請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64158完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝之真(Chih-Chen Hsieh) | |
| dc.contributor.author | En-Cheng Chang | en |
| dc.contributor.author | 張恩誠 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:32:38Z | - |
| dc.date.available | 2017-08-19 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | 1. Larson, J.W., et al., Single DNA molecule stretching in sudden mixed shear and elongational microflows. Lab on a Chip, 2006. 6(9): p. 1187-1199.
2. Chan, E.Y., et al., DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Research, 2004. 14(6): p. 1137-1146. 3. Watari, N., et al., Simulation of DNA motion in a microchannel using stochastic rotation dynamics. Journal of Chemical Physics, 2007. 126(9). 4. Lehtola, V.V., R.P. Linna, and K. Kaski, Unforced polymer translocation compared to the forced case. Physical Review E, 2010. 81(3). 5. Chen, Y.L., et al., Conformation and dynamics of single DNA molecules in parallel-plate slit microchannels. Physical Review E, 2004. 70(6). 6. Teraoka, I., Polymer Solutions: An Introduction to Physical Properties, 2002. 7. Hiemenz, P.C. and T. Lodge, Polymer chemistry2007, Boca Raton: CRC Press. 8. Rouse, P.E., A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers. Journal of Chemical Physics, 1953. 21(7): p. 1272-1280. 9. Zimm, B.H., Dynamics of Polymer Molecules in Dilute Solution - Viscoelasticity, Flow Birefringence and Dielectric Loss. Journal of Chemical Physics, 1956. 24(2): p. 269-278. 10. Brochard, F. and P.G. de Gennes, Dynamics of Confined Polymer Chains. Journal of Chemical Physics, 1977. 67(1): p. 52-56. 11. Odijk, T., Scaling theory of DNA confined in nanochannels and nanoslits. Physical Review E, 2008. 77(6). 12. Odijk, T., On the Statistics and Dynamics of Confined or Entangled Stiff Polymers. Macromolecules, 1983. 16(8): p. 1340-1344. 13. Graham, M.D., Fluid Dynamics of Dissolved Polymer Molecules in Confined Geometries. Annual Review of Fluid Mechanics, Vol 43, 2011. 43: p. 273-298. 14. Hsieh, C.C., A. Balducci, and P.S. Doyle, An experimental study of DNA rotational relaxation time in nanoslits. Macromolecules, 2007. 40(14): p. 5196-5205. 15. Rubinstein, M. and R.H. Colby, Polymer Physics2003: Oxford University Press. 16. Ladd, A.J.C., R. Kekre, and J.E. Butler, Comparison of the static and dynamic properties of a semiflexible polymer using lattice Boltzmann and Brownian-dynamics simulations. Physical Review E, 2009. 80(3). 17. Yeomans, J.M., Mesoscale simulations: Lattice Boltzmann and particle algorithms. Physica a-Statistical Mechanics and Its Applications, 2006. 369(1): p. 159-184. 18. Pagonabarraga, I., M.H.J. Hagen, and D. Frenkel, Self-consistent dissipative particle dynamics algorithm. Europhysics Letters, 1998. 42(4): p. 377-382. 19. Malevanets, A. and R. Kapral, Mesoscopic model for solvent dynamics. Journal of Chemical Physics, 1999. 110(17): p. 8605-8613. 20. Malevanets, A. and R. Kapral, Solute molecular dynamics in a mesoscale solvent. Journal of Chemical Physics, 2000. 112(16): p. 7260-7269. 21. Malevanets, A. and J.M. Yeomans, Dynamics of short polymer chains in solution. Europhysics Letters, 2000. 52(2): p. 231-237. 22. Gotze, I.O., H. Noguchi, and G. Gompper, Relevance of angular momentum conservation in mesoscale hydrodynamics simulations. Physical Review E, 2007. 76(4). 23. Frenkel, D. and B. Smit, Understanding molecular simulation : from algorithms to applications1996, San Diego: Academic Press. 24. Mussawisade, K., et al., Dynamics of polymers in a particle-based mesoscopic solvent. Journal of Chemical Physics, 2005. 123(14). 25. Balducci, A., C.C. Hsieh, and P.S. Doyle, Relaxation of stretched DNA in slitlike confinement. Physical Review Letters, 2007. 99(23). 26. Tang, J., et al., Revisiting the Conformation and Dynamics of DNA in Slitlike Confinement. Macromolecules, 2010. 43(17): p. 7368-7377. 27. Lin, P.K., et al., Partial hydrodynamic screening of confined linear and circular double-stranded DNA dynamics. Physical Review E, 2011. 84(3). 28. Jendrejack, R.M., et al., Effect of confinement on DNA dynamics in microfluidic devices. Journal of Chemical Physics, 2003. 119(2): p. 1165-1173. 29. Hegde, G.A., et al., Conformation and diffusion behavior of ring polymers in solution: A comparison between molecular dynamics, multiparticle collision dynamics, and lattice Boltzmann simulations. Journal of Chemical Physics, 2011. 135(18). 30. Doyle, P.S. and D.W. Trahan, Simulating the Relaxation of Stretched DNA in Slitlike Confinement. Macromolecules, 2011. 44(2): p. 383-392. 31. Haile, J.M., Molecular dynamics simulation : elementary methods1992, New York: Wiley. 32. Ihle, T. and D.M. Kroll, Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow. Physical Review E, 2001. 63(2): p. 020201. 33. Allahyarov, E. and G. Gompper, Mesoscopic solvent simulations: Multiparticle-collision dynamics of three-dimensional flows. Physical Review E, 2002. 66(3). 34. Tuzel, E., et al., Transport coefficients for stochastic rotation dynamics in three dimensions. Physical Review E, 2003. 68. 35. Kikuchi, N., et al., Transport coefficients of a mesoscopic fluid dynamics model. Journal of Chemical Physics, 2003. 119(12): p. 6388-6395. 36. Ripoll, M., et al., Dynamic regimes of fluids simulated by multiparticle-collision dynamics. Physical Review E, 2005. 72(1): p. 016701. 37. Lamura, A. and G. Gompper, Numerical study of the flow around a cylinder using multi-particle collision dynamics. European Physical Journal E, 2002. 9(5): p. 477-485. 38. Lamura, A., et al., Multi-particle collision dynamics: Flow around a circular and a square cylinder. Europhysics Letters, 2001. 56(3): p. 319-325. 39. Reid, D.A.P., et al., Flow around fishlike shapes studied using multiparticle collision dynamics. Physical Review E, 2009. 79(4). 40. Gompper, G., et al., Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids. Advanced Computer Simulation Approaches for Soft Matter Sciences Iii, 2009. 221: p. 1-87. 41. Noguchi, H., N. Kikuchi, and G. Gompper, Particle-based mesoscale hydrodynamic techniques. Epl, 2007. 78(1). 42. De Angelis, E. and M. Chinappi, Confined dynamics of a single DNA molecule. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2011. 369(1944): p. 2329-2336. 43. Yeh, J.-W., et al., Entropy-Driven Single Molecule Tug-of-War of DNA at Micro−Nanofluidic Interfaces. Nano Letters, 2012. 12(3): p. 1597-1602. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64158 | - |
| dc.description.abstract | 我們使用隨機旋轉動力學法(stochastic rotation dynamics,SRD模擬法)配合分子模擬法(molecular dynamics) 模擬DNA在狹縫型侷限通道間的行為,計算DNA於平衡狀態下的靜態與動態性質,並將結果與近年相關的實驗結果相驗證。
SRD模擬法屬於介觀尺度的模擬,經由粗化(coarse-grained)過程可大幅降低系統所需計算的流體粒子數,但仍能精確地模擬單純流體的行為。DNA則以bead-spring model描述,整體系統則以SRD-MD hybrid method模擬DNA分子在流體中的行為。 我們首先以SRD模擬非穩態的Poiseuille flow和Couette flow,再將模擬結果與Navier-Stokes equation之解析解比較,確定SRD模擬之正確性。接著我們再模擬單一DNA在平衡狀態下的鬆弛與擴散情形,驗證理想鏈與真實鏈之DNA本身的環動半徑、鬆弛時間與擴散係數和高分子鏈長的關係符合理論與文獻值。 由於SRD模擬法可簡易地加入或移除DNA分子間的流體動力作用(hydrodynamic interaction),因此我們選取適當長度的DNA置入不受侷限與受侷限的通道中,發現即使在DNA受侷限時,流體動力作用依舊對DNA的行為有不可忽略的影響性。 最後,我們模擬DNA在侷限於平板型狹縫中的行為,其靜態與動態性質和DNA鏈長與侷限強度間的關係與最近發表的實驗結果十分接近,藉此與blob theory比較,確認DNA的虛擬圓球(blob)在侷限通道中受到不完全的流體動力作用影響,虛擬圓球內應為部分排液(partial draining),而非不排液(nondraining)的現象。 | zh_TW |
| dc.description.abstract | We simulate the behavior of DNA in slit-like confinement using stochastic rotation dynamics(SRD) and molecular dynamics hybrid method. We examine the static and dynamic properties of DNA at equilibrium, and make comparison with the recent experimental observation.
SRD is a particle-based mesoscale simulation method which coarse-grains small fluid molecules to large fluid parcels, but it still can simulate the large length scale and long-time scale behavior of pure solvents precisely. The behavior of DNA is simulated using bead-spring model with molecular dynamics. The complex fluid system consists of simple fluid and DNA is then described by the SRD-MD hybrid method. We first verify the ability of SRD to simulate the behavior of simple fluids. The results of SRD for unsteady Poiseuille flow and Couette flow agree perfectly with the theoretical prediction given by the exact solution of the Navier-Stokes equation. Next, we simulate the relaxation and diffusion of single DNA molecule at equilibrium. The scaling between radius of gyration, relaxation time and diffusivity versus DNA length is also in agreement with the theoretical prediction and experimental data. One important feature of SRD is that it can easily “turn” on or off the hydrodynamic interaction between DNA molecules. Using this feature, we discover that the hydrodynamic interaction has significant effects on DNA dynamics, even when DNA is highly confined. This is different from the common anticipation based on polymer physics. Finally, we simulate the behavior of DNA confined in slit-like geometry. The scaling of static and dynamic properties with DNA length and slit height agrees with recently experiment results. We compare the results with blob theory and confirm the blobs in confinement are partial draining, not nondraining. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:32:38Z (GMT). No. of bitstreams: 1 ntu-101-R99524043-1.pdf: 3635586 bytes, checksum: e68eb7144901f765b1645d455294fc2e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 xiii 符號表 xiv 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第2章 文獻回顧 3 2.1 去氧核醣核酸(DNA) 3 2.2 高分子模型 4 2.2.1 理想鏈與真實鏈 4 2.2.2 理想鏈的一維隨機漫步 4 2.2.3 理想鏈的二維及三維隨機漫步 7 2.2.4 理想鏈的尺度 7 2.2.5 Bead-stick model 10 2.2.6 Bead-spring model 11 2.2.7 蠕蟲鏈(Worm-like Chain) 11 2.3 高分子溶液 13 2.3.1 流體動力作用 14 2.3.2 Rouse Model與Zimm model 15 2.3.3 Flory Theory 16 2.3.4 Blob Theory 18 2.4 介觀尺度與其相關之模擬 22 2.4.1 晶格波茲曼模擬法(LB) 23 2.4.2 耗散粒子動力學(DPD) 24 2.4.3 隨機旋轉動力學(SRD) 25 2.5 Velocity Verlet Algorithm 26 2.6 鬆弛時間 28 2.7 相關實驗結果 31 2.8 相關模擬結果 33 第3章 模擬方法 35 3.1 純流體設定 35 3.1.1 SRD粒子 35 3.1.2 質能守恆 36 3.1.3 Grid Shift 39 3.1.4 隨機旋轉矩陣 40 3.1.5 黏度 43 3.2 DNA模型 45 3.3 週期性邊界條件 47 3.4 邊界條件 49 3.5 Thermostat 51 3.5.1 Watari’s Rule 51 3.5.2 Bounce-back Rule 52 3.5.3 Random Reflect Boundary Condition 52 3.5.4 Andersen Thermostat 53 3.6 流體動力作用對高分子運動之影響 54 3.7 在非侷限環境中的DNA動態變化 55 3.8 在侷限環境中的DNA動態變化 55 3.9 參數設定 56 第4章 結果與討論 58 4.1 純流體的性質驗證 58 4.1.1 侷限平板中的Poiseuille flow 59 4.1.2 侷限平板中的Couette flow 60 4.1.3 牆壁格子數之選用 61 4.2 DNA於非侷限環境中之性質驗證 63 4.2.1 結果比較(一) 63 4.2.2 結果比較(二) 68 4.3 流體動力作用對DNA動態的影響 73 4.4 DNA於受侷限環境中之性質變化 78 4.4.1 侷限環境中系統大小之調整 79 4.4.2 兩階段鬆弛現象的可能性 80 4.4.2.1 DNA於不同侷限強度之狹縫型通道中的收縮比較 80 4.4.2.2 通道高度與DNA長度之決定 82 4.5 不同長度之DNA於固定高度之通道內的行為變化 83 4.6 相同長度之DNA於不同高度之通道的行為變化 91 第5章 結論與未來展望 97 5.1 結論 97 5.2 未來展望 98 第6章 參考文獻 100 | |
| dc.language.iso | zh-TW | |
| dc.subject | 流體動力作用 | zh_TW |
| dc.subject | 侷限環境 | zh_TW |
| dc.subject | 虛擬圓球理論 | zh_TW |
| dc.subject | DNA動態行為 | zh_TW |
| dc.subject | 介觀尺度 | zh_TW |
| dc.subject | 隨機旋轉動力學法 | zh_TW |
| dc.subject | SRD-MD混合模擬法 | zh_TW |
| dc.subject | hydrodynamic interaction | en |
| dc.subject | SRD-MD hybrid method | en |
| dc.subject | mesoscale | en |
| dc.subject | blob theory | en |
| dc.subject | DNA | en |
| dc.subject | slit-like confinement | en |
| dc.subject | stochastic rotation dynamics | en |
| dc.title | 以隨機旋轉動力學法模擬侷限於二維狹縫中DNA之行為 | zh_TW |
| dc.title | Simulating DNA Confined in Slit-like Geometry Using Stochastic Rotation Dynamics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 諶玉真(Yu-Jane Sheng),林祥泰(Shiang-Tai Lin),曹恆光(Heng-Kuang Tsao),陳儀帆(Yi-Fan Chen) | |
| dc.subject.keyword | 隨機旋轉動力學法,SRD-MD混合模擬法,介觀尺度,DNA動態行為,虛擬圓球理論,侷限環境,流體動力作用, | zh_TW |
| dc.subject.keyword | stochastic rotation dynamics,SRD-MD hybrid method,mesoscale,blob theory,DNA,slit-like confinement,hydrodynamic interaction, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
