請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64177完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡忠怡(Chung-Yi Hu) | |
| dc.contributor.author | Ming-Hsien Tsai | en |
| dc.contributor.author | 蔡明憲 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:33:31Z | - |
| dc.date.available | 2017-09-18 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | 1. Hoehner JC, Gestblom C, Hedborg F, Sandstedt B, Olsen L, Pahlman S: A developmental model of neuroblastoma: differentiating stroma-poor tumors' progress along an extra-adrenal chromaffin lineage, Lab Invest 1996, 75:659-675
2. http://seer.cancer.gov: National cancer institute. Surveillance, Epidemiology and End Results Database, accessed November, 2005, 3. Maris JM, Hogarty MD, Bagatell R, Cohn SL: Neuroblastoma, The Lancet 2007, 369:2106-2120 4. 中華民國兒童癌症基金會: 97-99年度新發病個案疾病分類、年齡及性別統計表, 5. Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, Lynch JE, Perri P, Laureys G, Speleman F, Kim C, Hou C, Hakonarson H, Torkamani A, Schork NJ, Brodeur GM, Tonini GP, Rappaport E, Devoto M, Maris JM: Identification of ALK as a major familial neuroblastoma predisposition gene, Nature 2008, 455:930-935 6. Menegaux F, Olshan AF, Neglia JP, Pollock BH, Bondy ML: Day care, childhood infections, and risk of neuroblastoma, Am J Epidemiol 2004, 159:843-851 7. Knudson AG, Jr., Strong LC: Mutation and cancer: neuroblastoma and pheochromocytoma, Am J Hum Genet 1972, 24:514-532 8. Maris JM, Mosse YP, Bradfield JP, Hou C, Monni S, Scott RH, Asgharzadeh S, Attiyeh EF, Diskin SJ, Laudenslager M, Winter C, Cole KA, Glessner JT, Kim C, Frackelton EC, Casalunovo T, Eckert AW, Capasso M, Rappaport EF, McConville C, London WB, Seeger RC, Rahman N, Devoto M, Grant SF, Li H, Hakonarson H: Chromosome 6p22 locus associated with clinically aggressive neuroblastoma, N Engl J Med 2008, 358:2585-2593 9. Spitz R: Loss in Chromosome 11q Identifies Tumors with Increased Risk for Metastatic Relapses in Localized and 4S Neuroblastoma, Clinical Cancer Research 2006, 12:3368-3373 10. Gestblom C, Grynfeld A, Ora I, Ortoft E, Larsson C, Axelson H, Sandstedt B, Cserjesi P, Olson EN, Pahlman S: The basic helix-loop-helix transcription factor dHAND, a marker gene for the developing human sympathetic nervous system, is expressed in both high- and low-stage neuroblastomas, Lab Invest 1999, 79:67-79 11. Hoehner JC, Gestblom C, Olsen L, Pahlman S: Spatial association of apoptosis-related gene expression and cellular death in clinical neuroblastoma, Br J Cancer 1997, 75:1185-1194 12. Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, Raynal V, Puisieux A, Schleiermacher G, Pierron G, Valteau-Couanet D, Frebourg T, Michon J, Lyonnet S, Amiel J, Delattre O: Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma, Nature 2008, 455:967-970 13. Plantaz D, Rubie H, Michon J, Mechinaud F, Coze C, Chastagner P, Frappaz D, Gigaud M, Passagia JG, Hartmann O: The treatment of neuroblastoma with intraspinal extension with chemotherapy followed by surgical removal of residual disease. A prospective study of 42 patients--results of the NBL 90 Study of the French Society of Pediatric Oncology, Cancer 1996, 78:311-319 14. De Bernardi B, Pianca C, Pistamiglio P, Veneselli E, Viscardi E, Pession A, Alvisi P, Carli M, Donfrancesco A, Casale F, Giuliano MG, di Montezemolo LC, Di Cataldo A, Lo Curto M, Bagnulo S, Schumacher RF, Tamburini A, Garaventa A, Clemente L, Bruzzi P: Neuroblastoma with symptomatic spinal cord compression at diagnosis: treatment and results with 76 cases, J Clin Oncol 2001, 19:183-190 15. De Bernardi B, Balwierz W, Bejent J, Cohn SL, Garre ML, Iehara T, Plantaz D, Simon T, Angelini P, Cama A, London WB, Kramer K, Katzenstein HM, Tortori-Donati P, Rossi A, D'Angio GJ, Evans AE: Epidural compression in neuroblastoma: Diagnostic and therapeutic aspects, Cancer Lett 2005, 228:283-299 16. Katzenstein HM, Kent PM, London WB, Cohn SL: Treatment and outcome of 83 children with intraspinal neuroblastoma: the Pediatric Oncology Group experience, J Clin Oncol 2001, 19:1047-1055 17. Quinn JJ, Altman AJ: The multiple hematologic manifestations of neuroblastoma, Am J Pediatr Hematol Oncol 1979, 1:201-205 18. D'Angio GJ, Evans AE, Koop CE: Special pattern of widespread neuroblastoma with a favourable prognosis, Lancet 1971, 1:1046-1049 19. Matthay KK: Stage 4S neuroblastoma: what makes it special?, J Clin Oncol 1998, 16:2003-2006 20. Ora I, Eggert A: Progress in treatment and risk stratification of neuroblastoma: Impact on future clinical and basic research, Seminars in Cancer Biology 2011, 21:217-228 21. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, De Bernardi B, Evans AE, Favrot M, Hedborg F, et al.: Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment, J Clin Oncol 1993, 11:1466-1477 22. Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK, Castleberry RP: The International Neuroblastoma Pathology Classification (the Shimada system), Cancer 1999, 86:364-372 23. Sharp SE, Gelfand MJ, Shulkin BL: Pediatrics: Diagnosis of Neuroblastoma, Seminars in Nuclear Medicine 2011, 41:345-353 24. Brodeur GM: Neuroblastoma: biological insights into a clinical enigma, Nature Reviews Cancer 2003, 3:203-216 25. Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J: Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour, Nature 1983, 305:245-248 26. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage, Science 1984, 224:1121-1124 27. Brodeur GM, Hayes FA, Green AA, Casper JT, Wasson J, Wallach S, Seeger RC: Consistent N-myc copy number in simultaneous or consecutive neuroblastoma samples from sixty individual patients, Cancer Res 1987, 47:4248-4253 28. George RE, Sanda T, Hanna M, Frohling S, Luther W, 2nd, Zhang J, Ahn Y, Zhou W, London WB, McGrady P, Xue L, Zozulya S, Gregor VE, Webb TR, Gray NS, Gilliland DG, Diller L, Greulich H, Morris SW, Meyerson M, Look AT: Activating mutations in ALK provide a therapeutic target in neuroblastoma, Nature 2008, 455:975-978 29. Caren H, Abel F, Kogner P, Martinsson T: High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours, Biochem J 2008, 416:153-159 30. White PS, Maris JM, Beltinger C, Sulman E, Marshall HN, Fujimori M, Kaufman BA, Biegel JA, Allen C, Hilliard C, Valentine MB, Look AT, Enomoto H, Sakiyama S, Brodeur GM: A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3, Proc Natl Acad Sci U S A 1995, 92:5520-5524 31. Gehring M, Berthold F, Edler L, Schwab M, Amler LC: The 1p deletion is not a reliable marker for the prognosis of patients with neuroblastoma, Cancer Res 1995, 55:5366-5369 32. Maris JM, Weiss MJ, Guo C, Gerbing RB, Stram DO, White PS, Hogarty MD, Sulman EP, Thompson PM, Lukens JN, Matthay KK, Seeger RC, Brodeur GM: Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: a Children's Cancer Group study, J Clin Oncol 2000, 18:1888-1899 33. Guo C, White PS, Weiss MJ, Hogarty MD, Thompson PM, Stram DO, Gerbing R, Matthay KK, Seeger RC, Brodeur GM, Maris JM: Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas, Oncogene 1999, 18:4948-4957 34. Attiyeh EF, London WB, Mosse YP, Wang Q, Winter C, Khazi D, McGrady PW, Seeger RC, Look AT, Shimada H, Brodeur GM, Cohn SL, Matthay KK, Maris JM: Chromosome 1p and 11q deletions and outcome in neuroblastoma, N Engl J Med 2005, 353:2243-2253 35. Plantaz D, Vandesompele J, Van Roy N, Lastowska M, Bown N, Combaret V, Favrot MC, Delattre O, Michon J, Benard J, Hartmann O, Nicholson JC, Ross FM, Brinkschmidt C, Laureys G, Caron H, Matthay KK, Feuerstein BG, Speleman F: Comparative genomic hybridization (CGH) analysis of stage 4 neuroblastoma reveals high frequency of 11q deletion in tumors lacking MYCN amplification, Int J Cancer 2001, 91:680-686 36. Spitz R, Hero B, Ernestus K, Berthold F: Deletions in chromosome arms 3p and 11q are new prognostic markers in localized and 4s neuroblastoma, Clin Cancer Res 2003, 9:52-58 37. Castel V, Garcia-Miguel P, Canete A, Melero C, Navajas A, Ruiz-Jimenez JI, Navarro S, Badal MD: Prospective evaluation of the International Neuroblastoma Staging System (INSS) and the International Neuroblastoma Response Criteria (INRC) in a multicentre setting, Eur J Cancer 1999, 35:606-611 38. Saito-Ohara F, Imoto I, Inoue J, Hosoi H, Nakagawara A, Sugimoto T, Inazawa J: PPM1D is a potential target for 17q gain in neuroblastoma, Cancer Res 2003, 63:1876-1883 39. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM: Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma, N Engl J Med 1993, 328:847-854 40. Nakagawara A: Trk receptor tyrosine kinases: a bridge between cancer and neural development, Cancer Lett 2001, 169:107-114 41. Tang XX, Evans AE, Zhao H, Cnaan A, Brodeur GM, Ikegaki N: Association among EPHB2, TrkA, and MYCN expression in low-stage neuroblastomas, Med Pediatr Oncol 2001, 36:80-82 42. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM: Expression and function of TRK-B and BDNF in human neuroblastomas, Mol Cell Biol 1994, 14:759-767 43. Ryden M, Sehgal R, Dominici C, Schilling FH, Ibanez CF, Kogner P: Expression of mRNA for the neurotrophin receptor trkC in neuroblastomas with favourable tumour stage and good prognosis, Br J Cancer 1996, 74:773-779 44. George RE, London WB, Cohn SL, Maris JM, Kretschmar C, Diller L, Brodeur GM, Castleberry RP, Look AT: Hyperdiploidy plus nonamplified MYCN confers a favorable prognosis in children 12 to 18 months old with disseminated neuroblastoma: a Pediatric Oncology Group study, J Clin Oncol 2005, 23:6466-6473 45. Schneiderman J, London WB, Brodeur GM, Castleberry RP, Look AT, Cohn SL: Clinical significance of MYCN amplification and ploidy in favorable-stage neuroblastoma: a report from the Children's Oncology Group, J Clin Oncol 2008, 26:913-918 46. Kaneko Y, Knudson AG: Mechanism and relevance of ploidy in neuroblastoma, Genes Chromosomes Cancer 2000, 29:89-95 47. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, Mosseri V, Simon T, Garaventa A, Castel V, Matthay KK: The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report, J Clin Oncol 2009, 27:289-297 48. Tepmongkol S, Heyman S: 131I MIBG therapy in neuroblastoma: mechanisms, rationale, and current status, Med Pediatr Oncol 1999, 32:427-431; discussion 432 49. Garaventa A, Bellagamba O, Lo Piccolo MS, Milanaccio C, Lanino E, Bertolazzi L, Villavecchia GP, Cabria M, Scopinaro G, Claudiani F, De Bernardi B: 131I-metaiodobenzylguanidine (131I-MIBG) therapy for residual neuroblastoma: a mono-institutional experience with 43 patients, Br J Cancer 1999, 81:1378-1384 50. Mairs RJ: Neuroblastoma therapy using radiolabelled [131I]meta-iodobenzylguanidine ([131I]MIBG) in combination with other agents, Eur J Cancer 1999, 35:1171-1173 51. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP: Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group, N Engl J Med 1999, 341:1165-1173 52. Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, Fu Y, Weng Z, Kuznetsov VA, Sung WK, Ruan Y, Dang CV, Wei CL: Global mapping of c-Myc binding sites and target gene networks in human B cells, Proc Natl Acad Sci U S A 2006, 103:17834-17839 53. Bell E, Chen L, Liu T, Marshall GM, Lunec J, Tweddle DA: MYCN oncoprotein targets and their therapeutic potential, Cancer Lett 2010, 293:144-157 54. Giannini G: High Mobility Group A1 Is a Molecular Target for MYCN in Human Neuroblastoma, Cancer Research 2005, 65:8308-8316 55. Janardhanan R, Banik NL, Ray SK: N-Myc down regulation induced differentiation, early cell cycle exit, and apoptosis in human malignant neuroblastoma cells having wild type or mutant p53, Biochemical Pharmacology 2009, 78:1105-1114 56. William A.Weiss KA, Gayatry Mohapatra, Burt G.Feuerstein, J.Michael Bishop: Targeted expression of MYCN causes neuroblastoma in transgenic mice, The EMBO Journal 1997, 16:2985-2995 57. Sawai S, Shimono A, Hanaoka K, Kondoh H: Embryonic lethality resulting from disruption of both N-myc alleles in mouse zygotes, New Biol 1991, 3:861-869 58. Sawai S, Shimono A, Wakamatsu Y, Palmes C, Hanaoka K, Kondoh H: Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse, Development 1993, 117:1445-1455 59. Knoepfler PS: N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation, Genes & Development 2002, 16:2699-2712 60. Woo CW, Tan F, Cassano H, Lee J, Lee KC, Thiele CJ: Use of RNA interference to