_AS-2D. Natural Hazards, 86(3), 1207-1222.
Lemma, H., Nyssen, J., Frankl, A., Poesen, J., Adgo, E., & Billi, P. (2019). Bedload transport measurements in the Gilgel Abay River, Lake Tana Basin, Ethiopia. Journal of Hydrology, 577, 123968.
Martinez, C., Garcia-Martinez, R., & Miralles-Wilhelm, F. (2011). A two-phase debris flow model with boulder transport. International Journal of Safety and Security Engineering, 1(4), 389-402.
Martinez, C., Miralles-Wilhelm, F., & Garcia-Martinez, R. (2008). Verification of a 2D finite element debris flow model using Bingham and cross rheological formulations. WIT Transactions on Engineering Sciences, 60, 61-69.
Martinez, C. E. (2009). Eulerian-Lagrangian Two Phase Debris Flow Model.
Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. Paper presented at the IAHSR 2nd meeting, Stockholm, appendix 2.
MERUFINIA, E., Saeed, J., & NOURI, S. (2015). Evaluation of Hydrodynamic and Sediment Transport equations and Parameter Sensitivity Analysis Using the SRH_2D Model. Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3), 2143-2152.
Mockus, V. (1957). Use of storm and watershed characteristics in synthetic hydrograph analysis and application. US Department of Agriculture, Soil Conservation Service.
Mockus, V., & Hjelmfelt, A. T. (1972). Chapter 10. Estimation of direct runoff from storm rainfall. US DEPARTAMENT OF AGRICULTURE, SCS SCS National Engineering Handbook, Section, 4.
Mockus, V., & Hjelmfelt, A. T. (2004). Part 630 Hydrology-National Engineering Handbook-Chapter 10 Estimation of Direct Runoff from Stormwater Rainfall. USDA. Natural Resources Conservation Service.
Moges, E. M. (2010). Evaluation of sediment transport equations and parameter sensitivity analysis using the SRH-2D Model. MSc Thesis, University of Stuttgart,
Murillo, J., & García-Navarro, P. (2010). Weak solutions for partial differential equations with source terms: Application to the shallow water equations. Journal of Computational Physics, 229(11), 4327-4368.
Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport (Vol. 4): World scientific.
Nujic, J. (2007). Hydro_as-2d a two-dimensional flow model for water management applications. User’s Manual.
O’Brien, J., & Garcia, R. (2009). FLO-2D Reference manual. Nutrioso, Arizona. version, 2011.
Onset. (2019a). Choosing A Water Level Logger: 5 Things You Should Know. Retrieved from https://www.onsetcomp.com/learning/white_papers/choosing-water-level-logger
Onset. (2019b). HOBOware Pro Barometric Compensation Assistant - User’s Guide. Retrieved from https://www.onsetcomp.com/files/manual_pdfs/10572-J%20Barometric%20Compensation%20Assistant%20User%27s%20Guide.pdf
Pérez, D. H. C., Neufeld, N., & Nuñez, A. R. (2019). A fast local algorithm for track reconstruction on parallel architectures. Paper presented at the 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
Parker, G. (1979). Hydraulic geometry of active gravel rivers. Paper presented at the ASCE J Hydraul Div.
Parker, G. (1990). Surface-based bedload transport relation for gravel rivers. Journal of hydraulic research, 28(4), 417-436.
Pasternack, G. B., & Hopkins, C. E. (2017). Near-census 2D model comparison between SRH-2D and TUFLOW GPU for use in gravel/cobble rivers. Davis (CA): University of California at Davis. Prepared for Yuba County Water Agency.
Rincón, J. C., López, J. L., & García, R. (2009). MODELO NUMÉRICO PARA SIMULACIÓN DE FLUJOS TORRENCIALES AGUAS ARRIBA DE PRESAS DE RETENCIÓN DE SEDIMENTOS. Cuarto Simposio Regional sobre Hidráulica de Ríos. Salta, Argentina, 2009.
Sani, S. J., Merufinia, E., & Nouri, S. (2015). Evaluation of Hydrodynamic and Sediment Transport equations and Parameter Sensitivity Analysis Using the SRH_2D Model.
SCOOP Sci-Tech, I. (2019, May 14). New research programme targets smarter erosion control. Retrieved from http://www.scoop.co.nz/stories/SC1905/S00027/new-research-programme-targets-smarter-erosion-control.htm
Segura-Beltrán, F., Sanchis-Ibor, C., Morales-Hernández, M., González-Sanchis, M., Bussi, G., & Ortiz, E. (2016). Using post-flood surveys and geomorphologic mapping to evaluate hydrological and hydraulic models: The flash flood of the Girona River (Spain) in 2007. Journal of Hydrology, 541, 310-329.
