請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64171完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳示國(Shih-Kuo Chen) | |
| dc.contributor.author | Tsung-Hao Lu | en |
| dc.contributor.author | 盧從浩 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:33:14Z | - |
| dc.date.available | 2020-03-05 | |
| dc.date.copyright | 2020-03-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2020-03-02 | |
| dc.identifier.citation | Arumugam, M., J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D. R. Mende, G. R. Fernandes, J. Tap, T. Bruls, J. M. Batto, M. Bertalan, N. Borruel, F. Casellas, L. Fernandez, L. Gautier, T. Hansen, M. Hattori, T. Hayashi, M. Kleerebezem, K. Kurokawa, M. Leclerc, F. Levenez, C. Manichanh, H. B. Nielsen, T. Nielsen, N. Pons, J. Poulain, J. Qin, T. Sicheritz-Ponten, S. Tims, D. Torrents, E. Ugarte, E. G. Zoetendal, J. Wang, F. Guarner, O. Pedersen, W. M. de Vos, S. Brunak, J. Dore, M. Antolin, F. Artiguenave, H. M. Blottiere, M. Almeida, C. Brechot, C. Cara, C. Chervaux, A. Cultrone, C. Delorme, G. Denariaz, R. Dervyn, K. U. Foerstner, C. Friss, M. van de Guchte, E. Guedon, F. Haimet, W. Huber, J. van Hylckama-Vlieg, A. Jamet, C. Juste, G. Kaci, J. Knol, O. Lakhdari, S. Layec, K. Le Roux, E. Maguin, A. Merieux, R. Melo Minardi, C. M'Rini, J. Muller, R. Oozeer, J. Parkhill, P. Renault, M. Rescigno, N. Sanchez, S. Sunagawa, A. Torrejon, K. Turner, G. Vandemeulebrouck, E. Varela, Y. Winogradsky, G. Zeller, J. Weissenbach, S. D. Ehrlich and P. Bork (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174-180. doi:10.1038/nature09944
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915-1920. doi:10.1126/science.1104816 Bae, K., Jin, X., Maywood, E. S., Hastings, M. H., Reppert, S. M., & Weaver, D. R. (2001). Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron, 30(2), 525-536. doi:10.1016/s0896-6273(01)00302-6 Berson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070-1073. doi:10.1126/science.1067262 Bunger, M. K., L. D. Wilsbacher, S. M. Moran, C. Clendenin, L. A. Radcliffe, J. B. Hogenesch, M. C. Simon, J. S. Takahashi and C. A. Bradfield (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103(7), 1009-1017. doi:10.1016/s0092-8674(00)00205-1 Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Peña, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld and R. Knight (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7(5), 335-336. doi:10.1038/nmeth.f.303 Chen, L., & Yang, G. (2015). Recent advances in circadian rhythms in cardiovascular system. Front Pharmacol, 6, 71. doi:10.3389/fphar.2015.00071 Chen, S. K., Badea, T. C., & Hattar, S. (2011). Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature, 476(7358), 92-95. doi:10.1038/nature10206 Cisse, Y. M., Peng, J., & Nelson, R. J. (2017). Effects of Dim Light at Night on Food Intake and Body Mass in Developing Mice. Front Neurosci, 11, 294. doi:10.3389/fnins.2017.00294 Claesson, M. J., Wang, Q., O'Sullivan, O., Greene-Diniz, R., Cole, J. R., Ross, R. P., & O'Toole, P. W. (2010). Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res, 38(22), e200. doi:10.1093/nar/gkq873 Comeau, A. M., Douglas, G. M., & Langille, M. G. I. (2017). Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research. mSystems, 2(1), e00127-00116. doi:10.1128/mSystems.00127-16 Craig, L. A., & McDonald, R. J. (2008). Chronic disruption of circadian rhythms impairs hippocampal memory in the rat. Brain Res Bull, 76(1-2), 141-151. doi:10.1016/j.brainresbull.2008.02.013 Falchi, F., P. Cinzano, D. Duriscoe, C. C. M. Kyba, C. D. Elvidge, K. Baugh, B. A. Portnov, N. A. Rybnikova and R. Furgoni (2016). The new world atlas of artificial night sky brightness. Science Advances, 2(6), e1600377. doi:10.1126/sciadv.1600377 Fierer, N., Lauber, C. L., Zhou, N., McDonald, D., Costello, E. K., & Knight, R. (2010). Forensic identification using skin bacterial communities. Proceedings of the National Academy of Sciences, 107(14), 6477. doi:10.1073/pnas.1000162107 Fonken, L. K., Aubrecht, T. G., Melendez-Fernandez, O. H., Weil, Z. M., & Nelson, R. J. (2013). Dim light at night disrupts molecular circadian rhythms and increases body weight. J Biol Rhythms, 28(4), 262-271. doi:10.1177/0748730413493862 Fonken, L. K., & Nelson, R. J. (2014). The effects of light at night on circadian clocks and metabolism. Endocr Rev, 35(4), 648-670. doi:10.1210/er.2013-1051 Fuchikawa, T., Eban-Rothschild, A., Nagari, M., Shemesh, Y., & Bloch, G. (2016). Potent social synchronization can override photic entrainment of circadian rhythms. Nat Commun, 7, 11662. doi:10.1038/ncomms11662 Gaci, N., Borrel, G., Tottey, W., O'Toole, P. W., & Brugere, J. F. (2014). Archaea and the human gut: new beginning of an old story. World J Gastroenterol, 20(43), 16062-16078. doi:10.3748/wjg.v20.i43.16062 Gaston, K. J., Visser, M. E., & Holker, F. (2015). The biological impacts of artificial light at night: the research challenge. Philos Trans R Soc Lond B Biol Sci, 370(1667). doi:10.1098/rstb.2014.0133 Golombek, D. A., & Rosenstein, R. E. (2010). Physiology of circadian entrainment. Physiol Rev, 90(3), 1063-1102. doi:10.1152/physrev.00009.2009 Hatori, M., H. Le, C. Vollmers, S. R. Keding, N. Tanaka, T. Buch, A. Waisman, C. Schmedt, T. Jegla and S. Panda (2008). Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One, 3(6), e2451. doi:10.1371/journal.pone.0002451 Hattar, S., Liao, H. W., Takao, M., Berson, D. M., & Yau, K. W. (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science, 295(5557), 1065-1070. doi:10.1126/science.1069609 Hattar, S., R. J. Lucas, N. Mrosovsky, S. Thompson, R. H. Douglas, M. W. Hankins, J. Lem, M. Biel, F. Hofmann, R. G. Foster and K. W. Yau (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature, 424(6944), 76-81. doi:10.1038/nature01761 Hoffmann, C., S. Dollive, S. Grunberg, J. Chen, H. Li, G. D. Wu, J. D. Lewis and F. D. Bushman (2013). Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One, 8(6), e66019. doi:10.1371/journal.pone.0066019 Hughes, M. E., Hogenesch, J. B., & Kornacker, K. (2010). JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms, 25(5), 372-380. doi:10.1177/0748730410379711 Jilge, B. (1992). Restricted feeding: A nonphotic zeitgeber in the rabbit. Physiology & Behavior, 51(1), 157-166. doi:https://doi.org/10.1016/0031-9384(92)90218-Q Karatsoreos, I. N., Bhagat, S., Bloss, E. B., Morrison, J. H., & McEwen, B. S. (2011). Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proceedings of the National Academy of Sciences, 108(4), 1657. doi:10.1073/pnas.1018375108 Koo, Y. S., Song, J. Y., Joo, E. Y., Lee, H. J., Lee, E., Lee, S. K., & Jung, K. Y. (2016). Outdoor artificial light at night, obesity, and sleep health: Cross-sectional analysis in the KoGES study. Chronobiol Int, 33(3), 301-314. doi:10.3109/07420528.2016.1143480 Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A, 102(31), 11070-11075. doi:10.1073/pnas.0504978102 Liang, X., Bushman, F. D., & FitzGerald, G. A. (2015). Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci U S A, 112(33), 10479-10484. doi:10.1073/pnas.1501305112 Loh, D. H., Navarro, J., Hagopian, A., Wang, L. M., Deboer, T., & Colwell, C. S. (2010). Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice. PLoS One, 5(9). doi:10.1371/journal.pone.0012546 Lucas, R. J., Hattar, S., Takao, M., Berson, D. M., Foster, R. G., & Yau, K. W. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science, 299(5604), 245-247. doi:10.1126/science.1077293 McDougal, D. H., & Gamlin, P. D. (2010). The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Res, 50(1), 72-87. doi:10.1016/j.visres.2009.10.012 Moore, R. Y., & Eichler, V. B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res, 42(1), 201-206. doi:10.1016/0006-8993(72)90054-6 Owens, A. C. S., & Lewis, S. M. (2018). The impact of artificial light at night on nocturnal insects: A review and synthesis. Ecol Evol, 8(22), 11337-11358. doi:10.1002/ece3.4557 Panda, S., I. Provencio, D. C. Tu, S. S. Pires, M. D. Rollag, A. M. Castrucci, M. T. Pletcher, T. K. Sato, T. Wiltshire, M. Andahazy, S. A. Kay, R. N. Van Gelder and J. B. Hogenesch (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science, 301(5632), 525-527. doi:10.1126/science.1086179 Panda, S., T. K. Sato, A. M. Castrucci, M. D. Rollag, W. J. DeGrip, J. B. Hogenesch, I. Provencio and S. A. Kay. (2002). Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science, 298(5601), 2213-2216. doi:10.1126/science.1076848 Provencio, I., Rollag, M. D., & Castrucci, A. M. (2002). Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature, 415(6871), 493. doi:10.1038/415493a Reyes, A., Haynes, M., Hanson, N., Angly, F. E., Heath, A. C., Rohwer, F., & Gordon, J. I. (2010). Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, 466(7304), 334-338. doi:10.1038/nature09199 Ridaura, V. K., J. J. Faith, F. E. Rey, J. Cheng, A. E. Duncan, A. L. Kau, N. W. Griffin, V. Lombard, B. Henrissat, J. R. Bain, M. J. Muehlbauer, O. Ilkayeva, C. F. Semenkovich, K. Funai, D. K. Hayashi, B. J. Lyle, M. C. Martini, L. K. Ursell, J. C. Clemente, W. Van Treuren, W. A. Walters, R. Knight, C. B. Newgard, A. C. Heath and J. I. Gordon (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341(6150), 1241214. doi:10.1126/science.1241214 Ruby, N. F., Brennan, T. J., Xie, X., Cao, V., Franken, P., Heller, H. C., & O'Hara, B. F. (2002). Role of melanopsin in circadian responses to light. Science, 298(5601), 2211-2213. doi:10.1126/science.1076701 Schmidt, T. M., Chen, S. K., & Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci, 34(11), 572-580. doi:10.1016/j.tins.2011.07.001 Schmidt, T. M., Chen, S. K., & Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci, 34(11), 572-580. doi:10.1016/j.tins.2011.07.001 Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biol, 12(6), R60. doi:10.1186/gb-2011-12-6-r60 Sehadova, H., Glaser, F. T., Gentile, C., Simoni, A., Giesecke, A., Albert, J. T., & Stanewsky, R. (2009). Temperature entrainment of Drosophila's circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron, 64(2), 251-266. doi:10.1016/j.neuron.2009.08.026 Sharma, S., & Tripathi, P. (2019). Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem, 63, 101-108. doi:10.1016/j.jnutbio.2018.10.003 Shi, S. Q., Ansari, T. S., McGuinness, O. P., Wasserman, D. H., & Johnson, C. H. (2013). Circadian disruption leads to insulin resistance and obesity. Curr Biol, 23(5), 372-381. doi:10.1016/j.cub.2013.01.048 Stephan, F. K., & Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A, 69(6), 1583-1586. doi:10.1073/pnas.69.6.1583 Takahashi, J. S. (2004). Finding New Clock Components: Past and Future. Journal of Biological Rhythms, 19(5), 339-347. doi:10.1177/0748730404269151 Thaiss, C. A., M. Levy, T. Korem, L. Dohnalova, H. Shapiro, D. A. Jaitin, E. David, D. R. Winter, M. Gury-BenAri, E. Tatirovsky, T. Tuganbaev, S. Federici, N. Zmora, D. Zeevi, M. Dori-Bachash, M. Pevsner-Fischer, E. Kartvelishvily, A. Brandis, A. Harmelin, O. Shibolet, Z. Halpern, K. Honda, I. Amit, E. Segal and E. Elinav (2016). Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations. Cell, 167(6), 1495-1510.e1412. doi:10.1016/j.cell.2016.11.003 Thaiss, C. A., D. Zeevi, M. Levy, G. Zilberman-Schapira, J. Suez, A. C. Tengeler, L. Abramson, M. N. Katz, T. Korem, N. Zmora, Y. Kuperman, I. Biton, S. Gilad, A. Harmelin, H. Shapiro, Z. Halpern, E. Segal and E. Elinav (2014). Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell, 159(3), 514-529. doi:10.1016/j.cell.2014.09.048 Underhill, D. M., & Iliev, I. D. (2014). The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol, 14(6), 405-416. doi:10.1038/nri3684 van der Horst, G. T., M. Muijtjens, K. Kobayashi, R. Takano, S. Kanno, M. Takao, J. de Wit, A. Verkerk, A. P. Eker, D. van Leenen, R. Buijs, D. Bootsma, J. H. Hoeijmakers and A. Yasui (1999). Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature, 398(6728), 627-630. doi:10.1038/19323 Verdam, F. J., Fuentes, S., de Jonge, C., Zoetendal, E. G., Erbil, R., Greve, J. W., . . . Rensen, S. S. (2013). Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring), 21(12), E607-615. doi:10.1002/oby.20466 Weldon, L., Abolins, S., Lenzi, L., Bourne, C., Riley, E. M., & Viney, M. (2015). The Gut Microbiota of Wild Mice. PLoS One, 10(8), e0134643. doi:10.1371/journal.pone.0134643 Yildirim, S., C. J. Yeoman, M. Sipos, M. Torralba, B. A. Wilson, T. L. Goldberg, R. M. Stumpf, S. R. Leigh, B. A. White and K. E. Nelson (2010). Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS One, 5(11), e13963. doi:10.1371/journal.pone.0013963 Zarrinpar, A., Chaix, A., Yooseph, S., & Panda, S. (2014). Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab, 20(6), 1006-1017. doi:10.1016/j.cmet.2014.11.008 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64171 | - |
| dc.description.abstract | 自從19世紀,電燈泡的發明為人們帶來許多的便利,然而它也卻引發了許多生理代謝的健康問題。在先前的文獻發現,光害嚴重的程度與人類肥胖有正相關的關係。然而,光線對如何影響代謝問題的機制不甚了解。其中腸道菌的研究日益增加,已經有許多文獻發現到腸道菌相可以受許多的外在變因給調控,並且腸道菌跟宿主的代謝功能息息相關。故我們想要利用操弄環境光線的變化以及使用不同基因型的老鼠,來去解答光線所引起的肥胖是否藉由改變腸道菌相所造成。我們的研究發現,夜晚光線確實會造成肥胖以及血糖耐受性降低的症狀,而這些症狀必須搭配吃食高脂飼料才會出現。同時,將來自夜晚照光小鼠的糞便樣本,管餵給無菌小鼠的實驗發現到腸道菌並不參與夜晚光線所引起的肥胖當中。而我們的實驗發現到了光線以及腸道菌相週期性的關係。外在光線的週期是調控腸道週期的關鍵因素,而不是宿主本身的生理時鐘。本研究排除了腸道菌為光線所引發的肥胖變因的可能,並且也提供了外在光線調控腸道菌相週期性的全新觀點。 | zh_TW |
| dc.description.abstract | In 19th century, Thomas Edison invented light bulbs which benefits human society. However, artificial light gives rise to many metabolic problems. Depending on previous studies, the severity of the light pollution is correlated with obesity. However, the mechanism of light-induced metabolic disorder remains unknown. many papers have discovered that many factors can modulate the microbial profile, and gut microbiome is relevant to metabolism of the host. The purpose of this study is to investigate the connection between light-induced obesity and gut microbiome by manipulating different light conditions and gene modified mice. Our findings suggested that dim light at night combined with high fat diet induced the metabolic deficits. Additionally, gut microbiome did not involve in light-induced obesity based on the result from germ-free mice transplanted with feces. For the relationship between light and gut microbiome, our work showed that external light cues are the critical factor to regulate the microbial rhythmicity instead of the output of the central clock. In conclusion, this study not only excludes the possibility that gut microbiome takes part in light-induced metabolic disorders but provides a whole new idea that external light can regulate microbial oscillation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:33:14Z (GMT). No. of bitstreams: 1 ntu-108-R06b21012-1.pdf: 3034885 bytes, checksum: 5ce9fb386b72b0a045fd3d9aae7798e1 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 .....i
謝誌 .....ii 摘要 .....iv Abstract .....v Contents .....vi Chapter1 Introduction .....1 1.1 The effect of artificial light on physiological functions .....1 1.2 Intrinsically photosensitive retinal ganglion cells (ipRGCs) .....2 1.2.1 Subtypes of ipRGCs .....3 1.3 Circadian rhythm .....4 1.3.1 Molecular mechanism of circadian rhythm .....4 1.3.2 Suprachiasmatic nucleus (SCN) .....5 1.4 Gut microbiome .....6 1.4.1 The composition of gut microbiome .....6 1.4.2 Gut microbiome and obesity related problems .....7 1.4.3 Gut microbiome oscillation .....7 Statement of Purpose .....9 Chapter II Materials and Methods .....11 2.1 animals .....11 2.2 genotyping .....11 2.2.1 DNA extraction .....11 2.2.2 Polymerase chain reaction (PCR) .....12 2.3 Metabolism test .....12 2.3.1 Glucose tolerance test (GTT) .....12 2.3.2 Insulin tolerance test (ITT) .....12 2.4 Immunostaining .....13 2.4.1 Brain collection and brain dissection .....13 2.4.2 PERIOD2 ABC staining .....13 2.5 Metagenomic library preparation for Illumina sequencing .....13 2.5.1 Gut microbe DNA extraction .....14 2.5.2 16S metagenomic library preparation .....15 2.5.3 Library quality check and pooling .....17 2.5.4 Next generation sequencing (NGS) .....17 2.6 Microbiota sequence analysis .....18 2.6.1 Sequence assembling and classification .....18 2.6.2 Microbiota analysis .....19 2.7 Experimental design .....21 2.8 Statistical analysis .....21 Chapter III Results .....23 3.1 Dim light at night induced obesity and metabolic deficits in wild type mice .....23 3.2 Gut microbiome does not take part in light-induced obesity .....24 3.3 dLAN and diet influence the composition of gut microbiome .....25 3.4 External light manipulation, regardless of the diet, interrupts the microbial oscillation .....26 3.5 Brn3b positive ipRGCs is necessary for microbial oscillation but not for composition of gut microbiome .....28 3.6 The circadian rhythm in central clock modulates the effect of external light on gut microbiome .....29 Chapter IV Discussion .....31 4.1 Light-induced obesity is not relevant to the composition of gut microbiome .....31 4.2 F:B ratio, which is higher in dLAN group, might be the compensation for the WT mice housed under dLAN .....32 4.3 The experiment of Bmal1fx/fx mice fails to explain if the externa light-dark cycle could directly regulate the microbial oscillation .....32 4.4 Further detailed pathway can be investigated by knocking out the BMAL1 in intestine epithelial cells .....33 Significance of the work .....35 Reference .....36 Figures .....44 Figure 1. Experimental scheme and design .....44 Figure 2. Metabolic status of WT mice fed with HFD .....45 Figure 3. Glucose tolerance test of WT mice .....46 Figure 4. Metabolic status of fecal transplanataion germ-free mice .....47 Figure 5. Weight gain of norepinephrine beta-receptor antagonist-treatedmice .....48 Figure 6. Body weight of mice fed with regular diet .....49 Figure 7. Gut microbiome profile of WT mice fed with HFD .....50 Figure 8. gut microbiome profile of WT mice fed with regulate food .....51 Figure 9. Oscillating OTUs percentage in WT mice fed with HFD and normal chow .....52 Figure 10. Experimental design of constant dark experiments .....53 Figure 11. gut microbiome profile of WT mice housed under DD fed with HFD .....54 Figure 12. Oscillating OTUs percentage in WT mice fed with HFD .....55 Figure 13. Gut microbiome profile and oscillating OTUs percentage of Brn3bZ-DTA mice ...56 Figure 14. Experimental design of Bmal1fx/fx mice .....57 Figure 15. Dissection of brain slice with target of the SCN from Bmal1fx/fx mice .....58 Figure 16. The actogram of the Bmal1fx/fx mice with the injection of CRE virus .....59 Figure 15. Gut microbiome profile and oscillating OTUs percentage of Bmal1fx/fx mice injected with GFP into SCN as control group .....60 Figure 16. Gut microbiome profile and oscillating OTUs percentage of Bmal1fx/fx mice injected with CRE and GFP into SCN to knock out the central clock .....61 Tables .....62 Appendix I codes used for 16S metagenomic analysis .....63 Appendix II Absteact and Poster .....64 | |
| dc.language.iso | en | |
| dc.subject | 腸道菌 | zh_TW |
| dc.subject | 夜晚光線 | zh_TW |
| dc.subject | 生理時鐘 | zh_TW |
| dc.subject | 自主感光神經節細胞 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | gut microbiome | en |
| dc.subject | dim light at night | en |
| dc.subject | circadian rhythm | en |
| dc.subject | ipRGCs | en |
| dc.subject | NGS | en |
| dc.title | 外在光線影響身體代謝以及腸道菌相 | zh_TW |
| dc.title | External light influences metabolic status and gut microbiome profile | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周銘翊(Ming-Yi Chou),江皓森(Hao-Sen Chiang),楊世斌(Shi-Bing Yang) | |
| dc.subject.keyword | 腸道菌,夜晚光線,生理時鐘,自主感光神經節細胞,次世代定序, | zh_TW |
| dc.subject.keyword | gut microbiome,dim light at night,circadian rhythm,ipRGCs,NGS, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202000653 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-03-02 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
