請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64134完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 繆希椿(Shi-Chuen Miaw) | |
| dc.contributor.author | Yu-Jung Lu | en |
| dc.contributor.author | 呂雨蓉 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:31:28Z | - |
| dc.date.available | 2017-09-18 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | 1. Zhu, J., Yamane, H. & Paul, W.E. Differentiation of effector CD4 T cell populations (*). Annual review of immunology 28, 445-489 (2010).
2. Ho, I.C. & Glimcher, L.H. Transcription: tantalizing times for T cells. Cell 109 Suppl, S109-120 (2002). 3. Romagnani, S. Th1/Th2 cells. Inflammatory bowel diseases 5, 285-294 (1999). 4. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 Cells. Annual review of immunology 27, 485-517 (2009). 5. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136, 2348-2357 (1986). 6. Zhu, J. & Paul, W.E. Heterogeneity and plasticity of T helper cells. Cell research 20, 4-12 (2010). 7. Kataoka, K., Nishizawa, M. & Kawai, S. Structure-function analysis of the maf oncogene product, a member of the b-Zip protein family. Journal of virology 67, 2133-2141 (1993). 8. Nishizawa, M., Kataoka, K., Goto, N., Fujiwara, K.T. & Kawai, S. v-maf, a viral oncogene that encodes a 'leucine zipper' motif. Proceedings of the National Academy of Sciences of the United States of America 86, 7711-7715 (1989). 9. Yang, Y. & Cvekl, A. Large Maf Transcription Factors: Cousins of AP-1 Proteins and Important Regulators of Cellular Differentiation. The Einstein journal of biology and medicine : EJBM 23, 2-11 (2007). 10. Ho, I.C., Hodge, M.R., Rooney, J.W. & Glimcher, L.H. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973-983 (1996). 11. Kawauchi, S. et al. Regulation of lens fiber cell differentiation by transcription factor c-Maf. The Journal of biological chemistry 274, 19254-19260 (1999). 12. Kim, J.I., Li, T., Ho, I.C., Grusby, M.J. & Glimcher, L.H. Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proceedings of the National Academy of Sciences of the United States of America 96, 3781-3785 (1999). 13. Ring, B.Z., Cordes, S.P., Overbeek, P.A. & Barsh, G.S. Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development 127, 307-317 (2000). 14. Kataoka, K. Multiple mechanisms and functions of maf transcription factors in the regulation of tissue-specific genes. Journal of biochemistry 141, 775-781 (2007). 15. Rehemtulla, A. et al. The basic motif-leucine zipper transcription factor Nrl can positively regulate rhodopsin gene expression. Proceedings of the National Academy of Sciences of the United States of America 93, 191-195 (1996). 16. Manzanares, M. et al. Segmental regulation of Hoxb-3 by kreisler. Nature 387, 191-195 (1997). 17. Kataoka, K., Noda, M. & Nishizawa, M. Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Molecular and cellular biology 14, 700-712 (1994). 18. Kerppola, T.K. & Curran, T. A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene 9, 3149-3158 (1994). 19. Kim, J.I., Ho, I.C., Grusby, M.J. & Glimcher, L.H. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745-751 (1999). 20. Pot, C. et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J Immunol 183, 797-801 (2009). 21. Bauquet, A.T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nature immunology 10, 167-175 (2009). 22. Hiramatsu, Y. et al. c-Maf activates the promoter and enhancer of the IL-21 gene, and TGF-beta inhibits c-Maf-induced IL-21 production in CD4+ T cells. Journal of leukocyte biology 87, 703-712 (2010). 23. Rutz, S. et al. Transcription factor c-Maf mediates the TGF-beta-dependent suppression of IL-22 production in T(H)17 cells. Nature immunology (2011). 24. Dlakic, M., Grinberg, A.V., Leonard, D.A. & Kerppola, T.K. DNA sequence-dependent folding determines the divergence in binding specificities between Maf and other bZIP proteins. The EMBO journal 20, 828-840 (2001). 25. Kurokawa, H. et al. Structural basis of alternative DNA recognition by Maf transcription factors. Molecular and cellular biology 29, 6232-6244 (2009). 26. Kusunoki, H. et al. Solution structure of the DNA-binding domain of MafG. Nature structural biology 9, 252-256 (2002). 27. Graw, J. Congenital hereditary cataracts. The International journal of developmental biology 48, 1031-1044 (2004). 28. Huang, B. & He, W. Molecular characteristics of inherited congenital cataracts. European journal of medical genetics 53, 347-357 (2010). 29. Graw, J. Mouse models of cataract. Journal of genetics 88, 469-486 (2009). 30. Perveen, R., Favor, J., Jamieson, R.V., Ray, D.W. & Black, G.C. A heterozygous c-Maf transactivation domain mutation causes congenital cataract and enhances target gene activation. Human molecular genetics 16, 1030-1038 (2007). 31. Hansen, L., Eiberg, H. & Rosenberg, T. Novel MAF mutation in a family with congenital cataract-microcornea syndrome. Molecular vision 13, 2019-2022 (2007). 32. Vanita, V., Singh, D., Robinson, P.N., Sperling, K. & Singh, J.R. A novel mutation in the DNA-binding domain of MAF at 16q23.1 associated with autosomal dominant 'cerulean cataract' in an Indian family. American journal of medical genetics. Part A 140, 558-566 (2006). 33. Rajaram, N. & Kerppola, T.K. Synergistic transcription activation by Maf and Sox and their subnuclear localization are disrupted by a mutation in Maf that causes cataract. Molecular and cellular biology 24, 5694-5709 (2004). 34. Lyon, M.F. et al. A dominant mutation within the DNA-binding domain of the bZIP transcription factor Maf causes murine cataract and results in selective alteration in DNA binding. Human molecular genetics 12, 585-594 (2003). 35. Fiorentino, D.F., Bond, M.W. & Mosmann, T.R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. The Journal of experimental medicine 170, 2081-2095 (1989). 36. Moore, K.W., O'Garra, A., de Waal Malefyt, R., Vieira, P. & Mosmann, T.R. Interleukin-10. Annual review of immunology 11, 165-190 (1993). 37. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263-274 (1993). 38. Sellon, R.K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infection and immunity 66, 5224-5231 (1998). 39. Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nature reviews. Immunology 10, 170-181 (2010). 40. Jankovic, D., Kugler, D.G. & Sher, A. IL-10 production by CD4+ effector T cells: a mechanism for self-regulation. Mucosal immunology 3, 239-246 (2010). 41. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448, 484-487 (2007). 42. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480-483 (2007). 43. Suto, A. et al. Development and characterization of IL-21-producing CD4+ T cells. The Journal of experimental medicine 205, 1369-1379 (2008). 44. Zhou, L. et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature immunology 8, 967-974 (2007). 45. Xie, M.H. et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. The Journal of biological chemistry 275, 31335-31339 (2000). 46. Sonnenberg, G.F., Fouser, L.A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nature immunology 12, 383-390 (2011). 47. McGeachy, M.J. et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nature immunology 8, 1390-1397 (2007). 48. Zhou, L. et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453, 236-240 (2008). 49. Leavenworth, J.W., Ma, X., Mo, Y.Y. & Pauza, M.E. SUMO conjugation contributes to immune deviation in nonobese diabetic mice by suppressing c-Maf transactivation of IL-4. J Immunol 183, 1110-1119 (2009). 50. Lin, B.S. et al. SUMOylation attenuates c-Maf-dependent IL-4 expression. European journal of immunology 40, 1174-1184 (2010). 51. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Bi 15, 607-660 (1999). 52. Kalderon, D., Richardson, W.D., Markham, A.F. & Smith, A.E. Sequence Requirements for Nuclear Location of Simian Virus-40 Large-T-Antigen. Nature 311, 33-38 (1984). 53. Robbins, J., Dilworth, S.M., Laskey, R.A. & Dingwall, C. 2 Interdependent Basic Domains in Nucleoplasmin Nuclear Targeting Sequence - Identification of a Class of Bipartite Nuclear Targeting Sequence. Cell 64, 615-623 (1991). 54. Chu, C.H. et al. A Highly Organized Structure Mediating Nuclear Localization of a Myb2 Transcription Factor in the Protozoan Parasite Trichomonas vaginalis. Eukaryot Cell 10, 1607-1617 (2011). 55. Spittau, B., Wang, Z.Y., Boinska, D. & Kriegistein, K. Functional domains of the TGF-beta-inducible transcription factor Tieg3 and detection of two putative nuclear localization signals within the zinc finger DNA-binding domain. J Cell Biochem 101, 712-722 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64134 | - |
| dc.description.abstract | c-Maf 除了在第二型輔助性T細胞 (Th2)中扮演調控介白素4 (IL-4) 的角色外,也可以在第十七型輔助性T 細胞 (Th17) 中直接調控介白素10 (IL-10) 和介白素21 (IL-21)。此外,最近c-Maf也被發現可以做為轉換生長因子 (TGF-β) 的下游,抑制介白素22 (IL-22) 的表現。作為轉錄因子,c-Maf 的鹼性區域 (basic region) 在辨認轉錄因子c-Maf DNA 結合位( MARE site) 扮演重要角色。許多鹼性區域的突變已被證實和人類先天性白內障有關。既然鹼性區域在DNA結合上不可或缺,我們想要探討這些在先天性白內障中被發現的突變 (K294R, R296S 和Y298F) 是否會影響c-Maf對細胞激素的調控。
我們利用逆轉濾過性病毒轉染 (retroviral transduction) 的方式送入野生型 (WT) c-Maf 或是突變型的c-Maf,藉由ELISA及real-time PCR的方式觀察其對細胞激素的影響。我們發現所有的突變都會降低介白素10和介白素21的表現。接著探討其中的機制,我們發現R296S和Y298F突變c-Maf 進入細胞核的能力會受到影響,且所有的突變型c-Maf 蛋白質都比野生型蛋白質不穩定,這些可能都是造成介白素10和介白素21表現降低的原因。 - | zh_TW |
| dc.description.abstract | In addition to act as IL-4 activator in Th2 cells, c-Maf has been demonstrated to activate IL-10 and IL-21 directly in Th17 cells. Recently, c-Maf has also been discovered to be the downstream of TGF-β,and inhibit IL-22 production. As a transcription factor, the basic region of c-Maf plays a significant role in recognizing the MARE site, Maf recognition element. Several mutations in the basic region of c-Maf have been reported to cause congenital cataracts in human. Since the basic region of c-Maf play an important role in the DNA-binding, we plan to investigate whether the mutants in c-Maf basic region, including K294R, R296S and Y298F, affect their transactivation abilities on cytokine gene expression.
Retroviral transduction was performed to express the WT or mutant c- Mafs in the IL-6-skewing CD4+ T cells, and the cytokine expression was assayed by ELISA and real-time PCR. We observed that the IL-10 and IL-21 production were impaired in c-Maf BR mutants. In further investigation of the mechanism involved, we discovered that the cellular distribution of all mutants was changed. In addition, all mutant proteins were less stable than WT c-Maf. These phenomena may contribute partially to the reduction of cytokine production of c-Maf BR mutants. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:31:28Z (GMT). No. of bitstreams: 1 ntu-101-R99449013-1.pdf: 1348518 bytes, checksum: 9aadd669406b3cc277b24ba02ccad0a7 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Chapter I Introduction 1 1. CD4+ Helper T cells 1 2. An overview of Maf family 2 3. The c-Maf and its function in immune system 3 4. The DNA binding of c-Maf 5 5. The mutants in the basic region of c-Maf and congenital cataracts 6 6. Overview of IL-10, IL-21 and IL-22 7 7. Rationale 8 Chapter II Materials and Methods 9 1. Experimental materials 9 1.1 Chemicals and Reagents 9 1.2 Enzymes and antibodies 10 1.3 Kit 11 1.4 Medium, Solution and buffers 11 2. Methods 12 2.1 Plasmid construction and preparation 12 2.2 Cell culture and transfection 13 2.3 Luciferase assay 14 2.4 Western blotting analysis 14 2.5 ELISA assay 15 2.6 Real-time PCR analysis 15 2.7 The cytosolic and nuclear extract separation 16 2.8 Confocal microscopy 17 2.9 Protein stability assay 17 Chapter III Results 18 1. The mutations in the basic region of c-Maf affect its transactivation ability on IL-4 and IL-10 but not IL-21 gene expression. 18 2. Construction and expression of constructs used in the retroviral transduction expression. 19 3. IL-4, IL-10 and IL-21 productions were decreased in the mutant c-Maf transduced primary CD4+ T cells 20 4. The cellular localization of K294R, R296S and Y298F c-Maf remains mainly in the nucleus 21 5. K294R, R296S and Y298F is more stable than wild-type 22 Chapter IV Discussion 23 1. The c-Maf basic region plays a significant role in DNA binding and mutations in this region impair the cytokines production. 23 2. Cellular distribution of c-Maf mutants may affect the cytokines production 24 Figures 27 Appendix 44 Reference 45 | |
| dc.language.iso | en | |
| dc.subject | 介白素十 | zh_TW |
| dc.subject | 第十七型輔助性T細胞 | zh_TW |
| dc.subject | 介白素二十一 | zh_TW |
| dc.subject | 介白素二十二 | zh_TW |
| dc.subject | c-Maf | en |
| dc.subject | IL-10 | en |
| dc.subject | IL-21 | en |
| dc.subject | IL-22 | en |
| dc.subject | Th17 cells | en |
| dc.title | c-Maf 鹼性區域在第十七型輔助性T細胞中對介白素十、介白素二十一和介白素二十二基因表現之調控 | zh_TW |
| dc.title | Regulation of IL-10, IL-21 and IL-22 gene expression by the Basic Region of c-Maf in Th17 cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴明宗(Ming-Zong Lai),司徒惠康(Huey-Kang Sytwu) | |
| dc.subject.keyword | 第十七型輔助性T細胞,介白素十,介白素二十一,介白素二十二, | zh_TW |
| dc.subject.keyword | c-Maf,IL-10,IL-21,IL-22,Th17 cells, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