Shields Jr, F. D., Coulton, K. G., & Nepf, H. (2017). Representation of vegetation in two-dimensional hydrodynamic models. Journal of Hydraulic Engineering, 143(8), 02517002.
Smart, G. M. (1984). Sediment transport formula for steep channels. Journal of Hydraulic Engineering, 110(3), 267-276.
Sætra, M. L. (2014). Shallow Water Simulations on Graphics Hardware.
Strickler, A. (1923). Contributions to the Question of a Velocity formula and Roughness Data for Streams, Channels and Closed Pipelines, translated by T. Roesgan and WR Brownlie. Translation T-10, WM Keck Lab of Hydraulics and Water Resources, California Inst. Tech., Pasadena, CA.
Struiksma, N., & Crosato, A. (1989). Analysis of a 2‐D bed topography model for rivers. River meandering, 12, 153-180.
Szymkiewicz, R. (2010). Numerical modeling in open channel hydraulics (Vol. 83): Springer Science & Business Media.
Tech, T. (2013). Fluvial Geomorphology Modeling Approach. Retrieved from
Tolossa, H., Tuhtan, J., Schneider, M., & Wieprecht, S. (2009). Comparison of 2D hydrodynamic models in river reaches of ecological importance: HYDRO_AS-2D and SRH-W. Paper presented at the 33rd IAHR World Congress.
Trigg, M., Birch, C., Neal, J., Bates, P., Smith, A., Sampson, C., . . . Dutra, E. (2016). The credibility challenge for global fluvial flood risk analysis. Environmental Research Letters, 11(9), 094014.
Vasquez, J., Steffler, P., & Millar, R. (2005). River2D morphology, Part II: curved alluvial channels. Paper presented at the 17th Canadian Hydrotechnical Conference.
Vozinaki, A.-E. K., Morianou, G. G., Alexakis, D. D., & Tsanis, I. K. (2017). Comparing 1D and combined 1D/2D hydraulic simulations using high-resolution topographic data: A case study of the Koiliaris basin, Greece. Hydrological Sciences Journal, 62(4), 642-656.
Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric science: an introductory survey (Vol. 92): Elsevier.
Watershed Science and Engineering, I. (2019a). Levee Breach Analysis for King County Rivers. 506 2nd Ave, Suite 2700 Seattle WA 98104.
Watershed Science and Engineering, I. (2019b). Lone Turley Restoration Project Hydraulic Modeling. Retrieved from http://watershedse.com/portfolio/lones-turley-restoration-project-hydraulic-modeling/
WBM, B. (2013). TUFLOW FV science manual. Brisbane, Queensland.
WBM, B. (2016). TUFLOW User Manual—Build 2016-03-AA. In.
Wheaton, J. M., Brasington, J., Darby, S. E., Merz, J., Pasternack, G. B., Sear, D., & Vericat, D. (2010). Linking geomorphic changes to salmonid habitat at a scale relevant to fish. River research and applications, 26(4), 469-486.
Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering, 129(2), 120-128.
Williams, R. (2012). DEMs of difference. Geomorphological Techniques, 2(3.2).
Wong, M., & Parker, G. (2006). Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database. Journal of Hydraulic Engineering, 132(11), 1159-1168.
Woodward, D. E. (2010). Part 630 Hydrology-National Engineering Handbook-Chapter 15 Time Of Concentration. USDA. Natural Resources Conservation Service.
Woodward, D. E., Hoeft, C. C., Merkel, W. H., & Chaison, K. E. (2007). Part 630 Hydrology-National Engineering Handbook-Chapter 16 Hydrographs. USDA. Natural Resources Conservation Service.
Wu, W., & Vieira, D. (2002). One-dimensional channel network model CCHE1D 3.0. National Center for Computational Hydroscience and Engineering.