elucidate the effect of MYCN on cell cycle in neuroblastoma, Pediatr Blood Cancer 2008, 50:208-212 61. Kang J-H, Rychahou PG, Ishola TA, Qiao J, Evers BM, Chung DH: MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells, Biochemical and Biophysical Research Communications 2006, 351:192-197 62. Burkhart CA, Cheng AJ, Madafiglio J, Kavallaris M, Mili M, Marshall GM, Weiss WA, Khachigian LM, Norris MD, Haber M: Effects of MYCN Antisense Oligonucleotide Administration on Tumorigenesis in a Murine Model of Neuroblastoma, JNCI Journal of the National Cancer Institute 2003, 95:1394-1403 63. Bell E, Lunec J, Tweddle DA: Cell cycle regulation targets of MYCN identified by gene expression microarrays, Cell Cycle 2007, 6:1249-1256 64. Lasorella A, Noseda M, Beyna M, Yokota Y, Iavarone A: Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins, Nature 2000, 407:592-598 65. Lasorella A, Boldrini R, Dominici C, Donfrancesco A, Yokota Y, Inserra A, Iavarone A: Id2 is critical for cellular proliferation and is the oncogenic effector of N-myc in human neuroblastoma, Cancer Res 2002, 62:301-306 66. Hogarty MD, Norris MD, Davis K, Liu X, Evageliou NF, Hayes CS, Pawel B, Guo R, Zhao H, Sekyere E, Keating J, Thomas W, Cheng NC, Murray J, Smith J, Sutton R, Venn N, London WB, Buxton A, Gilmour SK, Marshall GM, Haber M: ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma, Cancer Res 2008, 68:9735-9745 67. Rounbehler RJ, Li W, Hall MA, Yang C, Fallahi M, Cleveland JL: Targeting ornithine decarboxylase impairs development of MYCN-amplified neuroblastoma, Cancer Res 2009, 69:547-553 68. Roy B, Beamon J, Balint E, Reisman D: Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors, Mol Cell Biol 1994, 14:7805-7815 69. Chen L, Iraci N, Gherardi S, Gamble LD, Wood KM, Perini G, Lunec J, Tweddle DA: p53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma, Cancer Research 2010, 70:1377-1388 70. Slack A, Chen Z, Tonelli R, Pule M, Hunt L, Pession A, Shohet JM: The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma, Proc Natl Acad Sci U S A 2005, 102:731-736 71. Harris RG, White E, Phillips ES, Lillycrop KA: The expression of the developmentally regulated proto-oncogene Pax-3 is modulated by N-Myc, J Biol Chem 2002, 277:34815-34825 72. Mac SM, D'Cunha CA, Farnham PJ: Direct recruitment of N-myc to target gene promoters, Mol Carcinog 2000, 29:76-86 73. Hatzi E, Murphy C, Zoephel A, Rasmussen H, Morbidelli L, Ahorn H, Kunisada K, Tontsch U, Klenk M, Yamauchi-Takihara K, Ziche M, Rofstad EK, Schweigerer L, Fotsis T: N-myc oncogene overexpression down-regulates IL-6; evidence that IL-6 inhibits angiogenesis and suppresses neuroblastoma tumor growth, Oncogene 2002, 21:3552-3561 74. Hatzi E, Murphy C, Zoephel A, Ahorn H, Tontsch U, Bamberger AM, Yamauchi-Takihara K, Schweigerer L, Fotsis T: N-myc oncogene overexpression down-regulates leukemia inhibitory factor in neuroblastoma, Eur J Biochem 2002, 269:3732-3741 75. Piskounova E, Polytarchou C, Thornton James E, LaPierre Robert J, Pothoulakis C, Hagan John P, Iliopoulos D, Gregory Richard I: Lin28A and Lin28B Inhibit let-7 MicroRNA Biogenesis by Distinct Mechanisms, Cell 2011, 147:1066-1079 76. Nam Y, Chen C, Gregory Richard I, Chou James J, Sliz P: Molecular Basis for Interaction of let-7 MicroRNAs with Lin28, Cell 2011, 147:1080-1091 77. Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME: The role of let-7 in cell differentiation and cancer, Endocr Relat Cancer 2010, 17:F19-36 78. Ji J, Wang XW: A Yin-Yang balancing act of the lin28/let-7 link in tumorigenesis, J Hepatol 2010, 53:974-975 79. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, O'Sullivan M, Lu J, Phillips LA, Lockhart VL, Shah SP, Tanwar PS, Mermel CH, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes TP, Llovet JM, Radich J, Mullighan CG, Golub TR, Sorensen PH, Daley GQ: Lin28 promotes transformation and is associated with advanced human malignancies, Nature Genetics 2009, 41:843-848 80. Polesskaya A, Cuvellier S, Naguibneva I, Duquet A, Moss EG, Harel-Bellan A: Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency, Genes & Development 2007, 21:1125-1138 81. King CE, Wang L, Winograd R, Madison BB, Mongroo PS, Johnstone CN, Rustgi AK: LIN28B fosters colon cancer migration, invasion and transformation through let-7-dependent and -independent mechanisms, Oncogene 2011, 30:4185-4193 82. Eric G. Moss RCL, and Victor Ambros: The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. elegans and Is Regulated by the lin-4 RNA, Cell 1997, 88:637-646 83. Zhu H, Shah S, Shyh-Chang N, Shinoda G, Einhorn WS, Viswanathan SR, Takeuchi A, Grasemann C, Rinn JL, Lopez MF, Hirschhorn JN, Palmert MR, Daley GQ: Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies, Nature Genetics 2010, 42:626-630 84. Boissart C, Nissan X, Giraud-Triboult K, Peschanski M, Benchoua A: miR-125 potentiates early neural specification of human embryonic stem cells, Development 2012, 139:1247-1257 85. Balzer E, Heine C, Jiang Q, Lee VM, Moss EG: LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro, Development 2010, 137:891-900 86. Xu B, Zhang K, Huang Y: Lin28 modulates cell growth and associates with a subset of cell cycle regulator mRNAs in mouse embryonic stem cells, Rna 2009, 15:357-361 87. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin, II, Thomson JA: Induced pluripotent stem cell lines derived from human somatic cells, Science 2007, 318:1917-1920 88. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell 2007, 131:861-872 89. Guo Y, Chen Y, Ito H, Watanabe A, Ge X, Kodama T, Aburatani H: Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma, Gene 2006, 384:51-61 90. Viswanathan SR, Daley GQ, Gregory RI: Selective Blockade of MicroRNA Processing by Lin28, Science 2008, 320:97-100 91. Sakurai M, Miki Y, Masuda M, Hata S, Shibahara Y, Hirakawa H, Suzuki T, Sasano H: LIN28: A regulator of tumor-suppressing activity of let-7 microRNA in human breast cancer, J Steroid Biochem Mol Biol 2012, 131:101-106 92. Wang YC, Chen YL, Yuan RH, Pan HW, Yang WC, Hsu HC, Jeng YM: Lin-28B expression promotes transformation and invasion in human hepatocellular carcinoma, Carcinogenesis 2010, 31:1516-1522 93. King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee JS, Rustgi AK: LIN28B Promotes Colon Cancer Progression and Metastasis, Cancer Research 2011, 71:4260-4268 94. Tan P, Helland A, Anglesio MS, George J, Cowin PA, Johnstone CN, House CM, Sheppard KE, Etemadmoghadam D, Melnyk N, Rustgi AK, Phillips WA, Johnsen H, Holm R, Kristensen GB, Birrer MJ, Pearson RB, Borresen-Dale A-L, Huntsman DG, deFazio A, Creighton CJ, Smyth GK, Bowtell DDL: Deregulation of MYCN, LIN28B and LET7 in a Molecular Subtype of Aggressive High-Grade Serous Ovarian Cancers, PLoS One 2011, 6:e18064 95. Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M, Jung J, Gao P, Dang CV, Beer MA, Thomas-Tikhonenko A, Mendell JT: Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation, Proceedings of the National Academy of Sciences 2009, 106:3384-3389 96. Li N, Zhong X, Lin X, Guo J, Zou L, Tanyi JL, Shao Z, Liang S, Wang LP, Hwang WT, Katsaros D, Montone K, Zhao X, Zhang L: Lin-28 Homologue A (LIN28A) Promotes Cell Cycle Progression via Regulation of Cyclin-dependent Kinase 2 (CDK2), Cyclin D1 (CCND1), and Cell Division Cycle 25 Homolog A (CDC25A) Expression in Cancer, Journal of Biological Chemistry 2012, 287:17386-17397 97. Peng S, Chen L-L, Lei X-X, Yang L, Lin H, Carmichael GG, Huang Y: Genome-Wide Studies Reveal That Lin28 Enhances the Translation of Genes Important for Growth and Survival of Human Embryonic Stem Cells, Stem Cells 2011, 29:496-504 98. Rebecca Cotterman PSK: N-Myc Regulates Expression of Pluripotency Genes in Neuroblastoma Including lif, klf2, klf4, and lin28b, PLoS One 2009, 4:e5799 99. Helland A, Anglesio MS, George J, Cowin PA, Johnstone CN, House CM, Sheppard KE, Etemadmoghadam D, Melnyk N, Rustgi AK, Phillips WA, Johnsen H, Holm R, Kristensen GB, Birrer MJ, Pearson RB, Borresen-Dale AL, Huntsman DG, deFazio A, Creighton CJ, Smyth GK, Bowtell DD: Deregulation of MYCN, LIN28B and LET7 in a molecular subtype of aggressive high-grade serous ovarian cancers, PLoS One 2011, 6:e18064 100. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG: A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment, Nature Cell Biology 2008, 10:987-993 101. Eda A, Tamura Y, Yoshida M, Hohjoh H: Systematic gene regulation involving miRNAs during neuronal differentiation of mouse P19 embryonic carcinoma cell, Biochemical and Biophysical Research Communications 2009, 388:648-653 102. Westermark UK, Wilhelm M, Frenzel A, Henriksson MA: The MYCN oncogene and differentiation in neuroblastoma, Semin Cancer Biol 2011, 21:256-266 103. Matsumoto M, Akiyama T, Miyatake S, Oda Y, Kikuchi H, Hanaoka M, Namba Y: Expression of proto-oncogene products during drug-induced differentiation of a neuroblastoma cell line SK-N-DZ, Acta Neuropathol 1989, 79:217-221 104. Burkhart CA, Cheng AJ, Madafiglio J, Kavallaris M, Mili M, Marshall GM, Weiss WA, Khachigian LM, Norris MD, Haber M: Effects of MYCN antisense oligonucleotide administration on tumorigenesis in a murine model of neuroblastoma, J Natl Cancer Inst 2003, 95:1394-1403 105. Mu G, Liu H, Zhou F, Xu X, Jiang H, Wang Y, Qu Y: Correlation of overexpression of HMGA1 and HMGA2 with poor tumor differentiation, invasion, and proliferation associated with let-7 down-regulation in retinoblastomas, Hum Pathol 2010, 41:493-502 106. Lee YS, Dutta A: The tumor suppressor microRNA let-7 represses the HMGA2 oncogene, Genes Dev 2007, 21:1025-1030 107. Buechner J, Tomte E, Haug BH, Henriksen JR, Lokke C, Flaegstad T, Einvik C: Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma, Br J Cancer 2011, 105:296-303 108. John Powers CS, James Collins, George Daley: The role of the RNA binding protein LIN28B in neuroblastoma, AACR poster 2012, abstract number : 2948: 109. Sharon Diskin MC, Maura Diamond, Erica L. Carpenter, Shahab Asgharzadeh, Robert C. Seeger, Marcella Devoto, John M. Maris: Identification and functional relevance of two new neuroblastoma susceptibility loci at 6q16 within HACE1 and LIN28B, ANR 2012 poster 2012, PL12: 110. Johannes Schulte JM, Sven Lindner, Pieter Mestdagh, Theresa Thor, Annika Sprussel, Huib Caron, Rogier Versteeg, Alexander Schramm, Angelika Eggert,: Neural Crest-specific expression of Lin28b induces neuroblastoma in mice, ANR 2012 poster 2012, | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64177 | - |
| dc.description.abstract | 神經母細胞瘤在兒童為最常見的顱外實質固態瘤,源自於交感神經系統中的胚胎神經脊細胞,為未分化的神經母細胞。病人呈現出的臨床表癥有很高的異質性, 可由自發性的痊癒到高度惡性轉移的腫瘤,在臨床上具有MYCN增殖其病人腫瘤常發生轉移,預後多屬於極差的一群。
Lin28a/Lin28b屬於核醣核酸結合蛋白,兩者的胺基酸序列以及功能類似,皆可透過抑制微核醣核酸Let-7的生合成來影響其他基因的表現,或透過與目標基因mRNA結合增加轉譯效率以提升表現量。過去的文獻指出Lin28a於線蟲至小鼠等動物中基因序列為高度保守,並皆在發育過程中扮演重要的角色;在神經發育中僅在早期為高表現,隨著神經進行分化其表現量則會下降。而在幹細胞的研究中,Lin28a/Lin28b於胚胎幹細胞中皆為高表現,可做為多能性基因用來重編組細胞成為誘導性多能幹細胞。在目前已有許多研究指出,Lin28a及Lin28b會高度表現於多種癌症中並與其惡性程度以及較差的預後度有很高的相關性。先前的研究報導在神經母細胞瘤細胞株中MYCN可以調控Lin28b使其表現量上昇,並推測可能與MYCN在神經母細胞瘤中致癌的情形有關。 本研究分析台大醫院38位神經母細胞瘤病人腫瘤中Lin28b與MYCN的表現,並發現兩者之間有正相關,並從開放的神經母細胞瘤微陣列基因表現資料庫中分析得到相同的結果;在神經母細胞瘤病人預後的分析中,大於1.5歲的病人中高表現Lin28b在傾向預後較差。於TH-MYCN轉基因小鼠的腫瘤中,也同樣觀察到Lin28b的高度表現,表示Lin28b的確會受到MYCN調控,並可能於MYCN-driven的神經母細胞瘤中執行致癌基因的功能。本研究欲了解於高表現MYCN的神經母細胞瘤致癌過程中Lin28b扮演的角色,選用兩株MYCN增殖且高表現Lin28b的神經母細胞瘤細胞株SK-N-DZ與SK-N-BE將Lin28b表現予以shRNAs抑制後,觀察到細胞形態改變走向神經分化,增生速率減緩、細胞週期停滯於G0/G1,且神經幹細胞標記Nestin與致癌基因MYCN表現量下降(表示細胞走向神經分化)、細胞非貼附性生長與侵襲能力等惡性度指標皆有減弱。使用Lin28b表現質體將Lin28b過度表現於低表現Lin28b與MYCN的SK-N-SH細胞株中,觀察到Nestin與MYCN的表現量大量上升,顯示Lin28b於神經母細胞瘤細胞中高表現可能會造成細胞去分化以及惡性度的提昇。綜合本研究的實驗結果,Lin28b於神經母細胞瘤中為一致癌基因,可能於MYCN增殖的神經母細胞瘤中促進腫瘤維持未分化的狀態以及惡性度,此外在非MYCN增殖的神經母細胞瘤中也可以透過正向調控MYCN表現量或其他基因的表現影響腫瘤的惡性度,因此Lin28b有潛力成為一新的藥物標的用於治療MYCN增殖或高表現Lin28b的神經母細胞瘤。 | zh_TW |
| dc.description.abstract | Neuroblastoma (NB), the most common extracranial childhood solid tumor and most common cancer in children younger than one year of age, is arising from neural crest cells of sympathetic nervous system. The clinical outcome of neuroblastoma patients present very high heterogeneity, ranging from spontaneous regression to rapid progression and metastasis. MYCN amplification in neuroblastoma is an unfavorable prognosis marker, and the tumors are highly malignant which often occurs to metastasis and hard to be cured.
Lin28a and Lin28b are RNA-binding proteins, sharing similar amino acid sequence and function, Lin28a and Lin28b inhibit the maturation process of the microRNA family of tumor suppressor, Let-7, and subsequently hinder the inhibition of Let-7 targets. Lin28a/b can also to target mRNAs and promote their translational efficiency. Previous studies showed that Lin28a is highly conserved from C. elegans to mouse, and plays an important role in development. Lin28a is highly express in early stage of nervous system development, but be inhibited during neuronal differentiation. Lin28a/b are found highly expressed in embryonic stem cells, and were used in reprogramming cell to induce pluripotent stem cell (iPS cell). Recently, Lin28a and Lin28b are found to be expressed in various types of human cancers, and their expression was associated with advanced disease stage and poor prognosis. In neuroblastoma, MYCN was known to up-regulate Lin28b expression, and we speculated that Lin28b may participate in pathological mechanism by MYCN-drived neuroblastoma. A positive correlation between the expression of Lin28b and MYCN that found in our screening of 38 neuroblastoma samples collected in National Taiwan University Hospital, and was confirmed in neuroblastoma data acquired from open resource databases, however, Lin28a expression is not found correlated to expression of MYCN. Higher expression of Lin28b was marginally associated with poor prognosis in those patients with age-of-onset older than 1.5 years. Tumors developed from TH-MYCN transgenic mouse, also present high expression of Lin28b. All these results suggest that Lin28b could be up-regulated by MYCN, and play an oncogenic role in MYCN-driven neuroblastoma. Neuroblastoma cell lines, SK-N-DZ and SK-N-BE are MYCN-amplified and express high level of Lin28b. Knocking down Lin28b expression by lentiviral-delivered shRNAs results in morphological changes, the cell proliferation inhibition, and cell cycle arresting at G0/G1 phase. Moreover, Nestin and MYCN are down-regulated, which suggest that cells are skewing to neuronal differentiation. Reduced anchorage-independent cell growth and matrigel invasion also indicate that Lin28b reduction attenuates malignant characteristics of the cells. Overexpressing Lin28b in SK-N-SH cell line, conversely, upregulates Nestin and MYCN, which suggests that the ectopic expression of Lin28b promote cell de-differentiation and may enhance malignancy. These results indicate that Lin28b is an oncogene in neuroblastoma, and may have a role in promoting MYCN-amplified neuroblastoma. Of notice, our findings also point out that Lin28b up-regulates MYCN or regulates other gene expression to promote malignancy in non-MYCN-amplified neuroblastoma cells. Accordingly, Lin28b can be a new therapeutic target in neuroblastoma. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:33:31Z (GMT). No. of bitstreams: 1 ntu-101-R99424018-1.pdf: 10943474 bytes, checksum: 88cb3aaef162474995acf2a41fe90eb0 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iv CONTENTS vi 圖目錄 x Chapter 1 緒論 1 1.1 神經母細胞瘤 1 1.1.1 神經母細胞瘤簡介 1 1.1.2 神經母細胞瘤的致病機轉 1 1.1.3 神經母細胞瘤的臨床表現與治療 2 1.1.4 神經母細胞瘤的診斷與分期 3 1.1.5 神經母細胞瘤之病理特徵 4 1.1.6 神經母細胞瘤之分子標記及預後指標 4 1.1.7 神經母細胞瘤的治療與現況 7 1.2 MYCN基因增殖(MYCN amplification) 8 1.2.1 MYCN 8 1.2.2 MYCN於神經母細胞瘤之致病機轉 9 1.3 Lin28 (Lin28 homologs) 11 1.3.1 Lin28a與Lin28b 11 1.3.2 Lin28於癌症相關探討 12 1.4 文獻探討與研究假說 13 Chapter 2 研究目的與實驗設計 15 2.1 研究目的 15 2.2 實驗設計 15 Chapter 3 實驗材料與方法 17 3.1 實驗材料 17 3.1.1 臨床檢體 17 3.1.2 神經母細胞瘤細胞株 17 3.1.3 實驗動物 18 3.1.4 試藥/劑、抗體、儀器、耗材清單 18 3.1.5 各式溶液與配方 22 3.1.6 質體與shRNA序列 26 3.1.7 慢病毒的製備(Lentivirus production) 26 3.1.8 Real-time qPCR引子序列 26 3.2 實驗方法 27 3.2.1 解凍細胞、細胞培養及細胞計數 27 3.2.2 慢病毒轉導(Lentiviral transduction) 28 3.2.3 核醣核酸萃取(RNA extraction)及cDNA製備 28 3.2.4 即時聚合酶鏈鎖反應(Real-time qPCR) 29 3.2.5 西方墨點法(Western blotting) 30 3.2.6 細胞增生分析(Acid phosphatase assay) 33 3.2.7 細胞週期分析(Cell cycle analysis) 33 3.2.8 侵襲能力分析(Invasion ability assay) 34 3.2.9 非貼附性生長能力分析(Anchorage-independent growth ability assay) 35 3.2.10 統計分析(Statistical methods) 35 Chapter 4 結果 36 4.1 Lin28b與MYCN表現量呈現正相關 36 4.1.1 台大醫院神經母細胞瘤腫瘤Lin28b與MYCN表現量呈正相關 36 4.1.2 分析開放資料庫中神經母細胞瘤資料顯示Lin28b與MYCN表現量為正相關 36 4.1.3 Lin28b表現與神經母細胞瘤較差預後的關聯 37 4.1.4 TH-MYCN基因轉殖小鼠腫瘤Lin28b高度表現 38 4.2 神經母細胞瘤細胞株Lin28a/Lin28b表現量 38 4.3 抑制Lin28b表現於SK-N-DZ與SK-N-BE細胞株 39 4.3.1 以Lin28b shRNAs可有效抑制SK-N-DZ與SK-N-BE細胞株中Lin28b的表現 39 4.3.2 抑制Lin28b表現使SK-N-DZ及SK-N-BE形態呈現神經分化之變化 39 4.3.3 抑制Lin28b表現減緩神經母細胞瘤細胞株增生速率並造成細胞週期停滯於G0/G1期 40 4.3.4 抑制Lin28b表現使神經母細胞瘤走向分化並降低MYCN致癌基因表現 41 4.3.5 抑制Lin28b表現減弱神經母細胞瘤細胞株的惡性度 42 4.4 過度表現Lin28b於神經母細胞瘤細胞株SK-N-SH 43 4.4.1 pLVX-Lin28b表現質體可有效過度表現Lin28b蛋白於SK-N-SH中 43 4.4.2 過量表現Lin28b於SK-N-SH細胞株增加致癌基因MYCN的表現以及使細胞走向去分化(de-differentiation) 43 Chapter 5 討論 45 Chapter 6 參考文獻 52 圖目錄 圖 一、 以RT-PCR測試神經母細胞瘤腫瘤中Lin28b與MYCN mRNA的表現情形 68 圖 二、 台大醫院臨床檢體中Lin28b及MYCN mRNA表現量及相關性 69 圖 三、 臨床檢體中Lin28b及MYCN mRNA表現量及相關性 70 圖 四、 臨床檢體中Lin28a及MYCN mRNA表現量及相關性 71 圖 五、 Lin28b表現與神經母細胞瘤預後的關係(NTU cohort) 72 圖 六、 Lin28b表現與神經母細胞瘤預後的關係(Tumor Neuroblastoma public – Versteeg – 88) 73 圖 七、 MYCN轉基因小鼠之腫瘤及腎上腺之Lin28b mRNA表現量 74 圖 八、 神經母細胞瘤Lin28b,Lin28a與MYCN之表現量 75 圖 九、 以Lin28b shRNAs抑制SK-N-DZ及SK-N-BE細胞株中Lin28b的蛋白質表現 76 圖 十、 抑制Lin28b表現後神經母細胞瘤細胞株SK-N-DZ產生形態變化 77 圖 十一、 抑制SK-N-DZ其Lin28b表現後觀察細胞株生長速率 78 圖 十二、 抑制Lin28表現於SK-N-DZ細胞株後,細胞週期停滯於G0/G1 79 圖 十三、 抑制Lin28表現於SK-N-BE細胞株後,細胞週期停滯於G0/G1 80 圖 十四、 抑制Lin28b表現影響SK-N-DZ及SK-N-BE細胞株細胞週期相關分子產生變化 81 圖 十五、 抑制Lin28b使神經分化相關分子產生變化 82 圖 十六、 抑制Lin28b表現減低SK-N-DZ細胞非貼附性生長能力 83 圖 十七、 抑制Lin28b造成SK-N-DZ細胞株細胞侵襲Matrigel能力減弱 84 圖 十八 、 過度表現Lin28b於SK-N-SH細胞株 85 圖 十九、 過度表現Lin28b於神經母細胞瘤SK-N-SH產生形態變化 86 圖 二十、 過度表現Lin28b於SK-N-SH細胞株增加MYCN mRNA與蛋白質的表現 87 圖 二十一、 過度表現Lin28b於SK-N-SH細胞株增加Nestin的表現 88 圖 二十二、 Lin28b影響神經母細胞瘤機制推測示意圖 89 附錄 附錄 一、 International Neuroblastoma Pathology Classification(INPC)分類 91 附錄 二、 INRG Classification System 92 附錄 三、 IDRF列表 93 附錄 四、 台大醫院神經母細胞瘤病人臨床資料 94 附錄 五、 MYCN轉基因小鼠 95 附錄 六、 pLKO.1-puro vector 96 附錄 七、 pLKO.1.null-T vector 97 附錄 八、 pMD.G vector 98 附錄 九、 pCMVdeltaR8.91 vector 99 附錄 十、 pLVX-IRES-Neo質體圖 100 附錄 十一、 ACP assay原理 101 附錄 十二、細胞週期(Cell cyle)調控簡圖 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | MYCN | zh_TW |
| dc.subject | Lin28b | zh_TW |
| dc.subject | 神經母細胞瘤 | zh_TW |
| dc.subject | neuroblastoma | en |
| dc.subject | Lin28b | en |
| dc.subject | MYCN | en |
| dc.title | 探討LIN28B在神經母細胞瘤中之角色 | zh_TW |
| dc.title | Study on the role of LIN28B in neuroblastoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊雅倩(Ya-Chien Yang),俞松良(Sung-Liang Yu),林東燦(Dong-tsamn Lin),許文明(Wen-Ming Hsu) | |
| dc.subject.keyword | 神經母細胞瘤,Lin28b,MYCN, | zh_TW |
| dc.subject.keyword | neuroblastoma,Lin28b,MYCN, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 10.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
