請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64166
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊永斌 | |
dc.contributor.author | Hung-Yi Chang | en |
dc.contributor.author | 張宏毅 | zh_TW |
dc.date.accessioned | 2021-06-16T17:33:01Z | - |
dc.date.available | 2013-08-19 | |
dc.date.copyright | 2012-08-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-15 | |
dc.identifier.citation | 參考文獻
Bettess, P. (1977) “Infinite element,” Internal journal for numerical methods in engineering, 11: 53-64. Cattaneo, C. (1958), “A Form of heat-conduction equations which eliminates the paradox of instantaneous propagation,” Comptes Rendus, 247: 431. Deaconu, V. (2007), “Finite Element Modelling of Residual Stress – A Powerful Tool in the Aid of Structural Integrity Assessment of Welded Structures, ” 5th Int Conference Structural Integrity of Welded Structures (ISCS2007), 1-9. Demidem, M. (2005), “Analysis of heat transfer problems by coupling of finite and infinite element,” Application of Codes, Design and Regulations, 375-383 Goldak, J.A., Chakravarti, A., and Bibby, M. (1984), “A New Finite Element Model for Welding Heat Sources,” Metallurgical Trans B, 15(B): 299-305. Holman, J.P., Heat transfer, 10th ed. (Boston: McGraw Hill, 2010) Hung, H. H., and Yang, Y. B. (2001). “Elastic waves in visco-elastic half-space generated by various vehicle loads,” Soil Dyn. Earthquake Eng., 21(1): 1–17. Lindgren, L.E., (2001), “Finite Element Modeling and Simulation of Welding. Part 1: Increased Compexity,” Journal of Thermal Stresses, 24: 141-192. Maurer, M.J., (1969). “Relaxation model for heat conduction in metals,” Journal of Applied Physics, 40(13): 5123-5130. Rathore, M. M. and Kapuno, R. R. A. Jr., Engineering heat transfer, 2nd ed. (Sudbury, MA: Jones & Bartlett Learning, 2011) Vernotte, P. (1958), “The true heat equation,” Comptes Rendus, 247: 2103. Yang, Y. B., and Hung, H. H. (2001a). “A 2.5D finite/infinite element approach for modeling visco-elastic bodies subjected to moving loads,” Int. J. Numer. Methods Eng., 51(11): 1317–1336. Yang, Y. B., Hung, H. H., and Chang, D. W. (2003). “Train-induced wave propagation in layered soils using finite/infinite element simulation,” Soil Dyn. Earthquake Eng., 23(4): 263–278. Yu, N., Imatani, S., and Inoue, T. (2004), “Characteristics of Temperature Field due to Pulsed Heat Input Calculated by Non-Fourier Heat Conduction Hypothesis,” JSEM Int. J., Ser. A, 47(4): 574-580 Yu, N., Imatani, S., and Inoue, T. (2006), “Hypothesis Thermoelastic Analysis due to Pulsed Input by Numerical Simulation,” JSEM Int. J., Ser. A, 49(2): 180-187 Zhao, C., and Valliappan, S. (1993), “Mapped transient infinite elements for heat transfer problems in infinite media,” Computer Methods in Applied Mechanics and Engineering, 180: 119-131. 高任璋(2009),“地下捷運引致之地表震動”,國立台灣大學土木工程研究所碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64166 | - |
dc.description.abstract | 摘要
本研究為熱傳問題,範圍包跨了傳統傅立葉熱傳及非傅立葉熱傳。隨著科技的進步,電子設備或元件的散熱問題,雷射切割或加熱等精密工業也逐漸受到重視。在某些情況下,傳統熱傳理論已發現不足之處。因此,產生了有別於傳統的非傅立葉熱傳理論。這個理論將熱之傳播考慮成有波動的特性,此特性引起了本研究的動機。經常需接觸地表震動模擬問題的土木系,對於波傳問題已經有很多相當不錯的分析模擬數值方法。為此,有鑑於非傅立葉熱傳的波傳特性,本研究即謀運用波傳的方法,分析熱傳問題。 本文援用了由Yang 和Hung(2001a)所提出的土壤與結構互制之數值分析方法,將之應用於熱傳分析上。首先對熱傳理論部分做充分探討,並提出熱傳無限元素的假設,和其他文獻作比較。接著採用一較簡單的彈性半無限域問題的解析解(洪,2000),和其他文獻的2維熱傳分析結果作比較,證實此方法經過修正之後,是可以達到相同的結果。隨後模擬了單一移動熱載,將3維問題以2.5維解析解方法處理,藉改變熱載移動速度與熱傳播速度之比,可得出許多不一樣的結果。同時也依據2.5維有限元素與無限元素混和分析法(Yang and Hung 2001a),將熱傳2.5維的矩陣公式給架構出來。最後根據本文各章節模擬的結果,提出一些結論,同時附上建議與不足之處。 | zh_TW |
dc.description.abstract | Abstract
Temperature is an important factor in engineering applications. To solve the temperature distribution of solids or structures, heat transfer analysis based on Fourier’s law has frequently been adopted. With the development of science and technology, heating technologies are applied more widely and more precisely, for example in problems involving laser beams and welding. However, it was found that, in some practical applications such as laser beams with short pulse or heat loads with rapid changes, heat transfer analysis using the traditional Fourier heat equation can result in large errors. Therefore, it was suggested that the traditional Fourier heat equation should be replaced with a non-Fourier heat equation to account for the finite thermal propagation speed. In this study, we will use the 2.5D finite/infinite element procedure (Yang and Hung, 2001a) for dealing with non-Fourier heat conduction problems. Originally, the 2.5D finite/infinite element procedure was proposed for dealing with ground vibrations induced by moving loads. At a first glance, there is no relationship between the mechanics and thermal problems. In fact, ground vibrations are the cause of traditional wave propagation problems, while the non-Fourier heat conduction is governed by the hyperbolic equation, which exhibits wave-like behavior. Thus, the two types of problems share similar nature, and can be treated by similar means. Finally, we will show the analysis results obtained by the model used, along with some conclusions and recommendations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:33:01Z (GMT). No. of bitstreams: 1 ntu-101-R99521212-1.pdf: 2204149 bytes, checksum: fa5c7ab13605cc5a899f781e3107cdab (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
誌謝………………………………………………………………………………. I 摘要………………………………………………………………………………. III Abstract…..….…….……………………………………………………………… V 目錄………………………………………………………………………………. VII 圖目錄……………………………………………………………………………. XI 第一章 導論…………………………………………………………………... 1 1.1研究背景……………………………………………………………….. 1 1.2動機目的……………………………………………………………….. 1 1.3論文架構……………………………………………………………….. 3 第二章 熱傳基本理論………………………………………………………... 5 2. 1導論─熱傳概觀……………………………………………………….. 5 2.2熱傳基礎理論………………………………………………………….. 6 2.2.1熱傳三大機制……………………………………………………. 6 2.2.2傳導………………………………………………………………. 6 2.2.3邊界條件…………………………………………………………. 9 2.3文獻回顧……………………………………………………………….. 11 第三章 有限元素與無限元素混和分析法……………………………….….. 15 3.1導論………………………………………………………………….…. 15 3.2有限元素…………………………………………………………….…. 15 3.2.1強型(strong form)表示式…………………………………….….. 15 3.2.2弱型(weak form)表示式………………………………………… 17 3.2.3小結………………………………………………………………. 19 3.3無限元素……………………………………………………………….. 20 3.3.1一般熱傳處理無限消散的方式…………………………………. 20 3.3.2無限元素形狀函數(shape functions)和映射函數(mapping functions) ………………………………………………………………….... 21 3.4混和分析法之應用…………………………………………………….. 24 3.4.1例題說明…………………………………………………………. 24 3.4.2收斂性分析………………………………………………………. 25 3.4.3混合元素分析……………………………………………………. 26 3.4.4小結………………………………………………………………. 31 第四章 單一熱載於無限熱導體之半解析解………………………………... 33 4.1導論…………………………………………………………………….. 33 4.2無因次表示…………………………………………………………….. 33 4.2.1傅立葉熱傳無因次表示…………………………………………. 34 4.2.2非傅立葉熱傳無因次表示………………………………………. 35 4.2.3小結………………………………………………………………. 35 4.3單一熱載於無限熱導體半解析解之推導…………………………….. 36 4.4時間域有限元素法與頻率域半解析解之例題比較………………….. 38 4.4.1例題設定…………………………………………………………. 38 4.4.2時間域有限元素法………………………………………………. 41 4.4.3時間域有限元素法v.s頻率域半解析解………………………... 45 4.4.4時間域有限無限元素法……………………………………..…... 49 4.5結論…………………………………………………………………….. 50 第五章 2.5維分析方法………………………………………………………. 51 5.1導論…………………………………………………………………….. 51 5.2頻率域分析方法……………………………………………………….. 51 5.2.1頻率域有限元素…………………………………………………. 51 5.2.2時間域有限元素v.s頻率域有限元素………………………….. 53 5.3移動熱載於無限熱導體半解析解之推導…………………………….. 56 5.4 2.5維有限與無限元素分析法………………………………………… 59 5.5 2.5維分析例題..……………………………………………………….. 63 5.6結論…………………………………………………………………….. 70 第六章 結論與未來展望………………………………………………….….. 71 6.1總結論………………………………………………………………….. 71 6.1.1無限元素部分……………………………………………………. 71 6.1.2熱傳部分…………………………………………………………. 71 6.2未來展望……………………………………………………………….. 72 附錄..……………………………………………………………………………. 75 參考文獻..………………………………………………………………….…… 77 簡歷..……………………………………………………………………………. 81 圖目錄 圖2.1 2D熱平衡示意圖……………………………………………………..... 7 圖2.2 對流邊界示意圖………………………………………………….….…. 10 圖3.1 邊界條件示意圖………………………………………………………... 16 圖3.2 1D穩態熱傳示意圖……………………………………………………. 20 圖3.3 有限無限元素連接示意圖:(a) Q4加無限元素只考慮近端,(b) Q4加無限元素考慮遠端節點,(c) Q8加無限元素只考慮近端,(d) Q8加無限元素考慮遠端節點……………………………………………………………………………. 21 圖3.4 無限元素映射之座標圖………………………………………………... 22 圖3.5 例題邊界條件:(a) Case (1)單邊100度,(b) Case (2)雙邊100度.… 24 圖3.6 收斂圖:(a) Case (1),(b) Case (2)……………………………………. 25 圖3.7 元素分佈模型示意圖:(a)有限元素,(b)有限無限元素…………….. 26 圖3.8 (a)Case(1)有限3D溫度分佈圖,(b)Case(1)有限加無限3D溫度分佈圖 ……………………………………………………………………………………. 27 圖3.9 Case(1)有限斷面溫度圖……………………………………………...… 28 圖3.10 Case(1)有限加無限斷面溫度圖(比例4/16)………………………….. 28 圖3.11 Case(1)有限加無限斷面溫度圖(比例6/16)………………………….. 28 圖3.12 (a)Case(2)有限3D溫度分佈圖,(b)Case(2)有限加無限3D溫度分佈圖 ……………………………………………………………………………………. 29 圖3.13 Case(2)有限斷面溫度圖………………………………………………. 30 圖3.14 Case(2)有限加無限斷面溫度圖(y=4m)………………………………. 30 圖3.15 Case(2)有限加無限斷面溫度圖(y=7m)…………………………….. 30 圖4.1 無限域加載示意圖……………………………………………………… 36 圖4.2 參數座標圖……………………………………………………………… 39 圖4.3 邊界條件………………………………………………………………… 40 圖4.4 非傅立葉熱傳無因次溫度歷時圖………………………………… 42 圖4.5 傅立葉熱傳無因次溫度歷時圖…………………………………… 42 圖4.6 非傅立葉熱傳無因次溫度歷時圖………………………………… 44 圖4.7 傅立葉熱傳無因次溫度歷時圖…………………………………… 44 圖4.8 分析區域示意圖:(a)有限元素,(b)半解析解………………………... 45 圖4.9 時間域有限元素法………………………………………………….…... 47 圖4.10 半解析解……………………………………………………………….. 47 圖4.11 非傅立葉熱傳………………………………………………………….. 48 圖4.12 傅立葉熱傳…………………………………………………………….. 48 圖4.13 分析區域示意圖:(a)有限無限元素,(b)半解析解………………….. 49 圖4.14 三種分析結果比較圖………………………………………………….. 50 圖5.1 熱載重脈衝函數………………………………………………………… 54 圖5.2 非傅立葉熱傳(0~2秒)………………………………………………….. 54 圖5.3 傅立葉熱傳(0~2秒)…………………………………………………….. 55 圖5.4 非傅立葉熱傳(0~8秒)………………………………………………….. 55 圖5.5 單一熱載重作用於半無限空間示意圖………………………………… 57 圖5.6 移動熱載重座標圖……………………………………………………… 60 圖5.7 :(a)傅立葉熱傳,(b)非傅立葉熱傳………………………. 64 圖5.8 例子(1) :(a)傅立葉熱傳,(b)非傅立葉熱傳………………… 65 圖5.9 例子(2) :(a)傅立葉熱傳,(b)非傅立葉熱傳………………… 65 圖5.10 例子(3) :(a)傅立葉熱傳,(b)非傅立葉熱傳……………….. 66 圖5.11 例子(4) :(a)傅立葉熱傳,(b)非傅立葉熱傳……………….. 67 圖5.12 例子(5) :(a)傅立葉熱傳,(b)非傅立葉熱傳……………….. 67 圖5.13 例子(2) 非傅立葉熱傳3D溫度分佈圖……..……………….. 68 圖5.14 例子(3) 非傅立葉熱傳3D溫度分佈圖……..……………….. 68 圖5.15 例子(4) 非傅立葉熱傳3D溫度分佈圖……..……………….. 69 圖5.16 例子(5) 非傅立葉熱傳3D溫度分佈圖……..……………….. 69 | |
dc.language.iso | zh-TW | |
dc.title | 2.5維非傅立葉法則固體熱傳模擬 | zh_TW |
dc.title | A 2.5D approach for modeling non-Fourier heat conduction of solids subjected to moving heat sources | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭世榮,呂良正,洪曉慧 | |
dc.subject.keyword | 傅立葉熱傳,非傅立葉熱傳,無限元素,2.5維有限元素與無限元素混和分析法, | zh_TW |
dc.subject.keyword | 2.5D procedure,Fourier heat conduction,infinite element,non-Fourier heat conduction, | en |
dc.relation.page | 81 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。