土石流防災資訊網(2019),「土石流潛勢溪流歷年調查沿革」,行政院農委會水土保持局。From https://246.swcb.gov.tw/Info/Potential_PreviousSurvey
內政部土地測量局(2006),「e-GPS 衛星基準站即時動態定位系統 VBS-RTK 定位測試成果報告」,內政部國土測繪中心e-GNSS即時動態定位系統入口網站。
王正楷,曾義星,劉囿維(2014),「載光達資料產製數值高程模型之品質評估探討」,航空測量及遙感探測學會。
水文資訊網整合服務系統(2019)。上網日期:2019年5月1日,檢自 https://gweb.wra.gov.tw/HydroInfo/?id=Index
水利法第八十三條之九第二項(2019),「水利法出流管制計畫書與規劃書檢核基準及洪峰流量計算方法」,經濟部。From https://gazette.nat.gov.tw/EG_FileManager/eguploadpub/eg025028/ch04/type1/gov31/num4/images/Eg01.pdf
申承翰(2013),「無人飛型載具影像數值地形模型建置及精度評估」,碩士論文,國立臺北科技大學。
白絜成、劉益誠、蕭宇伸、連惠邦、林秉賢(2015),「無人飛行載具掛載消費型攝影機應用於防災可行性研究」,中華水土保持學報46(3) 142-149。
交通部民用航空局(2018),「民用航空法(遙控無人機專章)」,行政院。From https://www.caa.gov.tw/Article.aspx?a=2194&lang=1
行政院研究發展考核委員會(2004),「地面氣象測報作業規範」,行政院研究發展考核委員會。
行政院農業委員會水土保持局(2014),「水土保持技術規範」。
行政院農業委員會水土保持局(2019),「水土保持單元叢書02-透過性防砂壩」,行政院農業委員會水土保持局編印。
行政院農業委員會水土保持局(2005),「水土保持手冊」,經濟部農業委員會
行政院農業委員會水土保持局(2008),「集水區整體調查規劃工作參考手冊」,行政院農業委員會水土保持局編印。
行政院公報資訊網(2014),「公告台9甲線、台16線及台21線等省調整路線」,行政院。From https://gazette2.nat.gov.tw/EG_FileManager/eguploadpub/eg020135/ch01/type3/gov01/num1/Eg.htm
行政院莫拉克颱風災後重建推動委員會(2011),「那瑪夏區橋梁改建全面啟動避免孤島威脅」。From http://morakotdatabase.nstm.gov.tw/88flood.www.gov.tw/committee_news_detail1874.html?cn_id=793
行政院莫拉克颱風災後重建推動委員會(2014),「5座大橋串連高雄那瑪夏區揮別孤島夢魘」。From http://morakotdatabase.nstm.gov.tw/88flood.www.gov.tw/committee_news_detail8724.html?cn_id=1863
行政院農業委員會水土保持局台南分局(2008),「那名羅薩等集水區整體治理調查規劃」,行政院農業委員會水土保持局台南分局編印。
行政院農業委員會水土保持局台南分局(2009),「安輪名山西部等集水區整體治理調查規劃」,行政院農業委員會水土保持局台南分局編印。
李鎮洋(2017),「水土保持手冊(106年版)」,行政院農業委員會水土保持局編印。
林哲琦(2018),「系集演算應用於河道輸砂數值模擬之研究」,碩士論文。國立臺灣大學。
林美聆、莊漢鑫、陳永昇(2015),「莫拉克颱風土石流災害引致土砂運移與河道變遷之研究」,工程環境會刊,(34),1-26.
法源法律網(2017),「106年台上字第315號」,司法院。From https://www.lawbank.com.tw/news/NewsContent_print.aspx?NID=142860.00
郭偉丞(2014),「拆壩後河相演變及輸砂模式適用性之研究」,碩士論文,國立成功大學。
高裕哲等人(2017),「測站氣壓觀測資料網格化方法與逐時檢核技術」,106天氣分析與預報研討會,中央氣象局。
張崴、蕭宇伸、張榮傑(2017),「UAV航拍技術應用於河道變遷土砂監測和山區地形製圖之可行性分析」,中華水土保持學報。
國立臺灣大學(2014),「石門水庫放淤對下游河道變遷影響分析」,經濟部水利署北區水資源局編印。
彭振捷(2016),「應用二維水理模式評估碼崙溪河道清疏成效之研究」,中興大學水土保持學系所學位論文。
黃美甄、張國楨(2014),「無人飛行載具數值地形模型精度評估及應用」,土木水利。
黃宏斌、陳俊榮(2001),「推移質輸砂模式在壽豐溪之演算研究」,農業工程學報第47卷第3期。
黃宏斌(1992),「陡坡水槽之輸砂輛模式研究」,台灣水利,第40卷第一期。
黃麗文(2013),「序率水文模擬及二維水理輸砂模式於壩移除後河川形貌變遷」,碩士論文,國立臺灣大學。
塚原善一,高谷富也(2019),「InfraWorksを用いた由良川下流域の洪水シミュレーションについて:RiverFlow2D(有限體積法)の適用」,舞鶴工業高等専門学校情報科学センター年報,舞鶴工業高等専門学校,https://ci.nii.ac.jp/naid/40021888800/en/
詹勳全等人(2017),「應用二維水理輸砂模式評估野溪清疏成效之研究」,中華水土保持學報,48卷3期,P113 – 126。
經濟部水利署(2006)。「河川治理及環境營造規劃參考手冊」。經濟部水利署編印。
經濟部水利署水利規劃試驗所(2012),「臺灣地區主要河川流域水文與水理設計分析系統平台建立(2/3)」。經濟部水利署水利規劃試驗所編印。
經濟部水利署第七河川局(2013),「高屏溪流域上游河段疏濬減淤策略評估」,經濟部水利署第七河川局編印。
經濟部水利署水利規劃試驗所(2011),「氣候變遷下台灣南部河川流域土砂處理對策研究-以高屏溪為例(2/2)」,經濟部水利署水利規劃試驗所編印。
經濟部水利署水利規劃試驗所(2007),「河床質調查作業參考手冊(草案)」,經濟部水利署水利規劃試驗所編印。
經濟部水利署(2014),「鳳山溪主流(含支流霄裡溪)治理規劃檢討」。
經濟部水利署(2017),「台灣地區雨量測站降雨強度-延時Horner公式參數分析」。
經濟部水利署(2004-2009)。「臺灣水文年報」。水文資料網路查詢系統。
經濟部水利署水利規劃試驗所(2014),「美國國家水科中心河道三維動床數值模式之引進及應用研究 (1/3)」。
經濟部水利署中區水資源局(2018),「石岡壩下游沖刷消能設施最佳化數值模擬檢討成果報告」。
臺北翡翠水庫管理局(2014),「翡翠水庫下游河道變遷與防洪能力檢討總結報告」。
賴進松等(2015),「UAV 影像技術應用於河道洪水位及流場之模擬分析」,中國土木水利工程學刊,第二十七卷,第三期,第231-240頁。
謝慧民(1996),「網路型河川擬似二維沖淤行為之數值模擬」。國立台灣大學土木工程學研究所博士論文。
謝有忠(2016),「以多期數值地形資料評估山崩區及河道地形之變遷」,博士論文,國立臺灣大學地質科學研究所。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64183-
dc.description.abstractSRH-2D二維水理輸砂模式目前已廣泛應用於水利工程,其模擬器主要採CPU中央處理器為主,其善於處理單一邏輯繁複的任務,然其並不善於處理大量瑣碎的任務。RiverFlow2D模式結合CPU中央處理器、GPU圖形化加速器的優點,過往研究顯示其有效縮減模擬時間。本文採兩輸砂模式進行分析,項目包含時間步距與網格精度的敏感度分析、實際降雨事件、構造物模擬等。
本研究以那托爾薩溪為案例,其過往曾發生土石流,目前仍屬於土石流高潛勢溪流,上游河道內仍有大量土石淤積尚未穩定,底床載運移頻繁值得進步研究。
透由現地量測與Python爬蟲收集降雨量資料、水文分析、空拍地形建置、河床質粒徑採樣等調查項目,獲取兩模式之參數,成果說明如下:
1.與過往研究比較,本研究透過現場監測與空拍機詳細調查模式所需參數,包含河床質參數、河道地形、集水區水情(降雨量、水位)、河道構造物等。
2.經由平均絕對誤差(MAE)與均方根誤差(RSML)評估兩模式的敏感度,SRH-2D和RiverFlow2D兩模式對於網格精度均屬敏感,此外針對時間步距SRH-2D的敏感度分析結果亦顯示良好,隨著時間步距縮減,模擬時間增加。
3.本研究使用底床載運移公式進行模擬,RiverFlow2D支援多達十個公式,而SRH-2D目前僅支援三個公式,然而SRH-2D多考慮二次流、泥沙尺寸大小等級、底床護甲層作用,較能準確預估本研究區彎道土砂運移。
4.本研究使用RiverFlow2D和SRH-2D兩個模式進行二維輸砂模擬,其模擬結果顯示兩模式相互比較沖淤結果相近、河道整體多為沖刷,模擬結果與驗證資料之淨沖淤體積趨勢相同。
zh_TW
dc.description.abstractThe two-dimensional hydraulic sediment transport model SRH-2D has been widely used in water conservancy projects. Its simulator is mainly based on CPU (Central Processing Unit). It is good at dealing with single logic complicated tasks, but it is not good at handling a lot of trivial tasks. RiverFlow2D mode combines the advantages of CPU central processor and GPU (Graphics Processing Unit) to effectively reduce the simulation time from tens of hours to several minutes.In this paper, two sediment transport moduls are analyzed, and the project includes sensitivity analysis of time space and grid accuracy, rainfall - runoff events, structure simulation, etc.
The research project includes model parameter collection and selected. This study takes the case of Atul Creek. In the past, earth-rock flow occurred. It is still a high-potential stream of earth-rock flow. There is still a large amount of earth-rock deposition in the upper channel, which is not stable yet. Through the survey data of rainfall data collection, hydrological analysis, aerial terrain construction, riverbed quality sampling, etc. The results collected are as follows:
1.Comparison with previous studies, this study used on-site monitoring and UAV detailed survey model of the parameters required, including the nature of the iverbed, river terrain, Rainfall and water levels at the scene, river structures and so on.
2.The Sensitivity of the Two models is evaluated by average absolute error (MAE) and mean square root error (RSML), the SRH-2D and RiverFlow2D modes are sensitive to mesh accuracy, and the sensitivity analysis results for the time step SRH-2D are also good, with reduced step length over time. Simulation time has increased significantly.
3.This study used a formula to simulate sediment transport, RiverFlow2D although support up to ten formulas, and SRH-2D is currently only supports three formulas, but more consideration to the SRH-2D secondary flow, sediment size grades, the bed Armor layer effect, the more accurate estimate of this study bend earth and sand transport.
4.The simulation of two-dimensional sediment transport using RiverFlow2D and SRH-2D in this study, and the simulation results show that the two model silting results are similar, like the tendency of the data of aerial verification.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:33:47Z (GMT). No. of bitstreams: 1
ntu-109-R06622008-1.pdf: 14536202 bytes, checksum: eca8c04ee1d780cb57daee4ec7453f74 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章、緒論 1
1.1研究動機 1
1.2研究目的 2
1.3論文架構與流程 2
第二章、文獻回顧 4
2.1二維水理輸砂模式 4
2.2空拍機應用於山坡地之研究 10
第三章、二維水理輸砂模式 11
3.1 SRH-2D模式 11
3.2 RiverFlow2D模式 25
3.3二模式比較 41
第四章、資料蒐集與分析方法 45
4.1集水區概述 45
4.2集水區水文分析 54
4.3集水區空拍與地形建置 97
4.4模式驗證評估標準 104
第五章、水力模型建置 106
5.1二模式地形建置與編修 107
5.2輸入參數與敏感度分析 108
第六章、結果與討論 116
6.1模式穩定性 116
6.2水理模擬結果 117
6.3輸砂模擬結果 119
第七章、結論與建議 129
7.1結論 129
7.2建議 131
參考文獻 132
附錄一、河床質粒徑分析 146
附錄二、輸砂模組參數蒐集 152
附錄三、Pix4DMapper專案建置與地形編修方法說明 155
附錄四、Python網頁爬蟲程式碼 162
附錄五、水文分析統計附表 166
附錄六、模式設定輸出檔 181
附錄七、利用不同GPU顯示卡進行模擬 187
dc.language.isozh-TW
dc.subject那托爾薩溪zh_TW
dc.subjectRiverFlow2Dzh_TW
dc.subjectSRH-2Dzh_TW
dc.subjectPix4dmapperzh_TW
dc.subject空拍機zh_TW
dc.subjectAtul Creeken
dc.subjectUAVen
dc.subjectPix4dmapperen
dc.subjectSRH-2Den
dc.subjectRiverFlow.2Den
dc.title應用 RiverFlow2D 與SRH-2D 探討野溪泥沙運移-以那托爾薩溪為例zh_TW
dc.titleA study on RiverFlow2D, SRH-2D two modules to simulate the sediment transport in Taiwan-A Case Study of Atul Creeken
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee游繁結,連惠邦,吳嘉俊,詹勳全
dc.subject.keyword那托爾薩溪,RiverFlow2D,SRH-2D,Pix4dmapper,空拍機,zh_TW
dc.subject.keywordAtul Creek,RiverFlow.2D,SRH-2D,Pix4dmapper,UAV,en
dc.relation.page188
dc.identifier.doi10.6342/NTU202000251
dc.rights.note有償授權
dc.date.accepted2020-03-01
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
14.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved