Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64143
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬
dc.contributor.authorSiao-Huei Yien
dc.contributor.author易筱蕙zh_TW
dc.date.accessioned2021-06-16T17:31:52Z-
dc.date.available2017-08-18
dc.date.copyright2012-08-18
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation林筑蘋 (2009) 亞磷酸誘導植物抗病機制之初探. 國立台灣大學植物病理與微生物學研究所碩士論文
Ann, P.J., Tsai, J.N. , Wong, I.T., Hsieh T.F. and Lin, C.Y. (2009) A simple technique, concentration and application schedule for using Neutralized Phosphorous Acid to control Phytophthora Diseases. Plant Pathology Bulletin 18: 155-165.
Alexander, D, Goodman, R.M., Gut-Rella, M., et al. (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proceedings of the National Academy of Sciences of the United States of America 9015: 7327–7331.
Beinker, P., Lohkamp, B., Peltonen, T., Niemi, J., Mantsala, P. and Schneider, G. (2006) Crystal structures of SnoaL2 and AclR: two putative hydroxylases in the biosynthesis of aromatic polyketide antibiotics. Journal of Molecular Biology 359: 728–740.
Bernier F. and Berna A. (2001) Germins and germin-like proteins: Plant do-all proteins. But what do they do exactly? Plant Physiology and Biochemistry 39: 545–554.
Bohlmann, H. and Broekaert, W. (1994) The role of thionins in plant protection. Critical Reviews in Plant Sciences 13: 1–16.
Bol, J.F., Linthorst, H.J.M. and Cornelissen, B.J.C. (1990) Plant pathogenesis-related proteins induced by virus infection. Annual Review of Phytopathology 28: 113–138.
Bolwell, P.P., Page, A., Piślewska, M. and Wojtaszek, P. (2001) Pathogenic infection and the oxidative defences in plant apoplast. Protoplasma, 217: 20–32.
Bostock, R.M. (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annual Review of Phytopathology 43: 545–580.
Boyle, B. and Brisson, N. (2001) Repression of the defense gene PR-10a by the single-stranded DNA binding protein SEBF. The Plant Cell 13: 2525–2538.
Boyle, P. and Despres, C. (2010) Dual-function transcription factors and their entourage: Unique and unifying themes governing two pathogenesis-related genes. Plant Signaling and Behavior 5: 629–634.
Bradford, M.M. (1976) Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.
Brogue, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C.J. and Broglie, R. (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia Solani. Science 254: 1194–1197.
Chen, C. and Chen, Z. (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiology 129: 706–716.
Chisholm, S.T., Coaker, G., Day, B. and Staskawicz, B.J. (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell : 803–814.
Christensen, A.B., Cho, B.H., Nasby, M., Gregersen, P.L., Brandt, J., Madriz‐Ordenana, K., Collinge, D.B. and Thordal‐Christensen, H. (2002) The molecular characterization of two barley proteins establishes the novel PR‐17 family of pathogenesis‐related proteins. Molecular Plant Pathology 3: 135–144.
Coffey, M.D. (1985) Effects of phosphorous acid and fosetyl-Al on the life cycle of Phytophthora cinnamomi and P. citricola. Phytopathology 75: 1042.
Cohen, Y. and Coffey, M.D. (1986) Systemic fungicides and the control of oomycetes. Annual Review of Phytopathology 24: 311–338.
Daniel, R. and Guest, D. (2006) Defence responses induced by potassium phosphonate in Phytophthora palmivora challenged Arabidopsis thaliana. Physiological and molecular plant pathology 67: 194–201.
Deslandes, L., Olivier, J., Theulieres, F., Hirsch, J., Feng, D.X., Bittner-Eddy, P., Beynon, J. and Marco, Y. (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proceedings of the National Academy of Sciences 99: 2404–2409.
Dorais, M., Ehret, D. and Papadopoulos, A. (2008) Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochemistry Reviews 7: 231–250.
Eshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G.E. and O’Brien, P.A. (2011) Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology 60: 1086–1095.
Force, Allan, Lynch, Michael, Pickett, F.B., Amores, A., Yan, Y.-L.and Postlethwait, J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545.
