請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64173完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳逸民(Yih-Min Wu) | |
| dc.contributor.author | Wei-An Chao | en |
| dc.contributor.author | 趙韋安 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:33:19Z | - |
| dc.date.available | 2013-08-18 | |
| dc.date.copyright | 2012-08-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | Aki, K., and P. G. Richards (2002). Quantitative Seismology, Second Ed., University Science Books, Sausalito, California, 700 pp.
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces,214 Bull. Seismol. Soc. Am., 68, 1521–1532. Allmann, Bettina P. and Peter M. Shearer (2007). A high-frequency secondary event during the 2004 Parkfield earthquake, Science, 318, 1279, doi: 10.1126/science.1146537. Aoi, S., H. Sekiguchi, N. Morikawa, and K. Kunugi (2008). Source process of the 2007 Niigata-ken Chuetsu-oki earthquake derived from near-fault strong motion data, Earth Planets Space, 60, 1131-1135. Brodsky, E. E., E. Gordeev, and H. Kanamori (2003). Landslide basal friction as measured by seismic waves, Geophys. Res. Lett., 30(24), 2236, doi:10.1029/2003GL018485. Bogdanov, V. E., and V. M. Graizer (1976). The determination of the residual displacement of the ground from the seismogram, Reports of the Academy of Sciences of the USSR, 229, 59–62. Boore, D.M. (1999). Effect of baseline corrections on response spectra for two recordings of the 1999 Chi-Chi, Taiwan, earthquake, U.S. Geol. Surv. Open-File Rept. 99–545, 37 pp. Boore, D.M. (2001). Effect of baseline corrections on displacements and response spectra for Several recording of the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seismol. Soc. Am., 91, 1199–1211 Boore, D. M., C. D. Stephens, and W. B. Joyner (2002). Comments on baseline correction of digital strong-motion data: examples from the 1999 Hector Mine, California, earthquake, Bull. Seismol. Soc. Am., 92, 1543–1560. Bouchut, F., A. Mangeney-Castelnau, B. Perthame, and J. P. Vilotte (2003). A new model of Saint-Venant and Savage-Hutter type for gravity driven shallow water flows, C. R. Acad. Sci. Paris., Ser. I, 336, 531-536, doi:10.1016/S1631-073X(03)00117-1. Burtin, A., L. Bollinger, J. Vergne, and J. L. Nabělek (2008). Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics, J. Geophys. Res., 113. B05301, doi:10.1029/2007JB005034. Burtin, A., L. Bollinger, R. Cattin, J. Vergne, and J. L. Nabělek (2009). Spationtemporal sequence of Himalayan debris flow from analysis of high-frequency seismic noise, J. Geophys. Res., 114, F04009, doi:10.1029/2008JF001198. Chang, C. H., Y. M. Wu, T. C. Shin, and C. Y. Wang (2000). Relocating the 1999 Chi-Chi Earthquake, Taiwan, Terr. Atmos. Oceanic Sci., 11, 581–590. Chang, C. H., Y. M. Wu, L. Zhao, and F. T. Wu (2007). Aftershocks of the 1999 Chi-Chi, Taiwan, earthquake: The first hour, Bull. Seismol. Soc. Am., 97, 1245–1258. Chao, W. A., L. Zhao, and Y. M. Wu (2011). Centroid Fault-plane inversion in Three-dimensional Velocity Structure Using Strong-Motion Records. Bull. Seismol. Soc. Am. 3, 1330-1340, doi: 10.1785/0120100245. Chen, Y. G., Y. T. Kuo, Y. M. Wu, H. L. Chen, C. H. Chang, R. Y. Chen, P. W. Lo, K. E. Ching, and J. C. Lee (2008). New seismogenic source and deep structures revealed by the 1999 Chia-yi earthquake sequence in southwestern Taiwan, Geophys. J. Int. 172, 1049-1054. Chiu, H. C. (1997). Stable baseline correction of digital strong-motion data, Bull. Seismol. Soc. Am., 87,932–944. Dahlen, F. A. (1993). Single-force representation of shallow landslide sources, Bull. Seismol. Soc. Am., 83(1), 130-143. Dammeier, F., Jeffrey R. Moore, F. Haslinger, and S. Loew (2011). Characterization of alpine rockslides using statistical analysis of seismic signals, J. Geophys. Res., 116, F04024, doi:10.1029/2011JF002037. Deparis, J., D. Jongmans, F. Cotton, L. Baillet, F. Thouvenot, D. Hantz (2008). Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps., Bull. Seismol. Soc. Am., 98:1781-1796, doi: 10.1785/0120070082. Eissler, H. K., and H. Kanamori (1987). A single-force model for the 1975 Kalapana, Hawaii, earthquake, J. Geophys. Res., 92, 4827-4836. Favreau, P., A. Mangeney, A. Lucas, G. Crosta, and F. Bouchut (2010). Numerical modeling of landquakes, Geophys. Res. Lett., 37, L15305, doi:10.1029/2010GL043512. Feng, Z. (2011). The seismic signatures of the 2009 Shiaolin landslide in Taiwan, Nat. Hazards Earth Syst. Sci., 11,1559-1569, doi:10.5194/nhess-11-1559-2011. Gabet, E. J., D. W. Burbank, J. K. Putkonen, B. A. Pratt-Sitaula, T. Ojha (2010). Rainfall thresholds for landsliding in the Himalayas of Nepal, Geomorphology, 63,131-143, doi:10.1016/j.geomorph.2004.03.011. Graizer, V. M. (1989). On inertial seismometry, Izv Earth Phys., 25, 26–29. Graizer, V. M. (2005). Effect of tilt on strong motion data processing, Soil Dyn. Earthquake Eng., 25, 197–204. Graizer, V. M. (2006). Tilts in strong ground motion, Bull. Seismol. Soc. Am., 96, 2090–2102. Graves, R. W. (1996). Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seism. Soc. Am., 86, 1091–1106. Holland, J. H. (1975). Adaptation in the Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Michigan. Honda, R. and S. Aoi (2009). Array back-projection imaging of the 2007 Niigataken Chuetsu-oki earthquake striking the world’s largest nuclear power plant, Bull. Seismol. Soc. Am., 99, 141–147, doi: 10.1785/0120080062. Hsu, Y. J., S. B. Yu, L. C. Kuo, Y. C. Tsai, and H. Y. Chen (2011). Coseismic deformation of the 2010 Jiashian, Taiwan earthquake and implications for fault activities in southwestern Taiwan, Tectonophysics, 502, 328-335, doi:10.1016/j.tecto.2011.02.005. Huang, B. S., Y. L. Huang, P. L. Leu, and S. J. Lee (2011). Estimation of the rupture velocity and fault length of the 2004 Sumatra-Andaman earthquake using a dense broadband seismic array in Taiwan, Journal of Asian Earth Sciences, 40, 762-769, doi:10.1016/j.jseaes.2010.10.020. Huang H. H., Y. M. Wu, T. L. Lin, W. A. Chao, J. Bruce H. Shyu, C. H. Chan, and C. H. Chang (2011). The Preliminary Analysis of the 2010 Mw6.3 Jiasian, Taiwan, Earthquake Sequence, Terr. Atmos. Oceanic Sci, 22, 283-290, doi: 10.3319/TAO.2010.12.13.01(T). Ishii, M., P. M. Shearer, H. Houston, and J.E. Vidale (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-net array, Nature, 435(16), 933–936, doi:10.1038/nature03675, doi:10.1038/nature03675. Ishii, M. (2011). High-frequency rupture properties of the Mw 9.0 off-the-Pacific-coast-of-Tohoku earthquake, Earth Planets Space, 63, 609-614. Iwan, W. D., M. A. Moser, and C. Y. Peng (1985). Some observations on strong-motion earthquake measurement using a digital acceleration, Bull. Seismol. Soc. Am., 75, 1225–1246. Jakka, R. S., E. S. Cochran, and J. F. Lawrence (2010). Earthquake source characterization by the isochrone back projection method using near-source ground motions, Geophys. J. Int., 182(2), 1058–1072, doi: 10.1111/j.1365-246X.2010.04670.x. Kanamori, H. (1977). The energy release in great earthquakes, J. geophys. Res., 82, 2981-2987. Kanamori, H., and J. W. Given (1982). Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens: A terrestrial monopole?, J. Geophys. Res., 87, 5422-5432. Kanamori, H. and Emily E. Brodsky (2004). The physics of earthquakes, Rep. Prog. Phys. 67, 1429-1496. Kao, H., P. R. Jian, K. F. Ma, B. S. Huang, and C. C. Liu (1998). Moment-tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision, Geophys. Res. Lett., 25, 3619-3622, doi:10.1029/98GL02803. Kao, H., and P. R. Jian (1999). Source parameters of regional earthquakes in Taiwan: July 1995-December 1996, Terr. Atmos. Oceanic Sci., 10, 585-604. Kao, H., Y. H. Liu, W. T. Liang, and W. P. Chen (2002). Source parameters of regional earthquakes in Taiwan: 1999-2000 including the Chi-chi earthquake sequence, Terr. Atmos. Oceanic Sci., 3, 279-298. Kao, H. and S. J. Shan (2004). The source-scanning algorithm: Mapping the distribution of seismic sources in time and space, Geophys. J. Int., 157(2), 589–594, doi:10.1111/j.1365-246X.2004.02276.x. Kao, H. and S. J. Shan (2007). Rapid identification of earthquake rupture plane using source-scanning algorithm, Geophys. J. Int., 168(3), 1011–1020, doi:10.1111/j.1365-246X.2006.03271.x. Kao H., C. W. Kan, R. Y. Chen, C. H. Chang, A. Rosenberger, T. C. Shin, P. L. Leu, K. W. Kuo, and W. T. Liang (2012). Locating, monitoring, and characterizing typhoon-induced landslides with real-time seismic signals, Landslides, doi: 10.1007/s10346-012-0322-z. Keiler, M., J. Knight, and S. Harrison (2010). Climate change and geomorphological hazards in the eastern European Alps, Philos. Trans. R. Soc. A, 368, 2461-2479. Kim, K. H., J. M. Chiu, J. Pujol, K. C. Chen, B. S. Huang, Y. H. Yeh, and P. Shen (2005), Three-dimensional Vp and Vs structural model associated with the active subduction and collision tectonics in the Taiwan region, Geophys. J. Int., 162, 204– 220. Kiser, M., and M. Ishii (2011).The 2010 Mw 8.8 Chile earthquake: Triggering on multiple segments and frequency-dependent rupture behavior, Geophys. Res. Lett., 38, L07301, doi:10.1029/2011GL047140. Kobayashi, R., and I. Nakanishi (1994). Application of genetic algorithms to focal mechanism determination, Geophys. Res. Lett. 21, 729–732. Koketsu, K. and S. Sekine (1998). Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities, Geophys. J. Int., 132(2), 339–346, doi: 10.1046/j.1365-246x.1998.00427.x. Komatitsch, D., Q. Liu, J. Tromp, P. Suss, C. Stidham, and J. H. Shaw (2004). Simulations of ground motion in the Los Angeles basin upon the spectral-element method, Bull. Seismol. Soc. Am., 94, 187–206, doi: 10.1785/0120030077. Kruger, F., and M. Ohrnberger (2005). Tracking the rupture of the Mw = 9.3 Sumatra earthquake over 1150 km at teleseismic distance, Nature, 435, 937–939, doi:10.1038/nature03696. Kuge, K. (2003). Source modeling using strong-motion waveforms: toward automated determination of earthquake fault planes and moment-release distributions, Bull. Seismol. Soc. Am., 93, 639–654. Kuo, C. Y., T. C. Tai, C. C. Chen, K. J. Chang, A. Y. Siau, and J. J. Dong, R. H. Han, T. Shimamoto, and C. T. Lee (2011). The landslide stage of the Hsiaolin catastrophe: Simulation and validation, J. Geophys. Res., 116, F04007, doi:10.1029/2010JF001921. La Rocca, M., D. Galluzzo, G. Saccorotti, S. Tinti, G. B. Cimini, and E. Del Pezzo (2004). Seismic signals associated with landslides and with a tsunami at Stromboli Volcano, Italy, Bull. Sesimol. Soc. Am., 94:1850-1867, doi: 10.1785/012003238. Lee, S. J., W. T. Liang, and B. S. Huang. (2008) Source mechanisms and rupture processes of the 26 December 2006 Pingtung earthquake doublet as determined from the regional seismic records, Terr. Atmos. Oceanic Sci., 19, 555-565, doi: 10.3319/TAO.2008.19.6.555(PT). Lee, S. J., D. Komatitsch, B. S. Huang, and J. Tromp (2009). Effects of topography on seismic wave propagation: An example from northern Taiwan, Bull. Seismol. Soc. Am., 99, 314–325, doi: 10.1785/0120080020. Lee, S. J., W. T. Liang, L. Mozziconacci, Y. J. Hsu, C. Y. Lu, W. G. Huang, B. S. Huang (2012). Source complexity of the 4 March 2010 Jiasian, Taiwan earthquake determined by joint inversion of teleseismic and near-field data, Journal of Asian Earth Sciences (submitted). Legros, F. (2002). The mobility of long-runout landslides, Eng. Geol., 63, 301-331. Lin, C. H., H. Kumagai, M. Ando, and T. C. Shin (2010). Detection of landslides and submarine slumps using broadband seismic networks, Geophys. Res. Lett., 37, L22309, doi:10.1029/2010GL044685. Liu, K. S., T. C. Shin, and Y. B. Tsai (1999). A free-field strong motion network in Taiwan: TSMIP, Terr. Atmos. Oceanic Sci., 10, 377–396. Ma, K. F., J. H. Wang, and D. Zhao (1996). Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J. Phys. Earth, 44, 85– 105. Ma, K. F. and Wu, S. I. (2001). Quick slip distribution determination of moderate to large inland earthquakes using near-source strong motion waveforms, Earthq. Eng. Eng. seism., 3, 1–10. McSaveney, M. J. (2002). Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand, Rev. Eng. Geol., 15, 35-70. Mori, J. and S. Hartzell (1990). Source inversion of the 1988, Upland, California earthquake: determination of a fault plane for a small event, Bull. Seismol. Soc. Am., 80, 507–518. Nigbor, R. L. (1994). Six-degree-of-freedom ground-motion measurement, Bull. Seismol. Soc. Am., 84, 1665–1669. Norris, R. D. (1994). Seismicity of rockfalls and avalanches at 3 Cascade Range volcanos: Implications for seismic detection of hazardous mass movement, Bull. Seismol. Soc. Am., 84(6):1925-1939. Olsen, K. B. (1994). Simulation of three-dimensional wave propagation in the Salt Lake Basin, Ph.D. Thesis, University of Utah, Salt Lake City, Utah, 157p. Petley, D. N., N. Rosser, and R. Parker (2009). Quantifying the impacts of landslides on society, Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract NH52A-04. Rau, R. J., and F. T. Wu (1995). Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett., 133, 517– 532. Roecker, S. W., Y. H. Yeh, and Y. B. Tsai (1987). Three-Dimensional P and S velocity structures beneath Taiwan: Deep structure beneath an arc-continent collision, J. geophys. Res., 92, 10, 547-10, 570. Sambridge, M., and G. Drijkoningen (1992). Genetic algorithm in seismic waveform inversion, Geophys. J. Int. 109, 323–342. Shin, T. C., (1993). The calculation of local magnitude from the simulated Wood-Anderson seismograms of the short-period seismograms in the Taiwan area, Terr. Atmos. Oceanic Sci., 4, 155–170. Shyu, J. B. H., K. Sieh, Y. G. Chen, and C. S. Liu (2005). The neotectonic architecture of Taiwan and its implications for future large earthquakes, J. geophys. Res., 110, B08402, doi:10.1029/2004JB003251. Snoke, J. A., J. W. Munsey, A. C. Teague, and G. A. Bollinger (1984). A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data, Earthq. Notes 55, 15. Snoke, J. A. (2003). FOCMEC: FOCal MEChanism determinations, in International Handbook of Earthquake and Engineering Seismology, W. H. K. Lee, H. Kanamori, P. C. Jennings and C. Kisslinger (Editors), Academic Press, San Diego, Chap. 85.12. Sosio, R., G. B. Crosta, and O. Hungr (2008). Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps), Eng. Geol., 100(1-2), 11-26, doi:10.1016/j.enggeo.2008.02.012. Stockwell, R. G., L. Mansinha, R. P. Lowe (1996). Localization of the complex spectrum: The S Transform, IEEE Trans. Signal Processing, 44(4):998-1001. Surinach, E., I. Vilajosana, G. Khazaradze, B. Biescas, G. Furdada, amd J. M. Vilaplana (2005). Seismic detection and characterization of landslides and other mass movements, Nat. Hazards Earth Syst. Sci., 5,791-798. Suwa, H., T. Mizuno, and T. Ishii (2010). Prediction of a landslide and analysis of slide motion with reference to the 2004 Ohto slide in Nara, Japan, Geomorphology, 124(3-4),157-163, doi:10.1016/j.geomorph.2010.05.003. Takahashi, T. (2010). Debris flow: Mechanics, Prediction and Countermeasures, Taylor and Francis, London, 448 pp. Thurber, C., and D. Eberhart-Phillips (1999). Local earthquake tomography with flexible gridding, Comput. Geosci. 25, 809–818. Trifunac, M. D., and M. I. Todorovska (2001). A note on the useable dynamic range of accelerographs recording translation, Soil Dyn Earthqu Eng., 21, 275–286. Tsou, C. Y., Z. Y. Feng, M. Chigira (2011). Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan, Geomorphology, 127,166-178, doi:10.1016/j.geomorph.2010.12.013. Udias, A., and E. Buforn (1988). Single and joint fault-plane solutions from first-motion datam, in Seismological Algorithms, D. J. Doornbos (Editor), Academic Press, New York, 443–453. Vilajosana, I., E. Surinach, A. Abellan, G. Khazaradze, D. Garcia, and J. Llosa (2008). Rockfall induced seismic signals: case study in Montserrat, Catalonia, Nat. Hazards Earth Syst. Sci., 8,805-812. Walker, K.T., M. Ishii, and P.M. Shearer (2005). Rupture details of the 28 March 2005 SumatraM8.6 earthquake imaged with teleseismic P waves, Geophys. Res. Lett., 32, L24303, doi:10.1029/2005GL024395. Wech, Aaron G., and Kenneth C. Creager (2008). Automated detection and location of Cascadia tremor, Geophys. Res. Lett., 35, L20302, doi:10.1029/2008GL035458. Weichert, D., R. B. Horner, and S. G. Evans (1994). Seismic signatures of landslides – the 1990 Brenda Mine collapse and the 1965 Hope rock-slides, Bull. Seismol. Soc. Am., 84(5):1523-1532. Wessel, P., and W. Smith (1991). Free software helps map and display data, EOS Trans. AGU, 72(41), 441. Wessel, P., and W. H. F. Smith (1998). New, improved version of Generic Mapping Tools released, EOS, Trans. Amer. Gophys. U., 79, 579. Wu, F.T., (1978). Recent tectonics of Taiwan, J. Phys. Earth 26 Suppl., pp. S265–S299. Wu, Y. M., Y. G. Chen, T. C. Shin, H. Kuochen, C. S. Hou, J. C. Hu, C. H. Chang, C. F. Wu, and T. L. Teng (2006a). Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan, Geophys. Res. Lett., 33, L02312, doi: 10.1029/2005GL024711. Wu, Y. M., Y. G. Chen, C. H. Chang, L. H. Chung, T. L. Teng, F. T. Wu, and C. F. Wu (2006b). Seismogenic structure in a tectonic suture zone: with new constraints from 2006 Mw 6.1 Taitung earthquake, Geophys. Res. Lett., 33, L22305, doi: 10.1029/2006GL027572. Wu, Y. M., and C. F. Wu (2007). Approximate recovery of coseismic deformation from Taiwan strong-motion records, J. Seismol., 11, 159–170. Wu, Y. M., C. H. Chang, L. Zhao, J. B. H. Shyu, Y. G. Chen, K. Sieh, and J. P. Avouac (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong-motion stations. J. geophys. Res., 112, B08312. Wu, Y. M., C. H. Chang, L. Zhao, T. L. Teng, and M. Nakamura (2008). A. comprehensive relocation of earthquakes in Taiwan from 1991 to 2005, Bull. Seism. Soc. Am., 98, 1471-1481, doi: 10.1785/0120070166. Wu, Y. M., L. Zhao, C. H. Chang, and Y. J. Hsu (2008). Focal mechanism determination in Taiwan by genetic algorithm, Bull. Seism. Soc. Am., 98, 651–661. Wu, Y. M., J. B. H. Shyu, C. H. Chang, L. Zhao, M. Nakamura, and S. K. Hsu (2009). Improved seismic tomography offshore northeastern Taiwan: Implications for subduction and collision processes between Taiwan and the southernmost Ryukyu, Geophys. J. Int., 178, 1042–1054. Wu, Y. M., C. H. Chang, L. Zhao, N. C. Hsiao, Chen Y. G., and S. K. Hsu (2009). Relocation of the 2006 Pingtung earthquake sequence and seismotectonics in Southern Taiwan, Tectonophysic, 479, 19-27, doi:10.1016/j.tecto.2008.12.001. Wu, Y. M., Y. J. Hsu, C. H. Chang, L. S. Teng, and M. Nakamura (2010) Temporal and spatial variation of stress field in Taiwan from 1991 to 2007: Insights from comprehensive first motion focal mechanism catalog, Earth Planet. Sci. Lett. in press, doi:10.1016/j.epsl.2010.07.047. Wu, Y. M., T. L. Lin, W. A. Chao, H. H. Huang, N. C. Hsiao, and C. H. Chang (2011). Faster short-distance earthquake early warning using continued monitoring of filtered vertical displacement: A case study for the 2010 Jiasian, Taiwan, earthquake, Bull. Seismol. Soc. Am., 101(2), 701–709, doi: 10.1785/0120100153. Xu, Y., K. D. Koper, O. Sufri, L. Zhu, and A. Hutko (2009), Rupture imagining of the Mw 7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P‐waves, Geochem. Geophys. Geosyst., 10, Q04006, doi:10.1029/2008GC002335. Yen, Y. T., and K. F. Ma (2011). Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan, Bull. Seismol. Soc. Am., 101(2), 464–481, doi: 10.1785/0120100046. Yu, S. B., L. C. Kuo, Y. R. Hsu, H. H. Su, C. C. Liu, C. S. Hou, J. F. Lee, T. C. Lai, and C. L. Liu (2001). Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seismol. Soc. Am., 91, 995–1012. Zhang, H. and Z. Ge (2010), Tracking the rupture of the 2008 Wenchuan earthquake by using the relative back-projection method, Bull. Seismol. Soc. Am., 100, 2551–2560, doi: 10.1785/0120090243. Zhao, L., P. Chen and T. H. Jordan (2006). Strain Green’s tensors, reciprocity and their applications to seismic source and structure studies. Bull. Seism. Soc. Am., 96, 1753-1763. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64173 | - |
| dc.description.abstract | 台灣具有密集的地震站分布與高地震活動度,提供了大量的地震波形資料,而眾多大小規模之地震活動,有助於探討區域性地地震構造。本研究論文,先是利用1999 Mw7.6集集地震、2003 Mw6.8成功地震與2006 Mw6.1台東的強震地動記錄,檢驗本研究所發展的自動化基線修正程序,基於與前人的比較結果,說明此程序可適用於恢復大、小之同震變形記錄,並有助於快速且穩定地計算同震變形量。近年來由於台灣的三維速度模型已發展成熟,且計算機的快速發展,有助於我們利用有限差分法運算三維應變格林張量之資料庫,基於震源與測站間的互換定理,能有效地增加模擬三維合成理論地震波之效率。在此,我們發展利用應變格林函數逆推震源機制解的方法,其具有下列優勢: (1)同時結合P波初動與波形擬合程度,(2)運用基因演算法來進行最佳化程序,(3)利用三維應變格林張量,提供較為精確的合成理論地震波。我們將此程序應用於探討1999嘉義地震序列之震源機制解與地震深度,結果顯示該地區主要為走向與逆衝的斷層面解,與前人P波初動解和地震矩張量反演之結果呈現一致性。本研究更進一步發展近場P波逆投影法,其是假設觀測紀錄波形上的各別P波脈衝訊號,來自於斷層面上在不同時間之單點破裂源所形成的,故在時間可逆的假設之下,分別將各測站之P波脈衝振幅疊加,逆投影至原本在斷層面上的破裂位置,即可了解地震之細部破裂過程。我們初步將此方法應用於2010甲仙地震,由結果顯示與餘震序列和前人研究之斷層面滑移分布呈現一致。綜合本研究所發展的高效率與自動化之程序,便能在災害性地震發生後,運用即時強震紀錄來演算地表同震變形量、地震斷層機制解與地震之破裂過程和滑移量之分布。
在颱風季節所伴隨之豪雨,易誘發地崩(岩石崩落、岩石崩滑、土石流與岩石崩落)的產生,往往造成嚴重的生命以及財產的損失。因此,減緩地崩災害已成為全球重視之課題。傳統地動訊號分析方法提供了研究地崩與輔助其他地崩資料的機會。本研究在2009莫拉克颱風期間,利用即時寬頻地震儀所記錄的崩塌地動訊號進行時頻分析,共判識出12個大型地崩事件,此颱風共造成675人死亡、24失蹤,約估計有3.3億美元的經濟損失。本研究更進一步發展一套自動化程序,以達到即時決定地崩位置與其崩塌面積,且利用崩塌地動訊號之參數值,來判別崩塌行為與其崩塌形態,尤其針對具有堰塞湖之崩塌事件。此程序可以提供防災部門地崩事件之相關資訊,以達到減災之作用。 | zh_TW |
| dc.description.abstract | Due to the density of seismograph stations in Taiwan is among the highest of the world and high seismicity, provides a lot of seismic data of small-to large-sized earthquakes. Frequent earthquakes of various magnitudes provide valuable information for understanding the regional seismotectonic environment. The first part of the dissertation focuses on the coseismic deformation which can be determined from strong-motion records of large earthquakes. The baseline corrections are often required to obtain reliable coseismic deformation because baseline offsets lead to unrealistic permanent displacement. We use strong-motion records from three large earthquakes in Taiwan (1999 Mw7.6 Chi-Chi, 2003 Mw6.8 Chengkung and 2006 Mw6.1 Taitung earthquakes) to illustrate our automatic baseline correction procedure. Based on the comparisons for coseismic deformation results from previous studies, our new procedure is suitable for quick and reliable determination of coseismic deformation from strong-motion records.
According to recent 3D structural models in Taiwan are already available, and efficient numerical methods have been developed for calculating Green’s function, a database is established for strain Green’s tensors (SGTs) obtained by the finite-difference method in this study. With this SGTs database, 3D synthetic seismograms can be computed by simple retrieving the appropriate SGTs from database and applying the reciprocity theorem. Here, we develop an approach to determining the focal mechanisms of small and moderate earthquakes by combining three effective ingredients: (1) an optimization criterion including both first-motion polarity and P-waveform fitting, (2) Green’s functions in 3D velocity models, and (3) a grid search for source depth and focal mechanism based on the genetic algorithm (GA). We apply this approach to determine the focal mechanisms and centroid depths of the 1999 Chia-yi earthquake sequence. Results show dominant strike-slip and thrust mechanisms that are in good agreement with previous results based upon P-wave first-motion polarities and moment-tensor inversions. To further understand the characteristic of source rupture process, we propose an approach of imaging source slip distribution by direct back-projection of local absolute P-wave displacement in strong-motion records. This approach is applied to estimate the slip distribution of an earthquake occurred in March 4, 2010, in Jiasian in southern Taiwan. Our resulting slip images are consistent with the distribution of aftershocks and slip distributions obtained from dislocation model and finite-fault inversion. Aforementioned highly automatic and efficient approaches allow for rapid determinations of coseismic deformations, fault-plane solutions and slip distributions after earthquakes using strong-motion records, providing important, useful and timely information for seismic hazard mitigation. Landquakes (e.g. rock collapse, rock slide, debris flow and rock avalanche) induced by the excessive rainfall during typhoon season can be catastrophic, both in loss of human life and to the economy. Thus, landquake risks have become an important issue in global natural mitigation effort. Conventional seismic data analysis offers a unique approach to studying landquake that is independent of and complementary to other types data. In this study, we apply time-frequency analysis to detect 12 landquakes in Taiwan during the passage of Typhoon Morakot in 2009, which resulted in 675 death, 24 missing, and an estimated economic loss of $3.3 billion. These events were recorded by seismic stations of the Broadband Array in Taiwan for Seismology (BATS). We develop an automatic and efficient approach for rapid determination of landquake centroid location and collapse area, and for identifying dam-formation event using records from existing real-time broadband seismic network, thus providing an important alternative for landquake hazard mitigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:33:19Z (GMT). No. of bitstreams: 1 ntu-101-F97224202-1.pdf: 6174977 bytes, checksum: 9fe4cd937b6d1379c2ac18524cacf4c1 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審查書 I
Acknowledgements II List of Tables V List of Figures VI 中文摘要 IX Abstract XI Chapter 1. Introduction 1 1.1 Background……………………………………………………………… 1 1.2 Sources of seismic signals……………………………………………….. 2 1.3 Outline…………………………………………………………………… 5 Chapter 2. An Automatic Scheme for Baseline Correction of Strong-Motion Records in Coseismic Deformation Determination 7 2.1 Abstract………………………………………………………………....... 7 2.2 Introduction………………………………………………………………. 7 2.3 Method…………………………………………………………………… 9 2.4 Data………………………………………………………………………. 12 2.5 Result.……………………………………………………………………. 15 2.6 Discussion and conclusions……………………………………………… 19 Chapter 3. Centroid Fault-Plane Inversion in Three-Dimensional Velocity Structure Using Strong-Motion Records 21 3.1 Abstract………………………………………………………………....... 21 3.2 Introduction………………………………………………………………. 22 3.3 Strong-motion waveform data…………………………………………… 24 3.4 Focal mechanism solutions………………………………………………. 26 3.5 Discussion and conclusions……………………………………………… 38 3.6 Data and resources………………………………………………………. 40 Chapter 4. Imaging Source Slip Distribution by the Back-Projection of P-wave Amplitudes from Strong-Motion Records: A Case Study for the 2010 Jiasian, Taiwan, Earthquake 42 4.1 Abstract………………………………………………………………....... 42 4.2 Introduction………………………………………………………………. 43 4.3 Method and synthetic tests……………………………………………….. 46 4.4 Application to Jiasian earthquake………………………………………... 56 4.5 Discussion and conclusions……………………………………………… 62 Chapter 5. A Seismological Study of Landquakes Using a Real-Time Broadband Seismic Network 64 5.1 Abstract………………………………………………………………....... 64 5.2 Introduction………………………………………………………………. 65 5.3 Data processing and analysis…….………………………………………. 69 5.3.1 Detection of landquakes…….……………………………………… 69 5.3.2 Location approach of landquakes…….……………………………. 72 5.3.3 Estimation of location errors…….………………………………… 76 5.4 Results and discussion…………………………………………………… 78 5.4.1 Landquake location and satellite images…….…………………….. 78 5.4.2 Seismic signal parameters and landquake characteristics…….…… 80 5.4.3 Characteristics of peak-ground velocity caused by landquakes…… 88 5.5 Conclusions……………………………………………………………… 89 Chapter 6. Summary 91 6.1 Earthquake source properties……………………………………………. 91 6.2 Landquake characteristics……………………………………………….. 93 Bibliography 95 Curriculum Vitae 108 | |
| dc.language.iso | en | |
| dc.subject | 強地動記錄 | zh_TW |
| dc.subject | 斷層面解 | zh_TW |
| dc.subject | 地崩 | zh_TW |
| dc.subject | 基因演算法 | zh_TW |
| dc.subject | 應變格林張量 | zh_TW |
| dc.subject | 同震變形 | zh_TW |
| dc.subject | strong-motion records | en |
| dc.subject | landquake | en |
| dc.subject | fault-plane solution | en |
| dc.subject | strain Green’s tensors | en |
| dc.subject | genetic algorithm | en |
| dc.subject | coseismic deformation | en |
| dc.title | 震源研究:地震與地崩 | zh_TW |
| dc.title | A Seismological Study of Sources: Earthquakes and Landquakes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 趙里(Li Zhao) | |
| dc.contributor.oralexamcommittee | 洪淑蕙(Shu-Huei Hung),曾泰琳(Tai-Lin Tseng),陳卉瑄(Hui-Hsuan Chen),李憲忠(Shiann-Jong Lee) | |
| dc.subject.keyword | 強地動記錄,同震變形,基因演算法,應變格林張量,斷層面解,地崩, | zh_TW |
| dc.subject.keyword | strong-motion records,coseismic deformation,genetic algorithm,strain Green’s tensors,fault-plane solution,landquake, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 6.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