Garcia-Olmedo, F., Molina, A., Segura, A. and Moreno, M. (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends in Microbiology 3: 72–74.
Gomez-Gomez, L. and Boller, T. (2002) Flagellin perception: a paradigm for innate immunity. Trends in Plant Science 7: 251–256.
Green, T.R. and Ryan, C.A. (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175: 776–777.
Grimault, V., Anais, G. and Prior, P. (2007) Distribution of Pseudomonas solanacearum in the stem tissues of tomato plants with different levels of resistance to bacterial wilt. Plant Pathology 43: 663–668.
Guest, D.I. (1986) Evidence from light microscopy of living tissues that Fosetyl-Al modifies the defence response in tobacco seedlings following inoculation by Phytophthora nicotianae var nicotianae. Physiological and Molecular Plant Pathology 29: 251–261.
Heaton, J. and Dullahide, S. (1990) Efficacy of phosphonic acid in other host pathogen systems. Australasian Plant Pathology 19: 133–134.
Hennin C., Diederichsen E. and Hofte M. (2001) Local and systemic resistance to fungal pathogens triggered by an AVR9-mediated hypersensitive response in tomato and oilseed rape carrying the Cf-9 resistance gene. Physiological and Molecular Plant Pathology 59: 287–295.
Hernandez-Blanco, C., Feng, D.X., Hu, J., et al. (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. The Plant Cell 19: 890–903.
Hirsch, J., Deslandes, L., Feng, D.X., Balague, C. and Marco, Y. (2002) Delayed symptom development in ein2-1, an Arabidopsis ethylene-insensitive mutant, in response to bacterial wilt caused by Ralstonia solanacearum. Phytopathology 92: 1142–1148.
Iriti, M. and Faoro, F. (2009) Chitosan as a MAMP, searching for a PRR. Plant Signaling and Behavior 4: 66–68.
Jackson, Burgess, Colquhoun and Hardy (2001) Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology 49: 147–154.
Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO journal 6: 3901.
Jones, J.D.G. and Dangl, J.L. (2006) The plant immune system. Nature 444: 323–329.
Jutidamrongphan, W., Mackinnon, G., Manners, J.M. and Scott, K.J. (1989) Sequence of a near-full length cDNA clone for a mRNA of barley induced by fungal infection. Nucleic Acids Research 17: 9478.
Kallio, P., Sultana, A., Niemi, J., Mantsala, P. and Schneider, G. (2006) Crystal structure of the polyketide cyclase AknH with bound substrate and product analogue: implications for catalytic mechanism and product stereoselectivity. Journal of Molecular Biology 357: 210–220.
Kawamura, Y., Hase, S., Takenaka, S., Kanayama, Y., Yoshioka, H., Kamoun, S. and Takahashi, H. (2009) INF1 elicitin activates jasmonic acid and ethylene-mediated signalling pathways and induces resistance to bacterial wilt disease in tomato. Journal of Phytopathology 157: 287–297.
Kelley, L.A. and Sternberg, M.J.E. (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4: 363–371.
Kotchoni, S.O. and Gachomo, E.W. (2006) The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. Journal of biosciences 31: 389–404.
Lay, F.T. and Anderson, M.A. (2005) Defensins-components of the innate immune system in plants. Current Protein and Peptide Science 6: 85–101.
Loon, L. Van, Pierpoint, W., Boller, TH and Conejero, V. (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biology Reporter 12: 245–264.
Loon, L.C. Van and Kammen, A. Van (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”: II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40: 199–211.
Loon, L.C. van, Rep, M. and Pieterse, C.M.J. (2006) Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44: 135–162.
Loon, L.C. Van and Strien, E.A. Van (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology 55: 85–97.
Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B. and Ton, J. (2011) Callose deposition: a multifaceted plant defense response. Molecular Plant-Microbe Interactions 24: 183–193.
Luo, H., Song, F., Goodman, R.M. and Zheng, Z. (2005) Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biology 7: 459–468.
Lynch, M, O’Hely, M., Walsh, B. and Force, A. (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159: 1789–1804.
Martin, J.T. (1964) Role of cuticle in the defense against plant disease. Annual Review of Phytopathology 2: 81–100.
Molina, A., Hunt, M.D. and Ryals, J.A. (1998) Impaired fungicide activity in plants blocked in disease resistance signal transduction. The Plant Cell 10: 1903–1914.
Norman, D.J., Chen, J., Yuen, J.M.F., Mangravita-Novo, A., Byrne, D. and Walsh, L. (2006) Control of bacterial wilt of geranium with phosphorous acid. Plant disease 90: 798–802.
Oka, Y., Tkachi, N. and Mor, M. (2007) Phosphite inhibits development of the nematodes Heterodera avenae and Meloidogyne marylandi in cereals. Phytopathology 97: 396–404.
Park, C., Kim, K., Shin, R., Park, J.M., Shin, Y. and Paek, K. (2004) Pathogenesis‐related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. The Plant Journal 37: 186–198.
Park, C.-J., An, J.-M., Shin, Y.-C., Kim, K.-J., Lee, B.-J. and Paek, K.-H. (2004) Molecular characterization of pepper germin-like protein as the novel PR-16 family of pathogenesis-related proteins isolated during the resistance response to viral and bacterial infection. Planta 5: 219
Passardi, F., Penel, C. and Dunand, C. (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Science 9: 534–540.
Pushin, A.S., Firsov, A.P., Dolgov, S.V., Monakhos, G.F., Motamedi Shalamzari, A., Dzhalilov, F.S., Korneeva, I.V. and Varlamova, N.V. (2010) Transgenic tomato plants expressing PR-5 protein genes demonstrated disease resistance against Phytophthora infestans and Xanthomonas vesicatoria. In III International Symposium on Tomato Diseases 914: 415–418.
Ragsdale, S.W. (2006) Nickel enzymes and cofactors. In Encyclopedia of Inorganic Chemistry.
Sels, J., Mathys, J., Coninck, B. M. A. De, Cammue, B. P. A. and Bolle, M. F. C. De, (2008) Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiology and Biochemistry 46: 941–950.
Shi, X., Tian, Z., Liu, J., Vossen, E.A.G. and Xie, C. (2011) A potato pathogenesis-related protein gene, StPRp27, contributes to race-nonspecific resistance against Phytophthora infestans. Molecular Biology Reports 39: 1909–1916.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.
Thomma, B. P. H. J., Penninckx, I. A. M. A., Cammue, B. and Broekaert, W. F. (2001) The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology 13: 63–68.
Tonon, C., Guevara, G., Oliva, C. and Daleo, G. (2002) Isolation of a potato acidic 39 kDa β‐1,3‐glucanase with antifungal activity against Phytophthora infestans and analysis of its expression in potato cultivars differing in their degrees of field resistance. Journal of Phytopathology 150: 189–195.
Tornero, P., Gadea, J., Conejero, V. and Vera, P. (1997) Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Molecular plant-microbe interactions 10: 624–634.
VanEtten, H.D., Matthews, D.E. and Matthews, P.S. (1989) Phytoalexin detoxification: importance for pathogenicity and practical implications. Annual Review of Phytopathology 27: 143–164.
Vleeshouwers, V.G.A.., Dooijeweert, W. Van, Govers, F., Kamoun, Sophien and Colon, L.T. (2000) Does basal PR gene expression in Solanum species contribute to non-specific resistance toPhytophthora infestans ? Physiological and Molecular Plant Pathology 57: 35–42.
Wang, W., Barnaby, J.Y., Tada, Y., Li, H., Tor, M., Caldelari, D., Lee, D., Fu, X.-D.and Dong, X. (2011) Timing of plant immune responses by a central circadian regulator. Nature 470: 110–114.
Ward, ER, Uknes, S., Williams, S., Dincher, S., Wiederhold, D., Alexander, DC, Ahl-Goy, P., Metraux, J. and Ryals, J. (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. The Plant Cell 3: 1085–1094.
Xu, P., Blancaflor, E.B. and Roossinck, M.J. (2003) In spite of induced multiple defense responses, tomato plants infected with Cucumber mosaic virus and D satellite RNA succumb to systemic necrosis. Molecular plant-microbe interactions 16: 467–476.
Yu, D., Chen, C. and Chen, Z. (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell 13: 1527–1540.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64143-
dc.description.abstract亞磷酸處理番茄後能誘導植物產生防禦反應,並有效抵抗疫病菌 (Phytophthora parasitica)侵染,為瞭解亞磷酸啟動抗病反應的相關機制,本實驗室先前以生物晶片進行基因表現分析,結果發現亞磷酸處理可誘導許多pathogenesis-related genes的表現,其中包括一未知功能之putative PR protein (命名為NPA-induced pathogenesis-related protein a, NIPRa),本研究之目的在探討NIPRa的功能與特性。除了NIPRa,番茄另含有NIPRb基因,在基因組中位於NIPRa下游,與NIPRa胺基酸序列之相似度高達87.5 %。此外,於其他物種也可發現NIPRa同源性序列,範圍遍及動物、細菌、藻類、卵菌及真菌,但功能都尚未明瞭。經亞磷酸處理植物或以疫病菌及青枯病菌 (Ralstonia solanacearum)感染植物後,NIPRa表現量都會明顯上升;水楊酸及乙烯也會誘導NIPRa表現。利用PVX病毒載體在番茄植株中系統性表現NIPRa後,可使番茄植株對疫病菌及青枯病菌的耐病力都略為提升,若以TRV-induced gene silencing靜默番茄NIPRa之基因表現後,再接種病原菌,也可觀察到番茄植株對於疫病菌及青枯病菌之感病度都較為增加,顯示NIPRa參與在番茄抵抗這兩種病原菌的防禦反應中。為探討哪些序列參與NIPRa基因之轉錄調控,我們以GUS為報導基因,應用agroinfiltration技術在菸草葉片進行NIPRa之啟動子分析,結果顯示轉譯起始點上游248 bp至599 bp之序列區間可能包含重要的基因表現調控序列。此外,以細菌大量表現NIPRa重組蛋白,並進行圓二色光譜分析的結果顯示,其結構中近70 % 為α-helix,且於pH 7-8時,二級結構最穩定,Tm值則為60 oC。由於純化之重組蛋白呈現綠色,且加入EDTA會影響其構型,推測NIPRa重組蛋白極可能嵌合著金屬離子;進一步進行ICP-MS分析發現,NIPRa重組蛋白所嵌合之離子可能為鎳離子。本實驗為首度針對NIPRa蛋白之功能與特性所進行的研究,其在植物細胞之作用方式及在植物生理所扮演的角色尚待進一步的釐清。zh_TW
dc.description.abstractPhosphonate-based fungicides such as neutralized phosphorous acid (NPA) are known to induce plant resistance against many diseases, including those caused by Phytophthora. To investigate the mechanism underlying NPA-induced resistance, we previously performed a microarray analysis and found that a variety of defense genes were induced in response to NPA treatment on tomato plants. Among them, one gene (named NPA-induced pathogenesis-related protein a, NIPRa), which showed homology to a putative pathogenesis-related (PR) gene in barley, is significantly induced but functionally unknown. Hence, the aim of this study is to uncover the characteristics of NIPRa. Analysis by semi-quantitative reverse transcriptase-PCR indicated that expression of NIPRa was induced when plants were challenged with either P. parasitica or the bacteria wilt pathogen Ralstonia solanacearum. NIPRa was up-regulated by salicylic acid and ethylene treatment as well. To test whether NIPRa contributes to plant resistance against pathogens, we overexpressed NIPRa by PVX agroinfection, and then challenged the plants with either P. parasitica or R. solanacearum. Plants overexpressing NIPRa showed higher tolerance to infection by these pathogens. In contrast, down-regulation of NIPRa by TRV-induced gene silencing increased plant susceptibility to pathogen infection. In addition, the promoter of NIPRa gene was analyzed by agroinfiltration of tobacco leaves, using GUS as a reporter, to define sequence elements that are required for P. parasiticaresponse. The result showed that a 351-bp region between 248 and 599 bp upstream of NIPRa translation start site was essential for induction by P. parasitica. Furthermore, the NIPRa recombinant protein purified from E. coli showed green color and tended to form dimers to polymers when analyzed by gel filtration. Analysis by ICP-MS indicated that it is most likely a metalloprotein associated with nickel ion. These results suggested that NIPRa may represent a novel category of PR protein, yet its function needs further investigation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:31:52Z (GMT). No. of bitstreams: 1
ntu-101-R98633017-1.pdf: 3096624 bytes, checksum: 12529e3e9915208f65abbec1aff8529f (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
壹、前言 1
1、 番茄簡介 1
2、 植物防禦反應 (Plant defense response) 1
3、 Pathogenesis-related Proteins (PRs) 3
4、 亞磷酸 (Neutralized Phosphorous Acid)誘發抗病反應,並誘導產生PRs 7
5、 研究動機及策略 8
貳、材料與方法 9
1、 供試植株及菌種來源 9
2、 亞磷酸處理試驗及病原菌接種 10
3、 多序列比對分析及蛋白質功能結構預測 11
4、 NIPRa及NIPRb之RNA表現分析 12
5、 番茄內大量表現NIPRa (Gene Overexpression) 14
6、 番茄內進行NIPRa 基因靜默化 (Gene Silencing) 16
7、 NIPRa localization 17
8、 NIPRa蛋白純化及特性分析 19
9、 啟動子分析 (Promoter analysis) 21
叁、結果 24
1、 亞磷酸處理可誘導Pathogenesis-related genes (PR genes)的表現 24
2、 番茄NIPRa及NIPRb 的選殖及鑑定 24
3、 番茄基因NIPRa及NIPRb與其他同源性基因之親緣樹分析 25
4、 NIPRa及NIPRb之基因表現情形 25
5、 利用PVX病毒載體在番茄大量表現NIPRa可提高植株對疫病菌及青枯病菌的耐病性 26
6、 利用病毒載體TRV在番茄內進行NIPRa基因靜默 (NIPRa gene silencing)使番茄植株對疫病菌及青枯病菌較感病 27
7、 NIPRa在細胞內的表現位置 28
8、 菸草植株處理亞磷酸及疫病菌後NIPRa啟動子活性分析 29
9、 利用3D結構預測NIPRa之功能 30
10、NIPRa蛋白之表現與純化 30
11、 以圓二色光譜(circular dichroism, CD)分析NIPRa重組蛋白 32
12、 以ICP-MS (Inductively-Coupled Plasma Mass Spectrometry)分析NIPRa重組蛋白所帶有的金屬離子 33
肆、討論 34
1、 鑑定NIPRa為PRs 34
2、 番茄內NIPRa與NIPRb 34
3、 NIPRa之同源性基因分析 35
4、 NIPRa對疫病菌及青枯病菌的耐病性 36
5、 NIPRa啟動子分析 38
6、 NIPRa蛋白質結構功能 40
7、 結語 41
伍、參考文獻..................................................................................................................42
陸、附表………………………………………………………………………………..49
柒、附圖………………………………………………………………………………..54
八、補充資料…………………………………………………………………………..73
dc.language.isozh-TW
dc.subject疫病菌zh_TW
dc.subject亞磷酸zh_TW
dc.subject番茄zh_TW
dc.subjectpathogenesis-related geneszh_TW
dc.subject青枯病zh_TW
dc.subjectneutralized phosphorous acid (NPA)en
dc.subjectpathogenesis-related (PR) geneen
dc.subjectpromoter analysisen
dc.subjectPhytophthora parasiticaen
dc.subjectRalstonia solanacearumen
dc.title探討番茄pathogenesis-related protein NIPRa之特性與功能zh_TW
dc.titleCharacterization of NIPRa, a pathogenesis-related protein from Solanum lycopersicumen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴爾?,鄭秋萍,林乃君,徐駿森
dc.subject.keywordpathogenesis-related genes,番茄,亞磷酸,疫病菌,青枯病,zh_TW
dc.subject.keywordneutralized phosphorous acid (NPA),pathogenesis-related (PR) gene,promoter analysis,Phytophthora parasitica,Ralstonia solanacearum,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2012-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved